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ABSTRACT 
In the era of application convergence, the small handheld 

battery-powered portable devices are required to 

multiplex their limited hardware resources between many 

complex applications. Our first contribution in this paper 

is a modular and block based configuration architecture 

for modern FPGAs like Xilinx’s Virtex-4 and Virtex-5 

devices, to increase multi-tasking capabilities, power 

savings and performance improvement of applications for 

mobile handsets. Our second contribution is an on-line 

placement algorithm based on bin packing, called 

Hierarchical Best Fit Ascending (HBFA) algorithm, 

which is more efficient than Best Fit (BF) algorithm for 

mapping a dynamic task list onto the FPGA. The overall 

time complexity of the proposed on-line placement 

algorithm, HBFA, is reduced to O(n) in comparison to 

the complexity of BF algorithm which is O(n
2
). The 

placement solution provided by HBFA algorithm is also 

better than  that of BF algorithm. 
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1 Introduction 
Process technology’s continual shrinking trend following 

Moore’s Law makes reconfigurable field programmable 

gate array (FPGA) very promising for its abundant 

resources. International Technology Roadmap of 

Semiconductors (ITRS) [1] predicts one billion transistors 

on the same chip in 65 nm and under process technology 

by the end of this decade. But today’s embedded system 

design is becoming harder with the increased capacity and 

complexity of the integrated circuits (ICs).  With the 

advancement of the wireless technology such as WiMAX 

and Wi-Fi, the embedded systems in small handheld 

battery-powered, portable devices will support standard 

voice functions of a telephone as well as text messaging, 

sending and receiving photos and videos, gaming, speech 

recognition and security provisions for sensitive data 

exchanges [2], [3]. The limited hardware resources of 

these small devices need to be multiplexed for different 

functions at different times. All of the functionalities 

involve fast processing of complex data-intensive 

algorithms with a strict power budget. Parallel processing 

and reconfiguration capabilities of FPGAs, its lower 

design cost and shorter time to market make it a popular 

technology for embedded system development in contrast 

to the Application Specific Integrated Circuits (ASICs).  

       The abundant resources of FPGA alone are not 

enough for performance boost of applications. We need 

efficient on-chip application configuration architecture 

and efficient resource manager and scheduler. A modular 

and flexible application configuration architecture having 

better resource utilization is the key to power savings, 

increased multi-tasking capabilities and overall 

performance improvement of the applications. A compact 

placement of tasks on hardware resources can increase 

multi-tasking capabilities or can save significant amount 

of power consumption by advanced techniques like clock 

gating, voltage scaling [4] etc. Thus we have designed a 

modular and block based flexible configuration 

architecture for FPGA, named Memory- Aware Run-

Time Reconfigurable Embedded System (MARTRES) 

which will facilitate partial reconfiguration at run time, 

efficient resource management and resource utilization by 

our Hierarchical Best Fit Ascending (HBFA) task 

placement algorithm. As the HBFA placement algorithm 

works faster than the BF algorithm it contributes to the 

overall performance improvement of the applications. 

        In this paper, we focus on hardware resource 

management between a number of competing tasks in the 

order they arrive or the tasks which have already been 

identified for concurrent hardware execution.  On the 

contrary in references [5], [6], their partitioning and 

scheduling algorithms evaluate many task parameters for 

task ordering before the actual task placement. 

       Next we introduce our MARTRES architecture and 

the bin packing problem related to task mapping problem 

on hardware resources of FPGA.       

1.1 Proposed Configuration Architecture, MARTRES 

Several algorithms [7] such as Fast Fourier Transform 

(FFT), Discrete Cosine Transform (DCT) and Data 

Encryption Standard (DES) etc. required for real-time 

audio and video processing are streaming or data 

intensive and require high-bandwidth data transfer from 

external memory to on-chip memory.  Data intensive 

computations of the streaming applications can be 

accelerated by the FPGA’s concurrent processors and the 

remaining control intensive parts are better suited for 

running sequentially by a general purpose processor. 

These kind of streaming applications need a general-

purpose processor for hosting a real-time operating 

system (RTOS) for hardware configuration, resource 



management and task scheduling onto the hardware 

resources of FPGA. A block diagram of the required 

hybrid system is shown in Figure 1. 

 
Figure 1: The Hybrid System for Algorithm Acceleration 

       Our proposed configuration architecture, MARTRES 

for the FPGA is based on the analysis that to sustain the 

processing speed of the parallel processors we need 

distributed on-chip cache memories. Having memory 

blocks equally distributed throughout the chip reduces 

data communication cost in terms of time, power 

consumption and router overhead. Also most of the time 

the tasks mapped onto FPGA chip are independent of 

each other and provision of distributed block memory at 

regular intervals is beneficial for resetting one memory 

block and filling it with new data without disturbing 

other memories used by other tasks. Thus the MARTRES 

configuration architecture for hardware is designed to be 

modular and block based as shown in Figure 2, to 

facilitate partial reconfiguration at run time. In each 

module there is a balance between the amount of logic 

and memory so that the processing elements (PEs) in 

each block can sustain their speed by concurrent data 

access from memory blocks. In reference [8] their 

“Synchroscalar” architecture is column based, but the 

research findings of this paper suggest that block based 

architecture is possible for modern FPGAs like Xilinx’s 

Virtex-4, Virtex-5 [9], [10], where block based partial 

reconfiguration is possible.  

 
Figure 2: MARTRES Configuration Architecture 

        As different applications may have different 

memory requirements, even if all the SRAM cells are not 

used as memories all the time, they can be used for 

implementing the control units or the finite state 

machines (FSMs) [11] for the processing elements more 

efficiently. FSMs implemented with SRAMs have better 

power and area savings than the same implementation by 

Flip Flops (FFs) and programmable lookup tables 

(LUTs). 

       In Figure 2, a partial MARTRES configuration is 

shown for a Xilinx’s Virtex-4 XCVSX35 device, which is 

an array of 96*40 configurable logic blocks (CLBs) [9] 

with maximum capacity of 240 Kb of distributed RAM or 

shift registers and total 3.4 Mb of block RAMs where 

each block is 18 Kb and operating at 500 MHz. Block 

RAMs can be cascaded to form larger memory blocks. 

We assume that an array of 5*5 CLBs are required to 

implement a processing element (PE). Since MARTRES 

is coarse grained, the basic elements before configuration 

are PEs. During configuration, data-path widths of each 

PE or connecting PEs are changed for function-specific 

optimization purposes. In MARTRES architecture, a 

group of PEs is called a block (BL), and a group of blocks 

is called a neighborhood (NH). 

       The actual memory requirement for a group of PEs 

will depend on their frequency of operations, type of 

connection between them, type of algorithm they are 

processing and the input data rate. If required 18 Kb dual-

ported block RAMs can be cascaded to configure, say 566 

Kb RAM to cater for two blocks in a neighborhood. 

Memories are identified with column location first and 

then with port numbers. Two ports M00 and M01  from the 

same memory bank cater for two blocks, bottom and top 

in the same neighborhood as shown in Figure 2. Routing 

in each neighborhood is more efficient than inter-

neighborhood routing and higher bandwidths are provided 

inside the neighborhood than that of the routing 

connecting the neighborhoods.       

       MARTRES architecture is modular and a hardware 

resource manager can keep track of all the resources in a 

hierarchical fashion, first by a neighborhood number, then 

by a block number in a neighborhood and finally by a PE 

number in each block. Suppose MARTRES has 8*8 array 

of PEs. First the PEs are grouped together as blocks and 

then as neighborhoods. Suppose each block has 4*4 PE 

array and each neighborhood has 2*1 block array or 8*4 

PE array. So the whole chip consists of 2 neighborhoods, 

4 blocks and 64 individual PEs. The block boundaries are 

indicated by thin lines and the neighborhood boundaries 

are indicated by thick lines in Figure 2. Each block is 

identified by its participation in which neighborhood first 

and then by its number. So the blocks are identified as 

blocki,j  where i= 1 to N,  N being the number of 

neighborhoods, and j = 1 to B, B being the number of 

blocks in each neighborhood. Each PE is identified by its 

participation in which neighborhood first and then in 

which block and then by its number. So the PEs are 

identified as PEi,j,k  where i= 1 to N,  N being the number 

of neighborhoods, j = 1 to B, B being the number of 

blocks in each neighborhood and k = 1 to P, P being the 

number of PEs in each block.  

     We have created MARTRES configuration 

architecture so that the HBFA placement algorithm takes 

less time for mapping tasks. To reduce search time by 

HBFA placement algorithm, the resource manager creates 

two tables. A smaller neighborhood header table is 

created which is only a list of neighborhoods and their 

unoccupied capacity in terms of number of PEs, sorted in 

ascending order as shown in Table 1.  

Table 1: NH Header 

NH No. # PEs Available 

1 32 

2 32 



Table 2: NH Detail 

NH No. BL No. # PEs Available PE No. 

1 1 16 1,….,16 

1 2 16 1,….,16 

2 1 16 1,….,16 

2 2 16 1,….,16 

       A larger neighborhood detail table is created to list 

all the blocks in each neighborhood and their unoccupied 

capacity in terms of number of PEs as shown in Table 2. 

The header and detail table can be implemented as arrays 

and from the header table a particular neighborhood in 

detail table can be accessed in constant time by its index.        

It can be shown that the MARTRES configuration 

architecture facilitates efficient resource management and 

the HBFA placement algorithm evaluates faster than the 

BF placement algorithm for mapping a dynamically 

arrived task onto FPGA. Before presenting the HBFA 

algorithm we introduce the bin packing problem first. 

1.2 Bin Packing Problem  

The problem of placing objects of various sizes in bins of 

equal capacity is called bin packing problem. Object size 

varies from zero to maximum bin capacity and is 

indivisible. The objective of the bin packing problem is 

to find the minimum number of bins to accommodate all 

the objects.  A second objective of the bin packing 

problem is to find the packing solution fast. The bin 

packing problem as an optimization problem is NP-hard 

which can not be solved in polynomial time. 

Approximation algorithms are used to tackle the NP-hard 

problems if a sub-optimal but good solution is found in 

polynomial time. 

 
Figure 3: Bin Packing by BF Algorithm 

 
Figure 4: Bin Packing Optimal Solution 

       In Figure 3, packing or placement solution for a list 

of objects L = {7,6,8,9,9,9} is shown to take 5 bins of 

equal capacity  of 16 units by Best Fit algorithm which 

places a object in a bin which will leave minimum unused 

space. The off-line optimal solution for the same problem 

takes 4 bins as shown in Figure 4. The quality of an 

approximation algorithm is defined by the ratio of the 

number of bins required by it to that of optimal solution. 

       Bin packing algorithms can be divided into two 

categories. In the off-line variety the object list is static 

and the objects can be ordered in descending order of 

their size to get better placement solution. In the on-line 

variety the object list is dynamic and the objects come one 

by one and no ordering can be done. There are several 

approximation algorithms [12], [13], [14], [15] for bin 

packing, such as on-line variety First Fit (FF), and Best 

Fit (BF) and off-line variety First Fit Decreasing (FFD) 

and Best Fit Decreasing (BFD). The packing generated by 

off-line algorithms FFD and BFD use no more than (11/9 

OPT + 4 ) bins, where OPT is the optimal number of bins. 

The packing generated by on-line algorithms FF and BF 

use no more than (17/10 OPT + 2) bins.  

       Placement of tasks on hardware resources is similar 

to bin packing prblem. In this paper the objects are 

computation modules or functional blocks known as tasks 

and the bins are hardware resources. In practice the bin 

size is determined by configuration granularity and other 

implementation options of the chip. Here the bins are of 

equal size of a block, which is a group of 16 PEs. The 

tasks are one dimensional and measured only by number 

of PEs instead of having fixed width and height of PEs. 

The solution provided by BF algorithm for a task list in 

Table 3 is as shown in Figure 5. BF algorithm will use the 

neighborhood detail table where the bins of a size of a 

block are listed and sorted in ascending order. 
Table 3 Task Table 

Task No. Task Size (No. of PEs) 

1   8 

2 12 

3 14 

4   4 

 
Figure 5: 4 Consecutive Tasks Placement by BF  

 

Table 4: NH Detail after 4 Tasks Placement by BF 

NH No. BL No. # PEs Available PE No. 

1 2 0  

2 3 2 15,16 

1 1 8 9,…..,16 

2 4 16 1,2,…..,16 

      By BF algorithm, Task 1 is placed in block 1, which 

occupied 8 PEs and still has 8 PEs unoccupied. After each 

task placement the neighborhood detail table is updated 

and sorted in ascending order. Task 2, which requires 12 

PEs, is placed in block 2. Task 3, which requires 14 PEs, 

is placed in block 3. Task 4, which requires only 4 PEs is 

placed in block 2. After four consecutive task placements 

by BF algorithm the neighborhood detail table will look 

like Table 4. 

       Task placement on hardware resources varies from 

the classic bin packing problem in the following manner. 

For a hardware with resource constraint or limited number 

of bins, if a new task can not be placed in the chip the 

scheduler has to wait for the time when some area will be 

available after the execution of already placed task instead 

of adding a new bin. The tasks can also be divided 

between two bins to get better placement solution if the 

introduced communication overhead due to splitting of 



the task is not too high. Communication overhead 

depends on the amount of communication between the 

tasks and the length of the distance it has to traverse.  

1.3 Related Work 

There are many application areas of classic bin packing 

problem such as loading trucks, recording of music on 

CDs etc. where the objects are indivisible. To reduce the 

time complexity of the traditional algorithms like BF, FF 

etc. in reference [13] they have designed a HarmonicM 

bin packing algorithm whose time complexity is O(n). 

They have classified each object according to its size and 

put it in a specific bin for that class of objects. The 

number of classes, M, are not to exceed 12 in practice. If 

M> 6 and the sizes of objects are equally distributed for 

each class then the HarmonicM solution is better than 

Next Fit and First Fit solution but never better than Best 

Fit solution. 

       In reference [14], [15] they have hybridized iterative 

genetic algorithm (GA) with traditional bin packing 

algorithms like FF, BF etc. to get better placement 

solution at the cost of additional time. In reference [16] 

they have developed an efficient placement algorithm 

based on Bazargan’s [17] approach, that requires 

partitioning the free space of FPGA into non-overlapping 

rectangular areas after each task placement. With the help 

of a binary tree and a hash-table data structure they keep 

track of the free rectangles. There approach is able to find 

a free space in constant time but the subsequent updating 

of the data structures takes more time. In reference [18] 

they have proposed a Partitioned Best Fit Decreasing 

(PBFD) algorithm where they have divided a task 

between bins if only it does not fit in any single bin. 

Their algorithm can split the task between any two bins 

irrespective of whether they are physically adjacent or 

not. The time complexity of their PBFD algorithm is 

same as BFD algorithm. 

      In contrast our HBFA algorithm is for on-line task list 

which can not be ordered beforehand. We also split a task 

but only between physically neighboring bins to reduce 

communication overhead. By hierarchical organization of 

the hardware resources the time complexity of HBFA 

algorithm is reduced to O(n). HBFA has a truly 

hierarchical best fit approach where a task is first tried to 

be confined in a block then in a neighborhood and then in 

the chip. 

       The rest of the paper is organized as follows. Section 

2 presents the HBFA placement algorithm. Section 2.1 

proposes different search strategies for different task 

sizes. Section 2.2 presents the placement solution 

provided by HBFA algorithm and its pseudo-code. 

Section 2.3 analyzes the time complexity of HBFA in 

comparison to BF algorithm. Section 3 concludes the 

paper by pointing out the combined benefits of 

MARTRES architecture and HBFA placement algorithm 

and their possible applications. 

 

2 Proposed Placement Algorithm, HBFA 

A novel variety of bin packing algorithm, named, 

Hierarchical Best Fit Ascending (HBFA) algorithm is 

proposed in this paper as a placement algorithm for 

MARTRES architecture. The algorithm is so called 

because the resources or bins are listed heirarchically and 

searched heirarchically and the higher level bins are 

sorted in ascending order. The placement algorithm first 

searches the higher level bins listed in  the smaller 

neigborhood header table to ensure available capacity in 

a neighborhood is enough for a task and then goes to the 

lower level bins listed in larger neigborhood detail table 

for determining exact physical location for that task in 

that neighborhood.  

     HBFA algorithm is based on the following analysis.       

For the bin packing problem we argue that, if the bin 

capacity is comparatively larger than individual object 

sizes then the total number of bins, OPT, required for 

optimal solution is smaller than the solution obtained 

when the object sizes are larger. This is because more 

objects can be packed in the same bin and there is less 

chances of larger unoccupied wasted space in each bin. If 

OPT is small then approximate solution of BF algorithm 

which is less than or equal to (17/10 OPT + 2) is also 

small. Thus difference between an optimal solution and 

an approximate solution varies depending on average 

relative size of bin capacity and object sizes. Analytically 

either the object size should be equal to the bin size or 

between 0 to 30% of the bin size so that  there will be 

less % of each bin remaining unutilized after placement 

of several objects. 

  (a)  (b) 
Figure 6: (a) BF vs. (b) Optimal Solution for Smaller Task Sizes 

       To prove the above analysis, Figure 6  maps a task 

list with relatively smaller size tasks such as L= 

{2,4,4,3,2,4,2,2,4,3,3,2,1,4,4,4} with BF algorithm and 

compares it with the optimal solution. Total task size in 

that list is 48 and optimal solution took 3 bins and 

approximate solution took 4 bins of size 16 units each. 

Figure 3 and Figure 4 mapped a task list with relatively 

larger size tasks such as L= {6,7,8,9,9,9} also totaling to 

48 with BF algorithm and compared it with the optimal 

solution before. In that case optimal solution took 4 bins 

and approximate solution took even larger number of 5 

bins. So to increase the bin size in HBFA algorithm, we 

group a number of smaller bins to make a larger bin. In 

the lower level the bin size is smaller and is labeled as a 

block (BL). In the higher level the bin size is larger and is 

labeled as neighborhood (NH) which is a group of blocks. 

Both NH and BL bin sizes are measured in number of 

PEs. 

2.1 Allowing Different Task Sizes by HBFA 

If we can control the task size we make the task size much 

smaller than the neighborhood size to make our 

approximate solution close to optimal solution. For 



mapping a task, if the task size is smaller than a 

neighborhood size the neighborhood header table will be 

searched in forward order starting from the top of the list. 

In the first try no task will be split between two 

neighborhoods to avoid inter-neighborhood 

communication delay. But if a task can not be placed in 

any neighborhood then it can be split between 

neighborhoods. If task related parameters like 

communication cost of tasks are available and two tasks 

have many communications between them then their 

combined size can be considered so that they both can be 

placed in the same neighborhood to reduce 

communication cost. 

       As the tasks get mapped onto the FPGA fabric, the 

area gets fragmented after a few tasks placement which 

amounts to poor resource utilization as discussed in detail 

in reference [5]. To prevent area fragmentation we split a 

task between the blocks in the same neighborhood if no 

single block can contain the task. This increases resource 

utilization in a neighborhood. 

       If we can not control task sizes then we allow all 

different task sizes even larger than a neighborhood size. 

If the task size is larger than a neighborhood size then 

search in the neighborhood header table is done in the 

reverse order from the bottom of the list to the top of the 

list. Everytime a neighborhood is selected for that task 

placement the available area of that neighborhood is 

deducted from the original task size. If the modified task 

size is still greater than a neighborhood size then the next 

neighborhood in the reverse search order in the 

neighborhood header table is selected. Whenever the 

modified task size becomes smaller than a neighborhood 

size the neighborhood  header table is searched in forward 

order to meet best fit criteria. After the task is completely 

placed the neighborhood header table is sorted again in 

ascending order. Whenever a task is split between 

neighborhoods the inter-neighborhood communication 

increases. Thus if the average task sizes are larger than 

neighborhood size we have to strengthen inter-

neighborhood communication interconnects.  

2.2  Placement Solution and Pseudo Code of HBFA 
We map the dynamic task list in Table 3 with our HBFA 

algorithm this time. Four consecutive task placements are 

shown in Figure 7. Task 1 is placed in neighborhood 1, 

which occupied 8 PEs and still has 24 PEs unoccupied. 

After each task placement the neighborhood header and 

detail tables are updated and the neighborhood header 

table is sorted in ascending order. Task 2, which requires 

12 PEs, is placed in neighborhood 1 by splitting it 

between block 1 and block 2. Task 3, which requires 14 

PEs, is placed in neighborhood 2. Task 4, which requires 

only 4 PEs  is placed in neighborhood 1. After four 

consecutive task placements, the neighborhood header 

and detail tables look like Table 5 and Table 6 

respectively. After completion of each task execution the 

HW available area is put back in the neighborhood header 

and detail tables. HBFA placement algorithm pseudo code 

is shown in Table 7.    

 
Figure 7: 4 Consecutive Tasks Placement by HBFA  

Table 5: NH Header after 4 Tasks Placement by HBFA 

NH No. # PEs Available 

1 8 

2 18 

 

Table 6: NH Detail after 4 Tasks Placement by HBFA 

NH No. BL No. #PEs Available PE No. 

1 1 0  

1 2 8 9,……,16 

2 1 2 15,16 

2 2 16 1,…...,16 

 

Table 7: HBFA Algorithm Pseudo Code 

Create array Task_List[Task1, …Taskm]  //m number of tasks 

Create array NH_Header[NH1,…NHN]  //sorted in ascending order of  

available capacity, N number of neighborhoods    
Create array NH_Detail[NH1, …NHN][ BL1,…BLB]  

//B, Number of blocks configured in each neighborhood 

Create variable max_NH //max neighborhood size 
 

HBFA(Task_list, NH_Header, NH_Detail) 

for i ← 1 to length[Task_list] 
 if Task_list [i]<= max_NH then //forward search 

  Forward_Search: 

   for j ← 1 to length[NH_header] 
     if (Task_list [i]<= NH_header[j])   //task is placed                                                                   

in jth neighborhood 

     then  NH_header[j] = NH_header[j] - Task_list [i] 
       SORT (NH_header) //ascending order for Best Fit 

       TASK_PLACEMENT(Task_List[i], NH_Detail[j][])   
 else //reverse search 

  modified_task_size= Task_list [i] 

  Reverse_Search: 
  for j ← length[NH_header] to 1  

    if modified_task_size> max_NH then 

     TASK_PLACEMENT(NH_header[j], NH_detail[j][])   
      modified_task_size -= NH_header[j] 

      NH_header[j] = 0 

   else Task_list [i] = modified_task_size 
       go to Forward_Search 

 

TASK_PLACEMENT(Task_list[i], NH_detail[j][])                    
//task can be split between blocks 

for k ← 1 to B //B, Number of blocks configured in each 

neighborhood 
  if  Task_list[i] > NH_detail[j][k]  then 

    Task_list[i] = Task_list[i] - NH_detail[j][k] 

    NH_detail[j][k]= 0; 
  Else NH_detail[j][k]= NH_detail[j][k]- Task_list[i] 

2.3 Complexity Analysis of HBFA Algorithm  

By the hierarchical relations of the neighborhood header 

and detail tables, the search time of the HBFA placement 

algorithm is reduced. If there are total M PEs on the chip, 

and each block has P PEs, and each neighborhood has B 

blocks, then we have a total of N neighborhoods, where N 

= M/(B*P) and here the neighborhood or bin size is 

(B*P). So, in the first level, the number of bins to search 

is N = M/(B*P). In the second level of search, the block 

or bin size is P and the number of blocks or bins to search 

is B. So, in the worst case total search time is (M/(B*P)) 

+ B for each task placement. Where as in one level of BF 



placement algorithm where the bin size is P or a block, 

the number of bins to search is M/P. After each 

placement the bin list is sorted in ascending order to meet 

best fit criteria, and in the worst case sorting takes O(n
2
) 

time, where n is the number of items in the list. In our 

heirarchical HBFA algorithm only the neighborhood 

header table is sorted and it takes O((M/(B*P))
2
) time. In 

one level BF algorithm the sorting time is  O((M/P)
2
). 

From the above example we can formulate the 

complexity of HBFA algorithm and can compare it with 

that of BF algorithm. 

      HBFA execution time = search time + sort time 

  = (M/(B*P)) + B  + O((M/(B*P))
2
) 

  = N + B  +  O (((N*B*P)/(B*P))
2
) 

  = N +B  + O(N
2
) 

  = 2N + O(N
2
);  if N and B are made equal in number  

 ≈  O(N
2
) 

       If we add the cost of an ad-hoc sort for the selected  

neighborhood to meet best fit criteria in that 

neighborhood it will take additional O(B
2
) time. HBFA 

execution time will still remain  O(N
2
). But for a small 

neighborhood with a few blocks we may not require to 

sort it as we are splitting a task between blocks anyway. 

A large neighborhood with many Blocks may be sorted to 

meet the best fit criteria. 

      BF execution time = search time + sort time 

 =  M/P + O((M/P)
2
)  

 = (N*B*P)/P   + O(((N*B*P)/P)
2
) 

 = N*B + O((N*B)
2
) 

= N
2  
+ O(N

4
);  if N and B are made equal in number 

≈  O(N
4
)   

       Now if we say n = N
2 

; then HBFA is a O(n) 

algorithm and BF is O(n
2
) algorithm. Thus the overall 

complexity of HBFA algorithm is reduced to O(n) in 

comparison to BF algorithm which is O(n
2
)  for each task 

placement.  

      In our case M=64, N=2, B=2 and P=16. HBFA 

algorithm takes 2+2=4 units of search time and one level 

of BF algorithm also takes 4 units of search time. Sorting 

time of HBFA algorithm is 2
2
=4 units where as in BF it is 

4
2
=16 units. Total execution time saving is (4+16) – 

(4+4) = 12 units. For larger values of M, N and B more 

savings of time will be observed.  The cummulative time 

saving for a number of tasks placement over a time 

period will be considerable. 
Table 8: HBFA vs. BF for Different Block and Neighborhood Sizes 

# 
PE 

 

 
M 

# 
NH 

 

 
N 

#  
BL 

/NH 

 
B 

# 
PE 

/BL 

 
P 

HBFA 
Map. 

Time 

/Task 
(cycles) 

BF 
Map. 

Time 

/Task 
(cycles) 

Mapping  
8 Tasks 

With 

HBFA 
(cycles) 

Mapping 
8 Tasks  

With 

 BF 
(cycles) 

64 8 4 2 76 1056 608 8448 

64 4 4 4 24 272 192 2176 

128 16 4 2 276 4160 2208 33280 

128 8 4 4 76 1056 608 8448 

128 4 8 4 24 1056 192 8448 

128 4 4 8 24 272 192 2176 

128 8 8 2 80 4160 160 33280 

      Table 8 compares the impact of varying HW 

resources M, and different neighborhood and block size 

on HBFA and BF algorithms.  If the original bin size, a 

block of  P number of PEs, is fixed then smaller 

neighborhood size will give better placement solution as 

the task need not be split over many blocks. Whereas 

small number of neighborhoods will make the HBFA 

algorithm work faster. Thus we have to strike a balance 

between the number of neighborhoods and the 

neighborhood size.  
Table 9: HBFA vs. BF Algorithm under Different Implementations 

HBFA  

Header Table Detail Table 

BF 

Detail Table 

Memory 

(Priority Queue 
DataStructure, 

Array 

implementation) 

 

O(N) 
 

 

O(N2) 
 

 

O(N2) 
 

Linear serach-time O(N) O(N)  O(N2) 

Mem - - - Insertion 

Sort 

 
Time 

(worst 

case) 

O(N2) - O(N4) 

 

Mem O(N) - O(N2) Mearge 

Sort Time 

(worst 

case) 

O(NlgN) - O(N2lgN2) 

≈  O(N2lgN) 

 

Mem - - - Quick  

Sort Time 

(worst 
case) 

O(N2) - O(N4) 

Mem - - - Heap 

 Sort Time 

(worst 
case) 

O(NlgN) - O(N2lgN2) 

≈  O(N2lgN) 

 

        In Table 9 HBFA and BF algorithms are compared 

under different search and sort implementations [19] and 

under worst case time complexity of the search and sort 

algorithms. HBFA algorithm use a neighborhood header 

table as well as neighborhood detail table. BF algorithm 

use only the neighborhood detail table. The length of the 

header table is N, where N is the number of 

neighborhoods. The length of the detail table is M/P, 

where M is the number of PEs in the whole chip and P is 

the number of PEs per block. For calculating time and 

space complexity we again assume N = B here. The 

placement algorithm does not require any table to grow 

or shrink. So they can be implemented by static array 

data structure. The detail table can be accessed directly 

from the header table by an index in constant time. 

       HBFA algorithm has extra memory requirement of 

O(N) to keep the header table information in addition to 

the detail table information. HBFA algorithm needs to 

search and update both header and detail tables and sort 

only the header table. BF algorithm needs to search, 

update and sort only the detail table.        Search and sort 

can be implemented by different algorithms. Different 

algorithms need different data structures. Different 

algorithms have different memory (mem) overhead and 

execution time as listed in Table 9. In Table 9, maximum 

benefit in running time by HBFA algorithm over BF 

algorithm is observed when sorting is done by Insertion 

Sort and Quick Sort, without any memory overhead 

difference for sorting. Minimum benefit in running time is 

observed when sorting is done by Merge Sort and Heap 

Sort. Memory overhead for sorting by Merge Sort in 



HBFA is O(N). Memory overhead for sorting by Merge 

Sort in BF  is O(N
2
). For Heap Sort there is no memory 

overhead either by HBFA or by BF algorithm for sorting. 

 

3.    Conclusion 

The MARTRES architecture is very flexible and efficient 

for resource management purposes and for evaluating the 

HBFA, placement algorithm for a dynamic task list. BFA 

algorithm saves on search time as well as on sort time as 

the size of the neighborhood header table is much smaller 

than the neighborhood detail table. The HBFA algorithm 

can be applied to many kind of bin packing problems 

where object size can be divisable between physically 

neighboring bins. HBFA algorithm can have more than 

two levels to reduce the search and sort time further if the 

placement solution and the expense of extra memory to 

keep all the header informations in each level are 

acceptable. In contrast to the “Divide-and-Conquer” 

paradigm of many recursive algorithms, HBFA algorithm 

can be touted as “Unite-and-Conquer” approach, where a 

number of smaller bins are grouped together to know their 

combined capacity to reduce search and sort time.  

       Besides the time benefit of the HBFA algorithm over 

BF algorithm, there are several other benefits of HBFA 

algorithm. HBFA facilitates partial reconfiguration at run 

time as the whole task is tried to be kept in the same 

neighborhood. Confining a task in the same neighborhood 

also reduces the communication cost in a task.  In BF 

algorithm the bin size is a block and a single task is not 

split between the blocks in the first try thus it has poor 

resource utilization in comparison to HBFA algorithm 

where a task is split between blocks to reduce 

fragmentation of the area in a neighborhood.       

       The HBFA, placement algorithm is also extensible 

for configuration reuse purposes by adding some extra 

task specific information in the header and detail table as 

required. As for example to avoid reconfiguration 

overhead a functional description can be added to a group 

of PEs which have been relinquished by an old task and 

is currently available for a new task with the same 

functionalities. 
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