

 AN EFFICIENT PLACEMENT ALGORITHM FOR RUN-TIME

RECONFIGURABLE EMBEDDED SYSTEM

Radha Guha, Nader Bagherzadeh, Pai Chou

EECS Dept. of University of California, Irvine, California 92697

USA

{rguha; nader; phchou}@uci.edu

ABSTRACT
In the era of application convergence, the small handheld

battery-powered portable devices are required to

multiplex their limited hardware resources between many

complex applications. Our first contribution in this paper

is a modular and block based configuration architecture

for modern FPGAs like Xilinx’s Virtex-4 and Virtex-5

devices, to increase multi-tasking capabilities, power

savings and performance improvement of applications for

mobile handsets. Our second contribution is an on-line

placement algorithm based on bin packing, called

Hierarchical Best Fit Ascending (HBFA) algorithm,

which is more efficient than Best Fit (BF) algorithm for

mapping a dynamic task list onto the FPGA. The overall

time complexity of the proposed on-line placement

algorithm, HBFA, is reduced to O(n) in comparison to

the complexity of BF algorithm which is O(n
2
). The

placement solution provided by HBFA algorithm is also

better than that of BF algorithm.

KEY WORDS
Reconfigurable computing, application convergence, task

mapping

1 Introduction
Process technology’s continual shrinking trend following

Moore’s Law makes reconfigurable field programmable

gate array (FPGA) very promising for its abundant

resources. International Technology Roadmap of

Semiconductors (ITRS) [1] predicts one billion transistors

on the same chip in 65 nm and under process technology

by the end of this decade. But today’s embedded system

design is becoming harder with the increased capacity and

complexity of the integrated circuits (ICs). With the

advancement of the wireless technology such as WiMAX

and Wi-Fi, the embedded systems in small handheld

battery-powered, portable devices will support standard

voice functions of a telephone as well as text messaging,

sending and receiving photos and videos, gaming, speech

recognition and security provisions for sensitive data

exchanges [2], [3]. The limited hardware resources of

these small devices need to be multiplexed for different

functions at different times. All of the functionalities

involve fast processing of complex data-intensive

algorithms with a strict power budget. Parallel processing

and reconfiguration capabilities of FPGAs, its lower

design cost and shorter time to market make it a popular

technology for embedded system development in contrast

to the Application Specific Integrated Circuits (ASICs).

 The abundant resources of FPGA alone are not

enough for performance boost of applications. We need

efficient on-chip application configuration architecture

and efficient resource manager and scheduler. A modular

and flexible application configuration architecture having

better resource utilization is the key to power savings,

increased multi-tasking capabilities and overall

performance improvement of the applications. A compact

placement of tasks on hardware resources can increase

multi-tasking capabilities or can save significant amount

of power consumption by advanced techniques like clock

gating, voltage scaling [4] etc. Thus we have designed a

modular and block based flexible configuration

architecture for FPGA, named Memory- Aware Run-

Time Reconfigurable Embedded System (MARTRES)

which will facilitate partial reconfiguration at run time,

efficient resource management and resource utilization by

our Hierarchical Best Fit Ascending (HBFA) task

placement algorithm. As the HBFA placement algorithm

works faster than the BF algorithm it contributes to the

overall performance improvement of the applications.

 In this paper, we focus on hardware resource

management between a number of competing tasks in the

order they arrive or the tasks which have already been

identified for concurrent hardware execution. On the

contrary in references [5], [6], their partitioning and

scheduling algorithms evaluate many task parameters for

task ordering before the actual task placement.

 Next we introduce our MARTRES architecture and

the bin packing problem related to task mapping problem

on hardware resources of FPGA.

1.1 Proposed Configuration Architecture, MARTRES

Several algorithms [7] such as Fast Fourier Transform

(FFT), Discrete Cosine Transform (DCT) and Data

Encryption Standard (DES) etc. required for real-time

audio and video processing are streaming or data

intensive and require high-bandwidth data transfer from

external memory to on-chip memory. Data intensive

computations of the streaming applications can be

accelerated by the FPGA’s concurrent processors and the

remaining control intensive parts are better suited for

running sequentially by a general purpose processor.

These kind of streaming applications need a general-

purpose processor for hosting a real-time operating

system (RTOS) for hardware configuration, resource

management and task scheduling onto the hardware

resources of FPGA. A block diagram of the required

hybrid system is shown in Figure 1.

Figure 1: The Hybrid System for Algorithm Acceleration

 Our proposed configuration architecture, MARTRES

for the FPGA is based on the analysis that to sustain the

processing speed of the parallel processors we need

distributed on-chip cache memories. Having memory

blocks equally distributed throughout the chip reduces

data communication cost in terms of time, power

consumption and router overhead. Also most of the time

the tasks mapped onto FPGA chip are independent of

each other and provision of distributed block memory at

regular intervals is beneficial for resetting one memory

block and filling it with new data without disturbing

other memories used by other tasks. Thus the MARTRES

configuration architecture for hardware is designed to be

modular and block based as shown in Figure 2, to

facilitate partial reconfiguration at run time. In each

module there is a balance between the amount of logic

and memory so that the processing elements (PEs) in

each block can sustain their speed by concurrent data

access from memory blocks. In reference [8] their

“Synchroscalar” architecture is column based, but the

research findings of this paper suggest that block based

architecture is possible for modern FPGAs like Xilinx’s

Virtex-4, Virtex-5 [9], [10], where block based partial

reconfiguration is possible.

Figure 2: MARTRES Configuration Architecture

 As different applications may have different

memory requirements, even if all the SRAM cells are not

used as memories all the time, they can be used for

implementing the control units or the finite state

machines (FSMs) [11] for the processing elements more

efficiently. FSMs implemented with SRAMs have better

power and area savings than the same implementation by

Flip Flops (FFs) and programmable lookup tables

(LUTs).

 In Figure 2, a partial MARTRES configuration is

shown for a Xilinx’s Virtex-4 XCVSX35 device, which is

an array of 96*40 configurable logic blocks (CLBs) [9]

with maximum capacity of 240 Kb of distributed RAM or

shift registers and total 3.4 Mb of block RAMs where

each block is 18 Kb and operating at 500 MHz. Block

RAMs can be cascaded to form larger memory blocks.

We assume that an array of 5*5 CLBs are required to

implement a processing element (PE). Since MARTRES

is coarse grained, the basic elements before configuration

are PEs. During configuration, data-path widths of each

PE or connecting PEs are changed for function-specific

optimization purposes. In MARTRES architecture, a

group of PEs is called a block (BL), and a group of blocks

is called a neighborhood (NH).

 The actual memory requirement for a group of PEs

will depend on their frequency of operations, type of

connection between them, type of algorithm they are

processing and the input data rate. If required 18 Kb dual-

ported block RAMs can be cascaded to configure, say 566

Kb RAM to cater for two blocks in a neighborhood.

Memories are identified with column location first and

then with port numbers. Two ports M00 and M01 from the

same memory bank cater for two blocks, bottom and top

in the same neighborhood as shown in Figure 2. Routing

in each neighborhood is more efficient than inter-

neighborhood routing and higher bandwidths are provided

inside the neighborhood than that of the routing

connecting the neighborhoods.

 MARTRES architecture is modular and a hardware

resource manager can keep track of all the resources in a

hierarchical fashion, first by a neighborhood number, then

by a block number in a neighborhood and finally by a PE

number in each block. Suppose MARTRES has 8*8 array

of PEs. First the PEs are grouped together as blocks and

then as neighborhoods. Suppose each block has 4*4 PE

array and each neighborhood has 2*1 block array or 8*4

PE array. So the whole chip consists of 2 neighborhoods,

4 blocks and 64 individual PEs. The block boundaries are

indicated by thin lines and the neighborhood boundaries

are indicated by thick lines in Figure 2. Each block is

identified by its participation in which neighborhood first

and then by its number. So the blocks are identified as

blocki,j where i= 1 to N, N being the number of

neighborhoods, and j = 1 to B, B being the number of

blocks in each neighborhood. Each PE is identified by its

participation in which neighborhood first and then in

which block and then by its number. So the PEs are

identified as PEi,j,k where i= 1 to N, N being the number

of neighborhoods, j = 1 to B, B being the number of

blocks in each neighborhood and k = 1 to P, P being the

number of PEs in each block.

 We have created MARTRES configuration

architecture so that the HBFA placement algorithm takes

less time for mapping tasks. To reduce search time by

HBFA placement algorithm, the resource manager creates

two tables. A smaller neighborhood header table is

created which is only a list of neighborhoods and their

unoccupied capacity in terms of number of PEs, sorted in

ascending order as shown in Table 1.

Table 1: NH Header

NH No. # PEs Available

1 32

2 32

Table 2: NH Detail

NH No. BL No. # PEs Available PE No.

1 1 16 1,….,16

1 2 16 1,….,16

2 1 16 1,….,16

2 2 16 1,….,16

 A larger neighborhood detail table is created to list

all the blocks in each neighborhood and their unoccupied

capacity in terms of number of PEs as shown in Table 2.

The header and detail table can be implemented as arrays

and from the header table a particular neighborhood in

detail table can be accessed in constant time by its index.

It can be shown that the MARTRES configuration

architecture facilitates efficient resource management and

the HBFA placement algorithm evaluates faster than the

BF placement algorithm for mapping a dynamically

arrived task onto FPGA. Before presenting the HBFA

algorithm we introduce the bin packing problem first.

1.2 Bin Packing Problem

The problem of placing objects of various sizes in bins of

equal capacity is called bin packing problem. Object size

varies from zero to maximum bin capacity and is

indivisible. The objective of the bin packing problem is

to find the minimum number of bins to accommodate all

the objects. A second objective of the bin packing

problem is to find the packing solution fast. The bin

packing problem as an optimization problem is NP-hard

which can not be solved in polynomial time.

Approximation algorithms are used to tackle the NP-hard

problems if a sub-optimal but good solution is found in

polynomial time.

Figure 3: Bin Packing by BF Algorithm

Figure 4: Bin Packing Optimal Solution

 In Figure 3, packing or placement solution for a list

of objects L = {7,6,8,9,9,9} is shown to take 5 bins of

equal capacity of 16 units by Best Fit algorithm which

places a object in a bin which will leave minimum unused

space. The off-line optimal solution for the same problem

takes 4 bins as shown in Figure 4. The quality of an

approximation algorithm is defined by the ratio of the

number of bins required by it to that of optimal solution.

 Bin packing algorithms can be divided into two

categories. In the off-line variety the object list is static

and the objects can be ordered in descending order of

their size to get better placement solution. In the on-line

variety the object list is dynamic and the objects come one

by one and no ordering can be done. There are several

approximation algorithms [12], [13], [14], [15] for bin

packing, such as on-line variety First Fit (FF), and Best

Fit (BF) and off-line variety First Fit Decreasing (FFD)

and Best Fit Decreasing (BFD). The packing generated by

off-line algorithms FFD and BFD use no more than (11/9

OPT + 4) bins, where OPT is the optimal number of bins.

The packing generated by on-line algorithms FF and BF

use no more than (17/10 OPT + 2) bins.

 Placement of tasks on hardware resources is similar

to bin packing prblem. In this paper the objects are

computation modules or functional blocks known as tasks

and the bins are hardware resources. In practice the bin

size is determined by configuration granularity and other

implementation options of the chip. Here the bins are of

equal size of a block, which is a group of 16 PEs. The

tasks are one dimensional and measured only by number

of PEs instead of having fixed width and height of PEs.

The solution provided by BF algorithm for a task list in

Table 3 is as shown in Figure 5. BF algorithm will use the

neighborhood detail table where the bins of a size of a

block are listed and sorted in ascending order.
Table 3 Task Table

Task No. Task Size (No. of PEs)

1 8

2 12

3 14

4 4

Figure 5: 4 Consecutive Tasks Placement by BF

Table 4: NH Detail after 4 Tasks Placement by BF

NH No. BL No. # PEs Available PE No.

1 2 0

2 3 2 15,16

1 1 8 9,…..,16

2 4 16 1,2,…..,16

 By BF algorithm, Task 1 is placed in block 1, which

occupied 8 PEs and still has 8 PEs unoccupied. After each

task placement the neighborhood detail table is updated

and sorted in ascending order. Task 2, which requires 12

PEs, is placed in block 2. Task 3, which requires 14 PEs,

is placed in block 3. Task 4, which requires only 4 PEs is

placed in block 2. After four consecutive task placements

by BF algorithm the neighborhood detail table will look

like Table 4.

 Task placement on hardware resources varies from

the classic bin packing problem in the following manner.

For a hardware with resource constraint or limited number

of bins, if a new task can not be placed in the chip the

scheduler has to wait for the time when some area will be

available after the execution of already placed task instead

of adding a new bin. The tasks can also be divided

between two bins to get better placement solution if the

introduced communication overhead due to splitting of

the task is not too high. Communication overhead

depends on the amount of communication between the

tasks and the length of the distance it has to traverse.

1.3 Related Work

There are many application areas of classic bin packing

problem such as loading trucks, recording of music on

CDs etc. where the objects are indivisible. To reduce the

time complexity of the traditional algorithms like BF, FF

etc. in reference [13] they have designed a HarmonicM

bin packing algorithm whose time complexity is O(n).

They have classified each object according to its size and

put it in a specific bin for that class of objects. The

number of classes, M, are not to exceed 12 in practice. If

M> 6 and the sizes of objects are equally distributed for

each class then the HarmonicM solution is better than

Next Fit and First Fit solution but never better than Best

Fit solution.

 In reference [14], [15] they have hybridized iterative

genetic algorithm (GA) with traditional bin packing

algorithms like FF, BF etc. to get better placement

solution at the cost of additional time. In reference [16]

they have developed an efficient placement algorithm

based on Bazargan’s [17] approach, that requires

partitioning the free space of FPGA into non-overlapping

rectangular areas after each task placement. With the help

of a binary tree and a hash-table data structure they keep

track of the free rectangles. There approach is able to find

a free space in constant time but the subsequent updating

of the data structures takes more time. In reference [18]

they have proposed a Partitioned Best Fit Decreasing

(PBFD) algorithm where they have divided a task

between bins if only it does not fit in any single bin.

Their algorithm can split the task between any two bins

irrespective of whether they are physically adjacent or

not. The time complexity of their PBFD algorithm is

same as BFD algorithm.

 In contrast our HBFA algorithm is for on-line task list

which can not be ordered beforehand. We also split a task

but only between physically neighboring bins to reduce

communication overhead. By hierarchical organization of

the hardware resources the time complexity of HBFA

algorithm is reduced to O(n). HBFA has a truly

hierarchical best fit approach where a task is first tried to

be confined in a block then in a neighborhood and then in

the chip.

 The rest of the paper is organized as follows. Section

2 presents the HBFA placement algorithm. Section 2.1

proposes different search strategies for different task

sizes. Section 2.2 presents the placement solution

provided by HBFA algorithm and its pseudo-code.

Section 2.3 analyzes the time complexity of HBFA in

comparison to BF algorithm. Section 3 concludes the

paper by pointing out the combined benefits of

MARTRES architecture and HBFA placement algorithm

and their possible applications.

2 Proposed Placement Algorithm, HBFA

A novel variety of bin packing algorithm, named,

Hierarchical Best Fit Ascending (HBFA) algorithm is

proposed in this paper as a placement algorithm for

MARTRES architecture. The algorithm is so called

because the resources or bins are listed heirarchically and

searched heirarchically and the higher level bins are

sorted in ascending order. The placement algorithm first

searches the higher level bins listed in the smaller

neigborhood header table to ensure available capacity in

a neighborhood is enough for a task and then goes to the

lower level bins listed in larger neigborhood detail table

for determining exact physical location for that task in

that neighborhood.

 HBFA algorithm is based on the following analysis.

For the bin packing problem we argue that, if the bin

capacity is comparatively larger than individual object

sizes then the total number of bins, OPT, required for

optimal solution is smaller than the solution obtained

when the object sizes are larger. This is because more

objects can be packed in the same bin and there is less

chances of larger unoccupied wasted space in each bin. If

OPT is small then approximate solution of BF algorithm

which is less than or equal to (17/10 OPT + 2) is also

small. Thus difference between an optimal solution and

an approximate solution varies depending on average

relative size of bin capacity and object sizes. Analytically

either the object size should be equal to the bin size or

between 0 to 30% of the bin size so that there will be

less % of each bin remaining unutilized after placement

of several objects.

 (a) (b)
Figure 6: (a) BF vs. (b) Optimal Solution for Smaller Task Sizes

 To prove the above analysis, Figure 6 maps a task

list with relatively smaller size tasks such as L=

{2,4,4,3,2,4,2,2,4,3,3,2,1,4,4,4} with BF algorithm and

compares it with the optimal solution. Total task size in

that list is 48 and optimal solution took 3 bins and

approximate solution took 4 bins of size 16 units each.

Figure 3 and Figure 4 mapped a task list with relatively

larger size tasks such as L= {6,7,8,9,9,9} also totaling to

48 with BF algorithm and compared it with the optimal

solution before. In that case optimal solution took 4 bins

and approximate solution took even larger number of 5

bins. So to increase the bin size in HBFA algorithm, we

group a number of smaller bins to make a larger bin. In

the lower level the bin size is smaller and is labeled as a

block (BL). In the higher level the bin size is larger and is

labeled as neighborhood (NH) which is a group of blocks.

Both NH and BL bin sizes are measured in number of

PEs.

2.1 Allowing Different Task Sizes by HBFA

If we can control the task size we make the task size much

smaller than the neighborhood size to make our

approximate solution close to optimal solution. For

mapping a task, if the task size is smaller than a

neighborhood size the neighborhood header table will be

searched in forward order starting from the top of the list.

In the first try no task will be split between two

neighborhoods to avoid inter-neighborhood

communication delay. But if a task can not be placed in

any neighborhood then it can be split between

neighborhoods. If task related parameters like

communication cost of tasks are available and two tasks

have many communications between them then their

combined size can be considered so that they both can be

placed in the same neighborhood to reduce

communication cost.

 As the tasks get mapped onto the FPGA fabric, the

area gets fragmented after a few tasks placement which

amounts to poor resource utilization as discussed in detail

in reference [5]. To prevent area fragmentation we split a

task between the blocks in the same neighborhood if no

single block can contain the task. This increases resource

utilization in a neighborhood.

 If we can not control task sizes then we allow all

different task sizes even larger than a neighborhood size.

If the task size is larger than a neighborhood size then

search in the neighborhood header table is done in the

reverse order from the bottom of the list to the top of the

list. Everytime a neighborhood is selected for that task

placement the available area of that neighborhood is

deducted from the original task size. If the modified task

size is still greater than a neighborhood size then the next

neighborhood in the reverse search order in the

neighborhood header table is selected. Whenever the

modified task size becomes smaller than a neighborhood

size the neighborhood header table is searched in forward

order to meet best fit criteria. After the task is completely

placed the neighborhood header table is sorted again in

ascending order. Whenever a task is split between

neighborhoods the inter-neighborhood communication

increases. Thus if the average task sizes are larger than

neighborhood size we have to strengthen inter-

neighborhood communication interconnects.

2.2 Placement Solution and Pseudo Code of HBFA
We map the dynamic task list in Table 3 with our HBFA

algorithm this time. Four consecutive task placements are

shown in Figure 7. Task 1 is placed in neighborhood 1,

which occupied 8 PEs and still has 24 PEs unoccupied.

After each task placement the neighborhood header and

detail tables are updated and the neighborhood header

table is sorted in ascending order. Task 2, which requires

12 PEs, is placed in neighborhood 1 by splitting it

between block 1 and block 2. Task 3, which requires 14

PEs, is placed in neighborhood 2. Task 4, which requires

only 4 PEs is placed in neighborhood 1. After four

consecutive task placements, the neighborhood header

and detail tables look like Table 5 and Table 6

respectively. After completion of each task execution the

HW available area is put back in the neighborhood header

and detail tables. HBFA placement algorithm pseudo code

is shown in Table 7.

Figure 7: 4 Consecutive Tasks Placement by HBFA

Table 5: NH Header after 4 Tasks Placement by HBFA

NH No. # PEs Available

1 8

2 18

Table 6: NH Detail after 4 Tasks Placement by HBFA

NH No. BL No. #PEs Available PE No.

1 1 0

1 2 8 9,……,16

2 1 2 15,16

2 2 16 1,…...,16

Table 7: HBFA Algorithm Pseudo Code

Create array Task_List[Task1, …Taskm] //m number of tasks

Create array NH_Header[NH1,…NHN] //sorted in ascending order of

available capacity, N number of neighborhoods
Create array NH_Detail[NH1, …NHN][BL1,…BLB]

//B, Number of blocks configured in each neighborhood

Create variable max_NH //max neighborhood size

HBFA(Task_list, NH_Header, NH_Detail)

for i ← 1 to length[Task_list]
 if Task_list [i]<= max_NH then //forward search

 Forward_Search:

 for j ← 1 to length[NH_header]
 if (Task_list [i]<= NH_header[j]) //task is placed

in jth neighborhood

 then NH_header[j] = NH_header[j] - Task_list [i]
 SORT (NH_header) //ascending order for Best Fit

 TASK_PLACEMENT(Task_List[i], NH_Detail[j][])
 else //reverse search

 modified_task_size= Task_list [i]

 Reverse_Search:
 for j ← length[NH_header] to 1

 if modified_task_size> max_NH then

 TASK_PLACEMENT(NH_header[j], NH_detail[j][])
 modified_task_size -= NH_header[j]

 NH_header[j] = 0

 else Task_list [i] = modified_task_size
 go to Forward_Search

TASK_PLACEMENT(Task_list[i], NH_detail[j][])
//task can be split between blocks

for k ← 1 to B //B, Number of blocks configured in each

neighborhood
 if Task_list[i] > NH_detail[j][k] then

 Task_list[i] = Task_list[i] - NH_detail[j][k]

 NH_detail[j][k]= 0;
 Else NH_detail[j][k]= NH_detail[j][k]- Task_list[i]

2.3 Complexity Analysis of HBFA Algorithm

By the hierarchical relations of the neighborhood header

and detail tables, the search time of the HBFA placement

algorithm is reduced. If there are total M PEs on the chip,

and each block has P PEs, and each neighborhood has B

blocks, then we have a total of N neighborhoods, where N

= M/(B*P) and here the neighborhood or bin size is

(B*P). So, in the first level, the number of bins to search

is N = M/(B*P). In the second level of search, the block

or bin size is P and the number of blocks or bins to search

is B. So, in the worst case total search time is (M/(B*P))

+ B for each task placement. Where as in one level of BF

placement algorithm where the bin size is P or a block,

the number of bins to search is M/P. After each

placement the bin list is sorted in ascending order to meet

best fit criteria, and in the worst case sorting takes O(n
2
)

time, where n is the number of items in the list. In our

heirarchical HBFA algorithm only the neighborhood

header table is sorted and it takes O((M/(B*P))
2
) time. In

one level BF algorithm the sorting time is O((M/P)
2
).

From the above example we can formulate the

complexity of HBFA algorithm and can compare it with

that of BF algorithm.

 HBFA execution time = search time + sort time

 = (M/(B*P)) + B + O((M/(B*P))
2
)

 = N + B + O (((N*B*P)/(B*P))
2
)

 = N +B + O(N
2
)

 = 2N + O(N
2
); if N and B are made equal in number

 ≈ O(N
2
)

 If we add the cost of an ad-hoc sort for the selected

neighborhood to meet best fit criteria in that

neighborhood it will take additional O(B
2
) time. HBFA

execution time will still remain O(N
2
). But for a small

neighborhood with a few blocks we may not require to

sort it as we are splitting a task between blocks anyway.

A large neighborhood with many Blocks may be sorted to

meet the best fit criteria.

 BF execution time = search time + sort time

 = M/P + O((M/P)
2
)

 = (N*B*P)/P + O(((N*B*P)/P)
2
)

 = N*B + O((N*B)
2
)

= N
2
+ O(N

4
); if N and B are made equal in number

≈ O(N
4
)

 Now if we say n = N
2

; then HBFA is a O(n)

algorithm and BF is O(n
2
) algorithm. Thus the overall

complexity of HBFA algorithm is reduced to O(n) in

comparison to BF algorithm which is O(n
2
) for each task

placement.

 In our case M=64, N=2, B=2 and P=16. HBFA

algorithm takes 2+2=4 units of search time and one level

of BF algorithm also takes 4 units of search time. Sorting

time of HBFA algorithm is 2
2
=4 units where as in BF it is

4
2
=16 units. Total execution time saving is (4+16) –

(4+4) = 12 units. For larger values of M, N and B more

savings of time will be observed. The cummulative time

saving for a number of tasks placement over a time

period will be considerable.
Table 8: HBFA vs. BF for Different Block and Neighborhood Sizes

PE

M

NH

N

BL

/NH

B

PE

/BL

P

HBFA
Map.

Time

/Task
(cycles)

BF
Map.

Time

/Task
(cycles)

Mapping
8 Tasks

With

HBFA
(cycles)

Mapping
8 Tasks

With

 BF
(cycles)

64 8 4 2 76 1056 608 8448

64 4 4 4 24 272 192 2176

128 16 4 2 276 4160 2208 33280

128 8 4 4 76 1056 608 8448

128 4 8 4 24 1056 192 8448

128 4 4 8 24 272 192 2176

128 8 8 2 80 4160 160 33280

 Table 8 compares the impact of varying HW

resources M, and different neighborhood and block size

on HBFA and BF algorithms. If the original bin size, a

block of P number of PEs, is fixed then smaller

neighborhood size will give better placement solution as

the task need not be split over many blocks. Whereas

small number of neighborhoods will make the HBFA

algorithm work faster. Thus we have to strike a balance

between the number of neighborhoods and the

neighborhood size.
Table 9: HBFA vs. BF Algorithm under Different Implementations

HBFA

Header Table Detail Table

BF

Detail Table

Memory

(Priority Queue
DataStructure,

Array

implementation)

O(N)

O(N2)

O(N2)

Linear serach-time O(N) O(N) O(N2)

Mem - - - Insertion

Sort

Time

(worst

case)

O(N2) - O(N4)

Mem O(N) - O(N2) Mearge

Sort Time

(worst

case)

O(NlgN) - O(N2lgN2)

≈ O(N2lgN)

Mem - - - Quick

Sort Time

(worst
case)

O(N2) - O(N4)

Mem - - - Heap

 Sort Time

(worst
case)

O(NlgN) - O(N2lgN2)

≈ O(N2lgN)

 In Table 9 HBFA and BF algorithms are compared

under different search and sort implementations [19] and

under worst case time complexity of the search and sort

algorithms. HBFA algorithm use a neighborhood header

table as well as neighborhood detail table. BF algorithm

use only the neighborhood detail table. The length of the

header table is N, where N is the number of

neighborhoods. The length of the detail table is M/P,

where M is the number of PEs in the whole chip and P is

the number of PEs per block. For calculating time and

space complexity we again assume N = B here. The

placement algorithm does not require any table to grow

or shrink. So they can be implemented by static array

data structure. The detail table can be accessed directly

from the header table by an index in constant time.

 HBFA algorithm has extra memory requirement of

O(N) to keep the header table information in addition to

the detail table information. HBFA algorithm needs to

search and update both header and detail tables and sort

only the header table. BF algorithm needs to search,

update and sort only the detail table. Search and sort

can be implemented by different algorithms. Different

algorithms need different data structures. Different

algorithms have different memory (mem) overhead and

execution time as listed in Table 9. In Table 9, maximum

benefit in running time by HBFA algorithm over BF

algorithm is observed when sorting is done by Insertion

Sort and Quick Sort, without any memory overhead

difference for sorting. Minimum benefit in running time is

observed when sorting is done by Merge Sort and Heap

Sort. Memory overhead for sorting by Merge Sort in

HBFA is O(N). Memory overhead for sorting by Merge

Sort in BF is O(N
2
). For Heap Sort there is no memory

overhead either by HBFA or by BF algorithm for sorting.

3. Conclusion

The MARTRES architecture is very flexible and efficient

for resource management purposes and for evaluating the

HBFA, placement algorithm for a dynamic task list. BFA

algorithm saves on search time as well as on sort time as

the size of the neighborhood header table is much smaller

than the neighborhood detail table. The HBFA algorithm

can be applied to many kind of bin packing problems

where object size can be divisable between physically

neighboring bins. HBFA algorithm can have more than

two levels to reduce the search and sort time further if the

placement solution and the expense of extra memory to

keep all the header informations in each level are

acceptable. In contrast to the “Divide-and-Conquer”

paradigm of many recursive algorithms, HBFA algorithm

can be touted as “Unite-and-Conquer” approach, where a

number of smaller bins are grouped together to know their

combined capacity to reduce search and sort time.

 Besides the time benefit of the HBFA algorithm over

BF algorithm, there are several other benefits of HBFA

algorithm. HBFA facilitates partial reconfiguration at run

time as the whole task is tried to be kept in the same

neighborhood. Confining a task in the same neighborhood

also reduces the communication cost in a task. In BF

algorithm the bin size is a block and a single task is not

split between the blocks in the first try thus it has poor

resource utilization in comparison to HBFA algorithm

where a task is split between blocks to reduce

fragmentation of the area in a neighborhood.

 The HBFA, placement algorithm is also extensible

for configuration reuse purposes by adding some extra

task specific information in the header and detail table as

required. As for example to avoid reconfiguration

overhead a functional description can be added to a group

of PEs which have been relinquished by an old task and

is currently available for a new task with the same

functionalities.

References
[1] ITRS, International Technology Roadmap for

Semiconductors, 2005 EDITION.

[2] P. Heysters, G. Smit and E. Molenkamp. A Flexible

and Energy-Efficient Coarse-Grained

Reconfigurable Architecture for Mobile Systems.

The Journal of Supercomputing, Volume 26, Issue

3, November 2003.

[3] J. Chen, J.Yeh, Y. Lan, L. Lin, F. Chen and S.

Hung. RAMP: Reconfigurable Architecture and

Mobility Platform, In Proceedings of IEEE

Globecom, 2005.

[4] J. Flynn and B. Waldo. Techniques for Power

Optimization. Compilers @ Synopsys Inc. 2007.

[5] S. Banerjee, E. Bozorgzadeh and N. Dutt.

Physically-Aware HW-SW Partitioning for

Reconfigurable Architectures with Partial Dynamic

Reconfiguration. DAC 2005, June 2005.

[6] B. Mei, P. Schaumont and S. Vernalde. A

Hardware-Software Partitioning and Scheduling

Algorithm for Dynamically Reconfigurable

Embedded Systems. In Proceedings of ProRISC,

2000.

[7] E. Caspi, M. Chu, R. Huang, J. Yeh, Y. Markovskiy

 A. DeHon and J. Wawrzynek. Stream

Computations Organized for Reconfigurable

Execution (SCORE). Conference on Field

Programmable Logic and Applications, August

2000.

[8] J. Oliver, R. Rao, P. Sultana, J. Crandall , E.

Czernikowski, L. W. Jones IV, D. Franklin , V.

Akella, and F. T. Chong. Synchroscalar: A Multiple

Clock Domain, Power-Aware, Tile-Based

Embedded Processor. 2004 International

Symposium on Computer Architecture. 2004.

[9] Xilinx. Virtex-4 User Guide UG070 (v2.2) April 10,

2007.

[10] Xilinx. Virtex-5 User Guide UG190 (v3.0) Feb 2,

2007.

[11] A. Tiwari and K. A. Tomko. Saving Power by

Mapping Finite-State Machines into Embedded

Memory Blocks in FPGAs, 2004 IEEE.

[12] AMS. Bin Packing . www.ams.org.

[13] C. C. Lee and D.T. Lee. A Simple On-Line Bin-

Packing Algorithm. Journal of the Association

for Computing Machinery, Vol. 32, No. 3, pages

562-572, July 1985.

[14] E. D. Goodman, A. Y. Tetelbaum, and V. M.

Kureichik. A Genetic Algorithm Approach to

Compaction, Bin Packing, and Nesting Problems.

TECHNICAL REPORT # 940702, Case Center for

Computer-Aided Engineering and Manufacturing,

Michigan State University.

[15] C. Reeves. Hybrid Genetic Algorithms for Bin

Packing and Related Problems. Published in Annals

of OR, 63, pages 371-396.

[16] H. Walder, C. Steiger, M. Platzner. Fast Online Task

Placement on FPGAs: Free Space Partitioning and

2D-Hashing. Proceedings of the International

Parallel and Distributed Processing Symposium

(IPDPS’03).

[17] K. Bazargan, R. Kastner and M. Sarrafzadeh. Fast

Template Placement for Reconfigurable Computing

Systems. In IEEE Design and Test of Computers,

volume 17, pages 68–83, 2000.

[18] D. de Niz and R. Rajkumar. Partitioning Bin-

Packing Algorithms for Distributed Real-Time

Systems. International Journal of Embedded

Systems, 2005.

[19] T. Cormen, C. Leiserson, R. Rivest and C. Stein.

Introduction to Algorithms (Prentice Hall, India,

2003).

