
Battery Emulation

150 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

AS CONSUMERS DEMAND ever more functionality
and smaller form factors in portable devices such as PDAs
and celluar phones, batteries are quickly becoming a lim-
iting factor. Recently, researchers have started develop-
ing battery-aware power management techniques that
exploit the nonideal features of batteries to maximize
their effective lifetimes. Specifically, varying the discharge
patterns can dramatically affect battery life. To validate
these techniques, researchers can use either real batter-
ies or battery simulation.

The most obvious way to validate the results is to
measure the power with actual batteries, but this
approach has several drawbacks. If nonrechargeable
batteries are used, they must be replaced and disposed
of after each experiment, making this approach expen-
sive and unfriendly to the environment.

Rechargeable batteries produce less waste, but the
results might not be reproducible. Real batteries experi-
ence effects that cause the charge capacity to vary. In the
rate-capacity effect, for example, a higher current draw
than the rated current makes a battery appear less
charged (with lower voltage and less total energy output)
for a period of time.1 In the rate-recovery effect or relax-
ation effect, the battery can recover from its lost efficiency
if it has a chance to rest during periods of reduced load.2

In addition, temperature and aging can affect charge
capacity. Lansburg, Cocciantelli, and Vigerstol report-
ed that available charge capacity could vary from 73%
to 103% of rated capacity after six or seven months of
battery use, depending on discharge rate, temperature,
and storage conditions.3 Therefore, to avoid misleading

results, researchers must consider all
these factors when conducting experi-
ments involving batteries.

To achieve full reproducibility,
researchers have turned to simulation
and have proposed and implemented
several simulators. Dualfoil is an electro-

chemical model that solves partial differential equations
in Fortran.1 It outputs the battery’s voltage and temper-
ature in response to the power consumer’s discharge
current load. It models rate-capacity and rate-recovery
effects, but it is computationally intensive and does not
capture aging effects. Researchers have also proposed
models based on Spice4 and discrete-time VHDL,5 and
they are faster though less accurate. Researchers have
developed stochastic models to capture these effects,6

but they are designed to estimate battery lifetime rather
than the voltage response.

A battery simulator must be driven by an actual load.
Normally, the input to a battery simulator is a synthetic
or actual current profile collected by running a system.
Because there is no feedback to the system, such an
approach is good for validating open-loop or battery-
friendly power managers rather than battery-aware
ones. An alternative approach is to close the feedback
loop by simulating the power manager to drive the bat-
tery simulator. However, this requires online estimation
of the rest of the power-managed system’s power con-
sumption. Detailed, accurate, fast power estimation
remains a challenge.

We take a different approach: We propose a battery
emulator called B# (pronounced B sharp) for experi-
ments with battery-aware designs. B# is an intelligent
power supply that mimics a battery’s behavior by running
a battery simulation program in real time. It senses the
current load and responds by controlling the output volt-
age as an actual battery would. This lets researchers con-
duct in situ experiments on battery-aware designs without

B#: A Battery Emulator and
Power-Profiling Instrument

B# (B sharp) is a programmable power supply that emulates battery behavior.
It measures current load, calls a battery simulation program to compute voltage
in real time, and controls a linear regulator to mimic a battery’s voltage output.
The instrument enables validation of battery-aware power optimization
techniques with accurate, controllable, reproducible results.

Chulsung Park, Jinfeng Liu, and Pai H. Chou
University of California, Irvine

having to use actual batteries. Our approach combines
the speed and accuracy of measurement-based
approaches with the flexibility and reproducibility of sim-
ulation-based approaches. The only other battery emu-
lator we are aware of is the unpublished work on the
Penn State University Battery Simulator.7 Developed for
testing electric vehicles, the PSU-BS can output up to
600W with a response time of 170 ms. However, very lim-
ited information on this project is publicly available.

B# has potentially more uses than emulating batter-
ies. In the emulator’s profiling mode, the user can col-
lect power profiles through real-time measurements and
save the data to a file. B# complements cycle-accurate
energy-monitoring tools for systemwide power con-
sumption without a centralized clock.8 In training mode,
the user can connect an actual battery for calibrating a
simulation model. B# can also play back a recorded
stream of voltage values as they are collected from other
sources, such as a solar panel over the course of a day
under various weather conditions. We’ve prototyped
our design and tested it on PDAs, achieving high accu-
racy and fast response time.

Problem statement
Before designing the battery emulator, we reviewed

circuit models for batteries and the performance target
of the emulator. The key constraints on a battery emu-
lator are its power circuitry and timing.

Power circuitry
Figure 1a shows a battery-powered system modeled

as an equivalent circuit. The shaded region corresponds
to the battery, in which Voc and Ri are the open-circuit
voltage and internal resistance. The unshaded region cor-
responds to the load with capacitance Cl and resistance
Rl. The load can vary over time with activities and power
management policies. If the circuit sources current I, the
battery’s observed voltage Vb is Voc – I × Ri. As the battery
discharges, Voc decreases while Ri increases, and both are
based on the battery’s state and internal temperature. The
simulation model maintains the battery’s state, whereas
the ambient temperature and current can be measured.
Figure 1b shows one possible circuit for a battery emula-
tor based on the circuit model in Figure 1a. The emula-
tor performs the following steps repeatedly:

■ Measure the current (I) and temperature (T).
■ Call the simulator to compute Voc and Ri in response

to I and T.
■ Set the Voc and Ri values.

Ambient temperature T, which we use to set the sim-
ulator’s initial condition, can affect the battery’s inter-
nal temperature. Most existing simulators, including
Dualfoil, compute Vb directly without explicitly com-
puting Ri or Voc. An emulator controls Voc, which is sim-
ply Vb + I × Ri. We can implement Ri effectively by
compensating the value of Voc as a function of I, and it
need not be a physical programmable resistor.

Timing
The battery emulator’s timing constraints include the

emulation period and the response time. Emulation
period p is the time between successive updates of the
output voltage by the emulator. Response time δ is the
latency from the time the current is sampled to the time
the output voltage is observed. Note that the sampling
and simulation periods can be equal to or shorter than
the emulation period. Also, it’s not necessary that δ ≤ p.
Both p and δ are limited by the following factors:

■ load capacitance Cl,
■ data acquisition time, which is limited by sampling

speed and communication time to the computer; and
■ computation and communication time of running

one simulation iteration.

151March–April 2005

−
+

−
+

Voc
Ri

Cl

Rl

Voc

Vb

Vb

Ri
Cl

Rl

A

Battery
simulator

Battery emulator

Battery

(a)

(b)

Figure 1. Circuit models of a battery with a load (a), and a
battery emulator with a load (b).

Emulator design
Figure 2 diagrams the B# system. It consists of the B#

hardware board, connected via Ethernet to a host com-
puter running the GUI and Dualfoil. Here we describe
the B# system’s hardware, software, and communica-
tion protocol.

B# hardware
Figures 3 and 4 show a hardware block diagram and

a photo of the B# board. We categorize the hardware
into digital and analog subsystems.

Analog: power circuitry. The power circuitry imple-

Battery Emulation

152 IEEE Design & Test of Computers

Load

Adjustable
regulator

Communication handler

Configuration and calibration

Sensor

Digital-analog
converter

Analog-digital
converters

MicrocontrollerMicrocontroller

GUI

Dualfoil or other
power model

Host computer

Software on
host computer

T I V V

T I V V

B#
hardware

Ethernet

Figure 2. B# system block diagram: hardware board, connected via Ethernet to host computer
running GUI and Dualfoil.

D
at

a
ad

dr
es

s
bu

s Three-wire
SPI

10
-b

it
A

D
C

20
 K

H
z

External
interface RS232 Reference

input

Adjustable
reference
MAX6160

RJ45
magnetic
LF1S022

Ethernet
controller

RTL8019AS

USB
interface
(optional)

5-V linear
regulator
LM 1085

5-V voltage
reference
MAX6250

Adjustable
regulator
LP3964

DC 6-V
1,250-mA
adapter

Reset
switch

Power
switch

10-bit
DAC

Three-pin
serial
port

8 bit

8 bit

Sensors

Temperature
MAX22100

Current
MAX471

Battery

Load

Microcontroller
PIC16F877

Figure 3. B# hardware block diagram.

ments the equivalent circuit shown in Figure 1b. It con-
tains sensors to measure current I, temperature T, and
voltage Vb, and it must adjust the output voltage in the
range of interest.

We implement the I, T, and Vb sensors by sampling
the voltage values of the three respective measurement
circuits. We measure current by digitizing the voltage
drop across a very small resistor (25 mΩ) in series with
the power supply. We measure temperature by sam-
pling an AD22100 temperature sensor IC. The PIC16F877
microcontroller already has eight built-in channels of
10-bit analog-digital converters (ADCs) with an acqui-
sition time of 19.72 µs. We use three channels for mea-
suring I, T, and Vb.

We implement output voltage control with a
MAX5721 10-bit digital-analog converter (DAC) and an
LP3964 adjustable linear regulator. The microcontroller
uses a serial peripheral interface (SPI, also called a
three-wire interface) to control the DAC, whose voltage
then controls the adjustable linear regulator. The
LP3964 has a maximum current rating of 800 mA, which
we can increase by using another adjustable regulator
with a higher current rating or by composing several reg-
ulators in parallel.

We don’t include a passive resistor in model Ri,
because the LP3964 already has its own internal resis-
tance Rr, which is actually higher than the battery’s Ri.
Therefore, we implement Ri by voltage adjustment,
which we discuss later.

Digital control. At the heart of the B# hardware is the
microcontroller. The current B# board uses a PIC16F877
microcontroller at 20 MHz with built-in eight-channel
ADCs and a universal asynchronous receiver-transmit-
ter (UART) for serial communication. The firmware is
stored in the on-chip flash memory and can be upgrad-
ed via the serial port. In addition, a RealTek RTL8019AS
Ethernet controller is connected to the microcontroller
via memory-mapped I/O. Ethernet is the primary high-
speed link for communication with the host computer.
The PIC runs a command interpreter that responds to
status queries or performs system configuration and
ADC calibration.

Host computer software
The host computer works with the B# hardware

board by running several tasks under GUI control: B#
configuration and calibration, control and data com-
munication, real-time battery simulation, and real-time
graphical display of voltage and current curves. We cur-

rently use Dualfoil for power source simulation, but we
could replace it with another simulator or another
power model such as a solar panel.

Graphical user interface. The GUI supports the con-
trol and configuration of B# and Dualfoil in all stages of
an experiment. First, the user can configure the simu-
lated battery by specifying the Dualfoil parameters with
additional compensation such as a DC offset. In profil-
ing mode, the GUI saves the sampled voltage and cur-
rent data stream from the B# board into a host computer
file. The sampling rate can be set much higher in pro-
filing mode than in emulation mode because B# need
not respond to the current.

In both profiling and emulation modes, the GUI sup-
ports real-time on-screen display of voltage and current
curves. The B# GUI can also serve as a graphical front
end for running Dualfoil and displaying the power pro-
file without connecting to B#. Then, all results from mea-
surement, real-time emulation, and offline simulation
can be superimposed on the same display.

Battery simulation and training. In the current
implementation, we use Dualfoil,1 an electrochemical
simulator for lithium-ion battery cells, to model the emu-
lated battery’s behavior. Dualfoil is widely used because
it is considered one of the most accurate simulators and
because its Fortran source code is freely available
(http://www.cchem.berkeley.edu/~jsngrp/fortran.html).
The original Dualfoil program runs in batch mode
through file I/O. To make it work with B#, we convert-
ed Dualfoil from Fortran to C and replaced file I/O calls
with Ethernet communication calls to exchange data
with the B# board in real time. Of course, other battery
simulators can be plugged into the B# framework, as
long as they implement the same protocol. The major

153March–April 2005

Regulator

DAC Current sensor

Microcontroller

RS232

Ethernet

Figure 4. B# board.

problem in adapting Dualfoil is determining a suitable
simulation resolution and battery parameterization.

As an electrochemical model, Dualfoil is computa-
tionally intensive. Running Dualfoil simulations in real
time can be challenging if the required temporal reso-
lution is high. Fortunately, Dualfoil produces accurate
results at about 6 to 10 iterations per second on realis-
tic load profiles, and this is well within the performance
of modern PCs. In practice, the simulation delay is 30 to
150 ms, depending on the host computer’s speed and
the load fluctuation. To handle execution time varia-
tions, we define emulation period p, which is the time
budget for executing at least one Dualfoil iteration plus
communication delay. While Dualfoil computes the
voltage response in parallel, the B# board sets the volt-
age from the previous step and takes the next current
sample. That is, the voltage response seen by the load
circuit experiences a delay of one period, including an
Ethernet delay of 1 to 2 ms. In the results section, we ver-
ify that this is within the response time of actual batter-
ies and therefore has little impact on the overall
accuracy of B#’s battery emulation.

As we said, a main challenge in adapting Dualfoil is
the selection of battery configuration parameters. Each
battery model is defined by 58 parameters.9 Some para-
meters specify the physical dimensions of the cells,
anode, cathode, and so forth and are easy to determine.
However, most parameters are chemistry specific and
not so obvious. The DLP305590 lithium polymer battery
that we use is not on the list of predefined battery mod-
els in Dualfoil, so we must train our own battery model.
Unfortunately, the available documentation is not suffi-
cient for us to construct even an approximate model. Our
approach is to determine the configuration parameters
empirically by running Dualfoil on three load profiles:

■ a constant high discharge current level at 400 mA,
■ a constant low discharge current level at 100 mA,

and
■ a variable current between the high and low dis-

charge levels.

It’s not feasible to enumerate all 58 parameters.
Based on manual exploration, we found the simulation
results to be sensitive primarily to three discrete para-
meters, whereas the remaining 55 parameters require
much manual tuning. The three integer parameters
would yield 7 × 12 × 13 = 1,092 combinations. Even if
only two values are considered for each of the 55 para-
meters, the total number of required simulation runs

would explode quickly because there would be 1,092
× 255 (that is, more than 1020) combinations for each pro-
file. Our approach is to perform a manual inspection
based on several heuristics. On the absolute scale, we
attempt to minimize the average-voltage error (AVE)
over all sampling windows:

(1)

However, it is often difficult to minimize AVE over
all three load profiles. We relax the matching criteria
with three other heuristics:

■ AVE matching. How closely do the AVEs of the three
load profiles (Equation 1) match each other, even if
individually the AVEs may be higher?

■ Proportional matching. If Vmeas(t) = cVsim(t) for some
constant scaling factor c for most of the profile, it can
also be a good match. As a heuristic, we attempt to
minimize

■ Linear matching. If Vmeas(t) = aVsim(t) + b for constants
a and b for most of the profile, it can also be a good
candidate for calibration. As a heuristic, we attempt
to minimize

To find a good match, we ran more than 10,000 sim-
ulations with different parameter settings and compared
the simulation results with the measured battery respons-
es according to these criteria. Of course, we could use
several other objective functions, such as peak voltage
error, but we found that minimizing AVE is effective for
battery training. The best AVE we achieved over the
three power profiles are ≤ 2%, ≤ 3%, and ≤ 1%. We later
show that the set of battery configuration parameters
derived this way works well for emulating the iPaq bat-
tery pack on other types of realistic load.

Host-board protocol. During battery emulation, the
B# board and the host computer exchange measured

V

aV b

V

aV
meas

sim

meas

sim

start
start

end
e

()
() +

− ()
nnd() + b

V

V

V

V
meas

sim

meas

sim

start

start

end

end
()
() − ()

()

V t V t

V t

t

N

t

N

sim meas

meas

()− ()
()

=

=

∑
∑
0

0

Battery Emulation

154 IEEE Design & Test of Computers

current load and simulated voltage response once every
emulation period. We define a protocol between the
host and the B# board not only to exchange data, but
also to ensure that both sides can perform their tasks in
addition to communicating under real-time constraints.
Recall that the B# board must perform current mea-
surement and voltage setting, whereas the host must run
Dualfoil simulation and interpretation of current input
and voltage output.

Figure 5 shows the scheduled activities on the B#
board and the host computer and their communication
over time. On start-up, the host computer sends com-
mands to the B# board to set the board’s timer resolu-
tion and the emulation period, which must be multiples
of the timer resolution. The host sets the B# board to an
initial open-circuit voltage and starts Dualfoil simulation
with no current load. Then, the B# board starts measur-
ing the circuit’s current load on each timer interrupt.
After finishing one Dualfoil simulation iteration, the host
computer sends the recently simulated voltage values
to the B# board and receives the measured current val-
ues from the B# board. At this time, the first emulation
period ends and the next emulation period starts.

The host computer runs another Dualfoil simulation
iteration with the averaged load current, while the B#
board continues sampling current and emulating volt-
age on each timer tick. If the simulator outputs a differ-
ent voltage response from the previous emulation
period, the host computer linearly interpolates this volt-
age change over time by sending a series of (timer tick,
voltage) pairs to the B# board. The B# board then sets
the voltage accordingly on those timer interrupts. The
user can configure the emulation period, which can be
shortened to 30 ms on a fast host computer. In our expe-
rience, the energy error caused by the delay in voltage
response is negligible.

Evaluation
We evaluated the current implementation of B#

through measurements with handheld devices and real
batteries. Here we provide an overview of the experi-
mental setup, explain our methodology, and present the
results for the emulator’s response time, internal resis-
tance, and overall accuracy.

Experimental setup
Our experimental setup consisted of a pair of B#

boards and the load. One B# board works as the battery
emulator and the other as the power profiler that
records the voltage and current to a file. We calibrated
both boards with a digital multimeter before the exper-
iments. We used this setup to test the following hand-
held systems as the load:

■ iPaq 3650, with a 206-MHz StrongARM SA-1110 CPU,
32-Mbyte RAM, 16-Mbyte ROM, and a 320 × 240, 12-
bit thin-film transistor (TFT) display;

■ Palm Tungsten C, with a 400-MHz XScale PXA255
CPU, 64-Mbyte RAM, a built-in 802.11b wireless inter-
face, and a 320 × 320, 16-bit TFT backlit display.

Figure 6 shows the experimental setup for evaluat-
ing B# with the iPaq, and the setup for the Tungsten is
similar. The reference battery is the DLP305590 lithium
polymer battery from Danionics. Its physical dimensions
are 3.1 mm (T) × 55 mm (W) × 90 mm (L), and it weighs
31 ± 2 g. Its output is rated for 1,000 mA, 3.0 to 4.2 V. This
is a battery pack for the iPaq, but we used it to power
the Tungsten, too.

Test cases
The iPaq or the Tungsten acts as the load to B#. To

quantify emulation accuracy, we developed several test

155March–April 2005

Start-up

Start-up

Send Send Receive Send ReceiveSend Simulating
with load = 0

Simulating
with load = avg(I1)

Send

B# software
on host

B# board ReceiveSendReceive
Emulating V2 and

measuring I3
Emulating V2 and

measuring I3
SendReceiveReceiveReceive

Emulating V0 and
measuring I1

T3T2T1

V0 V1 I1 V2 I2 V3 I3

Send Receive Simulating
with load = avg(I2)

Timer resolution
simulation period

Figure 5. Scheduling of B# hardware, software, and communication.

cases. In addition to constant-high and constant-low cur-
rent used during calibration, we also developed scripts
to vary the load on the iPaq or Tungsten. Using scripts
ensures reproducibility of the load profile.

Test case: backlight and multimedia. For the iPaq,
we developed scripts to control combinations of back-
light settings and video/audio activities. These settings
and activities consume high power and thus enable B#
to exercise the widest dynamic range. We ran these
experiments once on the iPaq’s own battery and once
with B# in place of the battery. Figure 7 shows one such
power profile generated with the actual battery. We let
the iPaq run until it reached its cutoff voltage around
3.7 V and shut itself off. The iPaq’s cutoff voltage is high-

er than the lithium-ion battery’s cutoff voltage to pre-
vent deep discharge, which can permanently damage
the battery.

Test case: wireless communication. Wireless com-
munication is also a major power consumer in many
electronic systems. For the iPaq 3650 to use a wireless
interface such as an 802.11b card, we would have to use
the expansion pack, which a separate battery pack pow-
ers. This would require multiple B# systems emulating
multiple battery packs in parallel. Although there is no
inherent difficulty in carrying out such an experiment,
we were more interested in testing B# with a wider vari-
ety of system-level load profiles. In this case, therefore,
we used the Tungsten C, which has an integrated
802.11b interface and can be powered entirely by one
battery pack and one B#. The Tungsten also uses a 1500-
mAh lithium-ion polymer battery, which is similar in
type and capacity to the iPaq’s. To exercise the wireless
card, we scripted the Tungsten’s Web browser via the
HTTP refresh directive to periodically “pull” and render
a series of Web pages containing six image files totaling
7 Mbytes in size.

Internal resistance
This experiment validated the way we model the bat-

tery’s internal resistance by voltage compensation.
Recall that the battery and the B# linear regulator have
internal resistances Ri and Rr, respectively. Ri and Rr

form a voltage divider with load Rl. However, Ri and Rr

differ in several ways. Real lithium-ion batteries have an
Ri of about 0.2 Ω on a full charge, rising to about 0.7 Ω

Battery Emulation

156 IEEE Design & Test of Computers

B# simulator

B# emulatoriPAQ 3650 B# profiler
(a) (b)

Figure 6. Experimental setup (a): one B# board to emulate the battery for the iPaq, and one B# board as a power
profiler to measure voltage and current. On the right is the reference battery (b).

1.0

0.8

0.6

0.4

0.2

0

4.0

3.8

3.6

3.4
0 400 800 1,200 1,600

Elapsed time (s)

Current

Voltage

Vo
lta

ge
 (

V
)

C
ur

re
nt

 (
A

)

Figure 7. Profile of 27 minutes of voltage and current data
collected from an iPaq running on its own battery. On battery
depletion, the voltage goes back up, but the current goes to 0.

near depletion.10 We validated this by measurement, as
Figure 8a shows:

Ri = (V1 − V0)/(I1 − I0) = 0.253 Ω

On the other hand, the linear regulator has a variable inter-
nal resistance of 0.7 Ω ≤ Rr ≤ 1.3 Ω, as Figure 8b shows.

We can conclude that adding a programmable resis-
tor to model Ri would not be a feasible approach, for
several reasons. First, programmable resistors do not
come in such small value increments. Second, because
the linear regulator’s internal resistance is already high-
er than the battery’s, adding a passive resistor in series
will not reduce the resistance. As a result, we must
implement Ri by adding a ∆V(I) voltage to Voc.

Response time
To determine the lithium-ion battery’s response time,

we applied the pulse-shaped current load, as Figure 9
shows, causing a voltage difference in Vb. The current
starts to increase at 11 s and drops just before 12.5 s. We
determine response time and latency by averaging the
respective rise and fall times:

Tresponse = (Tr + Tf)/2 = 0.423 s
Tlatency = (TPH + TPL)/2 = 0.248 s

where the subscript PH stands for propagation delay,
high; and PL stands for propagation delay, low. The
sampling period and response time are therefore well
within the iPaq’s DLP305590 battery’s response time.

Emulation accuracy
We collected the power profiles on the actual bat-

tery and repeated the same workload with B#. Table 1
summarizes the accuracy results for energy and voltage.
Two sources of inaccuracy are the Dualfoil simulator
and the B# board. The calibrated Dualfoil is within
0.08% of overall energy accuracy. For all practical pur-
poses, Dualfoil is an exact match, even though the sim-
ulation resolution is only about 8 to 10 Hz.

Given the almost perfect software model, we cali-
brated the Rr of the B# with a digital multimeter within
0.009 V, and this was as close as we could get with the
DAC’s limited resolution. The cutoff voltages differ by

157March–April 2005

4.2

4.0

3.8

3.6

1.0

0.8

0.2

0.4

0.6

0
10 11 12

Time (s)
13 14

V
ol

ta
ge

 (
V

)

C
ur

re
nt

 (
A

)

Voltage

Current

(a) (b)

0 400 1,200800

0.8

1.2

1.6

2.0

3.4

3.8

3.6

4.0

4.2

Vo
lta

ge
 (

V
)

R
es

is
ta

nc
e

(Ω
)

Elapsed time (s)

Voc

Vb

Ri

Figure 8. Measurement of battery’s internal resistance when nearly fully charged—about 0.253 Ω (a). Internal
resistance Rr of the B# linear regulator, computed from [Voc′(set) − Vb′(measured)] / I for 21 minutes (b).

10 11 12
Time (s)

13 14

Voltage

Current

4.1

4.0

3.9

0.4

0.2

0

Vo
lta

ge
 (

V
)

C
ur

re
nt

 (
A

)

Figure 9. Measured response time of lithium-ion
battery to changes in current load.

only 0.057 V, which is also practically exact. In terms of
the total energy output, B# is accurate within 1.294%.

OUR ONGOING WORK deals with hardware enhance-
ments and new models for other power sources, includ-
ing both battery and nonbattery sources. We are
extending the B# board to emulate recharging. The
Dualfoil simulator can model recharge, but the B# hard-
ware requires enhancements to draw power from the
charger. We are also evaluating models for other types
of batteries such as NiCd and Lithium MnO2 to replace
Dualfoil with our own battery model. We are validating
the results of using B# to emulate solar panels. The main
difference between batteries and solar panels is that
solar panels have a much wider dynamic range of inter-
nal resistance and output power. This has enabled
researchers to experiment with solar-aware power man-
agement techniques without having to wait for weath-
er conditions and geographical locations to be exactly
right. All these enhancements will make B# an indis-
pensable instrument for experimenting with power-
aware designs with far more controllability. ■

Acknowledgments
This work was sponsored in part by the National

Science Foundation under grant CCR-0205712, the
DARPA PAC/C program under subcontract 4500942474
with Rockwell/Collins, and the Printronix Fellowship.
We thank Jae Park and Kien Pham for their assistance,
and Bruce Tromberg for making laboratory space
available for the first prototyping of the B# instrument.

References
1. M. Doyle, T.F. Fuller, and J.S. Newman, “Modeling of

Galvanostatic Charge and Discharge of the Lithium/Poly-

mer/Insertion Cell,” J. Electrochemical Soc., vol. 140, no.

6, June 1993, pp. 1526-1533.

2. T.F. Fuller, M. Doyle, and J.S. Newman, “Relaxation

Phenomena in Lithium-Ion Insertion Cells,” J.

Electrochemical Soc., vol. 141, no. 4, Apr. 1994, pp.

982-990.

3. S. Lansburg, J.-M. Cocciantelli, and O. Vigerstol, “Per-

formance of Ni-Cd Batteries after Five Years of Deploy-

ments in Telecom Networks Worldwide,” Proc. 24th Ann.

Int’l Telecommunications Energy Conf. (INTELEC 02),

IEEE Press, 2002, pp. 251-258.

4. S. Gold, “A PSPICE Macromodel for Lithium-Ion Batter-

ies,” Proc. 12th Ann. Battery Conf. Applications and

Advances, IEEE Press, 1997, pp. 215-222.

5. L. Benini et al., “A Discrete-Time Battery Model for High-

Level Power Estimation,” Proc. Design, Automation and

Test in Europe (DATE 00), IEEE CS Press, 2000, pp. 35-

39.

6. D. Panigrahi et al., “Battery Life Estimation for Mobile

Embedded Systems,” Proc. 14th Int’l Conf. VLSI Design,

IEEE CS Press, 2001, pp. 55-63.

7. M.M. Mench, Penn State University Battery Simulator

(PSU-BS), http://mtrl1.me.psu.edu/mtrl/BatSimFac.htm,

2000.

8. D. Shin et al., “Energy-Monitoring Tool for Low-Power

Embedded Programs,” IEEE Design & Test, vol. 19, no.

4, July-Aug. 2002, pp. 7-17.

9. K.E. Thomas, M. Doyle, and J. Newman, “Introduction to

Dualfoil.f,” http://www.cchem.berkeley.edu/~jsngrp/

dualfoilfaq.pdf, Oct. 2002.

10. D. Linden and T. Reddy, Handbook of Batteries,

McGraw-Hill, 2001.

Chulsung Park is pursuing a PhD in
the Department of Electrical Engineer-
ing and Computer Science at the Uni-
versity of California, Irvine. His research
interests include wireless sensor net-

Battery Emulation

158 IEEE Design & Test of Computers

Table 1. Energy and voltage accuracy results. (Note that Vstart is not open-circuit voltage.)

 Backlight and multimedia 802.11b
Test method Energy (J) Vstart Vend Energy (J) Vstart Vend

Actual battery 743.6 3.885 3.801 822.53 3.928 3.837

Simulation (Dualfoil) 743.0 3.854 3.785 823.747 3.927 3.833

Difference −0.6 −0.031 −0.016 1.217 −0.001 −0.004

Error (%) −0.08 −0.798 −0.421 0.148 −0.102 −0.104

Emulation (B#) 753.2 3.894 3.858 822.798 3.932 3.832

Difference 9.6 0.009 0.057 0.268 0.004 0.005

Error (%) 1.294 0.232 1.500 0.033 0.102 0.111

works and low-power embedded-system designs. Park
has a BS in electrical engineering from Seoul National
University. He is a student member of the IEEE.

Jinfeng Liu is a PhD candidate in
the Department of Electrical Engineer-
ing and Computer Science at the Uni-
versity of California, Irvine. His
research interests include distributed

embedded systems and low-power designs. Liu has
a BS in electronic engineering from Tsinghua Univer-
sity, China, and an MS in computer science from the
Chinese Academy of Sciences. He is a student mem-
ber of the IEEE and the ACM.

Pai H. Chou is an assistant profes-
sor at the University of California,
Irvine. His research interests include
hardware-software codesign of
embedded systems, low-power

designs, wireless embedded sensing systems, and
medical devices. Chou has a BA from the University
of California, Berkeley, and an MS and a PhD in com-
puter science and engineering, both from the Univer-
sity of Washington. He is a member of the IEEE and
the ACM, and a recipient of the NSF Career award.

Direct questions and comments about this article
to Chulsung Park, Center for Embedded Computer
Systems, University of California, Irvine, CA 92697-
2625; chulsung@uci.edu.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.org/

publications/dlib.

159March–April 2005

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r.zwick@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: jm.ieeemedia@ieee.org

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Sandy Brown
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sbrown@computer.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

Europe (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

A D V E R T I S E R / P R O D U C T I N D E X M A R / A P R 2 0 0 5

The New Face of Design for Manufacturability

Design for manufacturability (DFM) is a set of technologies aimed
at improving yield by enhancing communication across the design-
manufacturing interface. DFM can dramatically impact the business
performance of chip manufacturers. It can also significantly affect
age-old chip design flows. This special issue will provide an overview
of recent advances, needs, and perspectives in DFM techniques for
modern design flows.

Advertising PersonnelFUTURE ISSUE: May/June 2005

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

