
Nucleos: a Runtime System for Ultra-Compact
Wireless Sensor Nodes

Jiwon Hahn
University of California, Irvine
Irvine, CA 92697-2625, USA
jiwon.hahn@gmail.com

Pai H. Chou
University of California, Irvine, CA USA and

National Tsing Hua University, Hsinchu, Taiwan
phchou@uci.edu

ABSTRACT
Nucleos is a new runtime system for ultra-lightweight embedded

systems. Central to Nucleos is a dispatcher based on the concept of

recursive threaded code, which enables layers of abstraction from

the runtime system and interrupt handlers to application tasks to be

composed in a structured, powerful way, all with minimal program

code. When used in conjunction with models of computation with

behavioral transparency such as synchronous dataflow (SDF), Nu-

cleos can support efficient memory allocation policies for multiple

communicating actors with minimal runtime overhead. This recur-

sive structure also lends itself to in-field code update and dynamic

execution. Nucleos’s low runtime overhead and low RAM/ROM

requirements enable it to run on compact platforms previously un-

supported by the most popular sensor OSes while still providing

high flexibility and composability. In some cases, applications run-

ning on Nucleos actually outperform hand-crafted code running

without an OS, thanks to non-obvious memory optimizations en-

abled by the SDF model of computation.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time

and embedded systems; D.4.7 [Operating Systems]: Organization

and Design

General Terms
Design, Performance

Keywords
Wireless sensor networks, Operating Systems, virtual machines, re-

cursive threaded code

1. INTRODUCTION
Minimizing the footprint of runtime support has been the goal

of many since the early days of wireless sensor networks (WSN).

Most WSN platforms are based on low-power, resource-constrained

microcontroller units (MCU) with limited memory and processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

capabilities. Traditionally, many of these MCUs are programmed

directly for the bare machine without any operating system support.

This approach eliminates all overhead, but such programs tend to

be fragile, difficult to modify and maintain, and not easy to port to

another hardware platform. In response, several runtime systems

for WSN platforms have been developed.

Many runtime systems for WSNs follow the approach taken by

TinyOS [15]: instead of a separate operating system and applica-

tion, the runtime support and application code are compiled to-

gether as a monolithic executable. The runtime support includes

primarily device drivers for the hardware and dispatching of hard-

ware/software events. Memory is usually allocated statically in

the form of overlays, which could preclude re-entrance or certain

nested calls. To enable dynamic code update or higher level exe-

cution, additional layers of code such as Deluge or Maté must be

compiled in. While successful as de-facto standard for a wide range

of WSN platforms, TinyOS still occupies a relatively large foot-

print. For instance, recent ultra-compact WSN platforms with the

popular 8051, 8052 cores typically have 4K RAM shared between

data and code, too small for TinyOS. Even though TinyOS targets

MCUs with 64KB ROM or larger, it is very difficult to use it in

conjunction with a ZigBee stack, which occupies 64KB to 100KB

by itself. Therefore, the problem with minimizing the footprint of

the runtime support is important for not only ultra-compact plat-

forms but also full-fledged ones requiring industry-standard proto-

col stack support.

Our runtime support must have the following properties:

1. occupies a minimal RAM and ROM footprint,

2. supports composition of tasks, not just independent threads

of execution,

3. supports dynamic, in-field loading and invocation of tasks,

4. incurs minimal runtime overhead.

To accomplish all of these goals, we propose Nucleos, a runtime

system based on the idea of recursive threaded code. Threaded

code is a classical technique for building interpreters by represent-

ing the virtual instructions as the addresses of the corresponding

subroutines [5]. The dispatcher itself performs a double-indirect

call with auto-postincrement on a pointer to a table of addresses

of native routines called actors. This approach avoids the cost of

a switch statement and the arbitrary byte-code encoding for these

routines. The novelty here is our recursive use of threaded code.

That is, the dispatcher itself, just like any other routine, is invoked

recursively to run another threaded code program, which in turn can

invoke the dispatcher recursively to run yet another program on top.

This is very powerful, because the same, minimal-cost but general

dispatching mechanism can be used to build up layers of abstrac-

tion in the runtime system and application without additional code.

Table 1: Code and data sizes (KB) of runtime systems for wire-
less sensor platforms

Runtime code data

Nucleos 1 0.128

Contiki 40 2.0

DVM 13 0.178

MantisOS 14 0.5+0.1× thread

TinyOS 21 0.60

t-kernel 28 >2.0

Runtime code data

SOS 31 2.79

SwissQM 33 3.00

ASVM 39 3.02

Maté 40 3.20

Agilla 42 3.60

Our philosophy is that a runtime system essentially consists of a

dispatcher of runtime policies for task execution or services. The

dispatching mechanism is essential and must run on the node, while

the policy can be computed by either the node itself as an applica-

tion task or assisted by the host. In either case, the policy is rep-

resented as or embodied in the form of a script with the associated

memory allocation scheme.

We have written several sensor applications modeled as syn-

chronous dataflow (SDF) processes to be dispatched by Nucleos.

To enable execution on resource-constrained WSN platforms, we

implement host-assisted scheduling and memory optimization of

these SDF processes, and then dynamically load and run them on

the ultra-compact, 1cm3 WSN platform named Eco. Experimental

results show that not only is Nucleos much more compact in both

RAM and ROM usage than the monolithic approach, but it also

incurs much less runtime overhead than other schemes.

In fact, in some cases, applications running on Nucleos actu-

ally ran faster than hand-crafted native code without an OS. Our

analysis attributes this to the synergy between automatic memory

optimization and Nucleos’s composition support, as enabled by the

SDF model of computation (MoC). The optimization opportuni-

ties in the presence of concurrent composition are difficult for the

program to identify and perform manually, but the use of SDF pro-

vides much more structure to automated optimization. The min-

imal memory footprint and process composability features make

Nucleos a compelling runtime system for not only ultra-compact

WSNs but also any systems with non-trivial computing or protocol

stacks that strain their resource use.

This paper is organized as follows. Section 2 discusses the re-

lated work followed by a brief overview of Nucleos in Section 3.

Section 4 – Section 6 presents the details of Nucleos in the as-

pects of application/scheduling, communication, and its recursive

dispatcher. In Section 7, we present our implementation, then eval-

uate our work in Section 8. Finally, we conclude in Section 9.

2. RELATED WORK
In this section, we first survey runtime systems for WSN plat-

forms and then discuss memory management approaches.

2.1 Runtime Systems for WSN Platforms
We classify runtime systems for WSN platforms into monolithic

systems, modular systems, and virtual machines.

2.1.1 Monolithic Systems
A monolithic system is one where the application code and run-

time support library are compiled and linked together as a single,

hence monolithic executable. TinyOS [15] programming is done

in the nesC language, which provides constructs for hardware and

software events. BTnut extends the open source Ethernut Nut/OS

[1] with scheduling and memory management, events, synchro-

nization, streaming I/O, and device drivers. Both TinyOS and BT-

nut are statically configurable to include exactly those software rou-

tines needed. However, even the bare minimum versions of these

systems are still larger than 4–5KB, and both are rigid unless addi-

tional library code is linked to support dynamic update.

2.1.2 Modular Systems
By modular systems, we mean that the runtime system is able to

dynamically load and invoke software components. On the lighter

side, Contiki supports protothreads, which can be viewed as event-

driven stackless coroutines whose state is represented by a sin-

gle byte per thread [10]. It organizes the application as loadable

units and is configurable for network protocol stack support. Al-

though RAM usage is typically low (2KB), the firmware size is

larger (40KB). In BerthaOS, applications are organized as pfrags,

which are dynamically loadable, self-contained, fixed-sized code

fragments of up to 2 KBytes each, and they are executed in round-

robin. We assume similarly constrained platforms and similar dy-

namic loading assisted by an IDE, but we support a more general

script instead of the hardwired policy.

Other sensor OSs assume more resources and offer more support.

Mantis is a preemptive, multithreaded OS that supports priority-

based thread scheduling with aggressive power management [7]. It

is posed as an alternative to TinyOS type of event-triggered exe-

cution. It can run on nodes with 4KB RAM, though the code size

is at least 14KB, which fits in TinyOS-class platforms but is still

too large for our platform. SOS [13] supports not only dynamic

loading but also enforces type-checking mechanism and memory

buffers for interprocess communication. Unfortunately, this incurs

very high overhead of 21 cycles compared to 4 cycles for direct

function call, and 12 cycles for system calls. Moreover, dynamic

memory allocation takes 69 cycles, and posting and dispatching of

a message can take 562 cycles. To lower this overhead dealing with

untrusted code, the t-kernel [11] supports “naturalization,” or load-

time binary translation, to ensure the newly loaded code does not

compromise the system. It also supports preemption with 16 prior-

ity levels and 64KB virtual memory over 4KB physical memory; at

the same time its code size is 28KB, twice that of Mantis OS.

2.1.3 Virtual Machines
Virtual machines (VMs) have been proposed on top of existing

OSs. Maté [18], which runs on top of TinyOS, interprets assembly-

like virtual instructions that can include user-defined routines and

supports event-triggering. ASVM [19] addresses limitations of Maté

by adding concurrency, customizability, and support for several

languages. DVM [4] is a dynamically extensible VM built on top of

SOS, though the interpretation overhead is relatively high. Several

Java OSs have been proposed for WSNs, including Squawk [20] for

the Sun SPOT node and Contiki’s JVM [9]. They can take advan-

tage of standard Java development tools. However, the interpreter

and libraries require at least 350 KB of memory. SwissQM [21]

offers a byte-code interface with 59 instructions, 37 of which are

identical to those in Java and is Turing-complete. SwissQM targets

data acquisition applications with concurrency support and byte-

code compaction, though the interpretation overhead compared to

native is unknown. Beside Java, a subset of Tcl called tinyTcl (64

KB) has also been proposed as part of SensorWare [8] to support

modular code update. It is designed for reprogramming high-end

sensor systems (≥327 KB ROM). CVM (Contiki VM) [10] is de-

signed by the Contiki group for comparing their modular OS with a

VM. Both result in a small program size, but the runtime overhead

is high. CVM reports 87× slowdown vs. native code.

2.2 Memory Usage
TinyOS and Protothreads must reserve all potential memory at

����������	
���

���������

��
��������

��
����������	

�������

��������

����������

������
�����
�������

�� ��

������ � �

���� ����

!���
� � !������

Figure 1: Nucleos framework

compile time. Most local variables must be declared as static. The

problem is potentially poor memory utilization. A brute-force ap-

proach would be to let the programmer manually allocate mem-

ory based on knowledge of currently active tasks [14]. A common

technique is overlays, meaning mapping different static locals to

overlapping memory locations. However, it is error-prone and ap-

plication dependent [11], as it prevents certain routines from call-

ing others and rules out re-entrance or recursion. The t-kernel [11]

supports general dynamic memory allocation. SOS supports al-

location of communication buffers to enforce safe calls. These are

all potentially costly operations. To enable efficient memory use on

resource-constrained processors without memory management unit

(MMU) hardware support, software-based virtual memory by data

memory compression was proposed, which increases the amount

of usable memory up to 50% [3].

A very different philosophy to OS-style concurrent program-

ming is to use an explicit, higher-level model of computation (MoC).

Lee [17] advocates abandoning threads, which not only pay a high

price for the concurrency abstraction but their nondeterminism also

complicates the software. Use of a MoC such as synchronous

dataflow (SDF) [6, 22, 23] enables high-level, structured, formal

composition, synthesis of provably correct programs, and optimiza-

tion of resource usage. We exploit behavioral transparency prop-

erties in certain MoCs, including SDF, to determine and optimize

the memory usage without having to simulate its execution. This is

more general and formal than ad-hoc application-specific VMs.

3. NUCLEOS OVERVIEW
The name Nucleos actually refers to several different concepts:

the runtime framework, the runtime structure, and the kernel. The

runtime framework spans the nodes and the host. The host is a

general-purpose computer that can send commands to the nodes,

receive data, and also run the development tools. The nodes are the

sensing systems with wireless links back to the host and is required

to run only the bare minimum mechanism. The separation of pol-

icy and mechanism enables the policy layer to run on the host by

default, or on the node if sufficient amount of resources are avail-

able. This section provides an overview of the host-assisted ver-

sion, which imposes minimal resource requirements on the nodes.

Each node is assumed to be connected to a base station in a star

topology. In this paper, the term node indicates a system with lim-

ited resources, whereas a host may be either the central computer or

a base station running an agent on behalf of the host. In either case,

a host is a trusted entity and has access to all information about

each node, from hardware configuration to firmware image. This

enables the host to assist the node by processing the workload and

to provide runtime interactivity.

Fig. 1 shows the Nucleos framework, which spans both the host

and the node. On the host, the user loads the application currently

modeled as a synchronous dataflow (SDF) graph. The host per-

��"
���� ��	� �����

� � �# �

Figure 2: Example SDF Application

forms scheduling of SDF tasks and memory optimization, formats

and transfers the code to the node. On the node side, the Nucleos

kernel spawns three services upon startup to build up its runtime

structure: communication to the host, script loader, and script dis-

patcher. These three components are necessary for loading and ex-

ecuting new applications on the fly. After receiving and loading

the script segments, the dispatcher on the node starts executing the

script. The actor code may have been just loaded dynamically or al-

ready installed in the actor library before deployment. At the heart

of the Nucleos kernel is the dispatcher implemented in the form of

a specialized threaded code engine. It invokes the actors in a given

script with their corresponding parameters, including references to

the communication buffer space.

4. APPLICATION AND SCHEDULING
An application is represented as a script that is automatically

generated from a task graph model. We use SDF for its ability

to express data streaming and concurrent sensing behavior while

enabling host-assisted memory optimization. Other MoCs with be-
havioral transparency can also be used [12]. The rest of this section

summarizes the SDF model, implementation of actors, and repre-

sentation of scripts.

4.1 Model of Computation: SDF
Synchronous dataflow (SDF) is a MoC for data-regular applica-

tions including many in DSP [6]. It models computation with a

directed graph G(V,E), where the vertices v ∈ V represent actors,

which are computing processes, and the edges E ⊆V ×V represent

channels, which connect an output port of an actor to an input port

of another actor. In general, the actors are behaviorally transparent
in that when an actor is fired (i.e., executed for one iteration), it

consumes and produces a known number of tokens as annotated on

each of its I/O ports; in SDF, these numbers are constants. These

fixed numbers are called consume rate and produce rate. Each to-
ken tk ∈ E×N carries data and is uniquely identified by the channel

and sequence number, which identifies token’s creation order. In

general, SDF graphs may be cyclic, though we use acyclic ones for

the purpose of illustrating behavioral transparency without loss of

generality.

Fig. 2 shows an example application modeled in SDF. The num-

bers show each actor’s token consuming and producing rates. In

this example, ADCread actor should be executed 3 times before

send actor, and then delay actor should run 10 times. Although this

graph yields only one possible schedule, different rates may yield

many possible schedules. More details on SDF scheduling can be

found in [12].

4.2 Actor Organization
The actor library contains a collection of compiled binary actors

for composing an SDF application. These actors may be primitive,

such as setting 0/1 values of a port, or may be nontrivial, such as

encoding the sensor data. The level of abstraction is decided by the

user.

To make actors reusable and composable, an implementation of

an actor must refer to its input/output ports using pointers to the

shared buffers rather than hardwired addresses. Instead of pass-

ing pointers to the actors (as function arguments), we implement

void actorname(void)
{

PARAM_T repeat, wrptr;
unsigned char data;

repeat = popParam();
wrptr = popParam();

while (repeat--) {
// create, process data here
pushData(wrptr++, data)
// write to data buffer

}
}

Figure 3: Actor format

the actors to pro-actively fetch the buffer pointers as needed. This

way, the dispatcher is kept very simple without having to handle

the variable number of ports on each actor. Each actor may utilize

five types of parameters including pointers to the buffers: jump,

repeat, read_ptr, write_ptr, and config. Jump is the address to

jump to within a hierarchical script. Repeat is the repeat factor,

which defines how many times the corresponding actor is executed

in series. When repeated, each invocation of actors accesses the

buffer contiguously. The repeat parameter reduces the script size

by collapsing multiple actor invocations (e.g., AAAA can be writ-

ten as 4A) and is used in single-appearance schedules (SAS). The

read_ptr and write_ptr parameters are the pointers to the buffer lo-

cations. Finally, config is for all other configuration data, such as

the port value, power level, and the channel number. Each actor is

written in a unified format as shown in Fig. 3. This format makes

each actor’s memory usage explicit, imposes a fixed number of in-

put/output tokens, and allows the system to predict and compute

the overall memory usage before run time.

4.3 Scripts
A script is a high-level program that defines of a sequence of

actors to fire along with the parameters. A script can be written by

a person textually or synthesized by a scheduler, and in either case

it is compiled by our tool into a threaded code program. That is, the

actors conceptually comprise the instructions in a virtual machine,

and threaded code represents the program in terms of the actors’

addresses (as opcodes) along with the parameters (as operands).

This enables the dispatcher to be built efficiently, as explained in

Section 6. Our tool lays out a script with all the actor addresses first,

followed by all parameters, rather than interleaving them similar to

assembly instructions (opcode, operands), as the former enables

tighter packing.

Fig. 4 shows an example script. It is composed of multiple script

segments, each shown as a group of blocks delimited by the shaded

(red) ones. These scripts are dynamically composed and loaded to

the node at runtime. More details on the highlighted actors and pa-

rameters and the script hierarchy of this example will be explained

in Section 6.

4.4 Scheduling and Optimization
For an application modeled in SDF, the state of buffer require-

ments is completely determined by the firing sequence of the actors

without requiring functional simulation of the actors. A variety

of scheduling and buffer optimization algorithms can be used, and

here we use one from our previous work [12]. Our approach is

to first compute a schedule with low peak buffer demand and then

compact the memory usage. Instead of dedicating buffers to each

channel or actor statically, each actor is called with the addresses

of the shared buffers with sufficient depth for consumption or pro-

duction. We iterate through each step of the schedule and apply a

buffer layout algorithm to find the most compact buffer map over

time.

In addition to the shared buffer memory for inter-actor commu-

nication and each actor’s own state, Nucleos also needs RAM for

"���
$	��

���
$	�� �����"�		���

���� �������� %��&

� � � ' (

��

���������#

��"
$	�� %���)��	*��������

+ , - .

/��
0�����	 %��&1�����

+ , -

��

��"
���� %����������	�

�# �� �� ��

�� ��"
���� %����������	�

�# �� �� ��

��"
���� %��&�������	�

�# �� �� ��

2 2 2

(a) Actor Addresses

� + - � # �
� � ' (+ ,

��

�

�# # �

� � # (# '(# �
�(�+ �, �- �.

�#�(
�# ��

� � # (# '(# ' �#�(� � # (# '(# � �#�(��

�# �� � +
- . �# ��

-�(� �
-

+ -��
. �#�� �� �'

�� �� �(�+ �, �- �. �# �� �� �� �(�+ �, �- �. �# �� �� ��

(b) Parameters

Figure 4: Script Example

storing scripts, i.e., the sequence of actor addresses and parame-

ters. In a manner similar to the buffer optimization, script space

can also be minimized by tracking the lifetime of the script seg-

ments. Whenever the execution of script segment is terminated, the

script space is reclaimed and the new script overwrites the area.

5. COMMUNICATION
After an application is generated and optimized as a compact

script, it is transferred and loaded to the node prior to the dispatch

and actual execution. This section explains the built-in communi-

cation protocol between the host and the nodes, the packet format,

and a novel implementation of the communication handler.

5.1 Operating Modes
The operating modes (or states) of the host thread and the node

include connect, load, and dispatch. Connect is the initial phase of

establishing a connection between a host and a node. Load is the

phase of transferring and loading the application script. Dispatch
is the execution phase of the script. Each mode binds to a specific

RX parser similar to event handlers with incoming bytes as events.

Each parser defines a valid range of expected input data and the

corresponding action (i.e., data handling). The host and the nodes

are synchronized by passing the state flags at the state transition

points, and the received state flag triggers the mode transition and

resets the RX parser accordingly.

5.2 Protocol
Fig. 5 shows the sequence diagram for the host/node commu-

nication protocol. The host first spawns a thread and waits un-

til the node connects or times out and terminates. As soon as a

node is powered on, it attempts to connect to the host by sending

a CONNECT message to the host. Upon receiving the connection

request from the node, the host enters LOAD mode to prepare the

application script to load. The node waits until connection is con-

firmed by the host with a CONNECTED message and then sends a

LOAD_SCRIPT to request the host to transfer the script. The host

responds by sending the script to the node, waiting for the ack,

and then enters dispatch mode. The node stores the received script

������

����

����

����� ����
��� ���

3���� �	

"�!!%"&

"�!!%"&%�

���� �"1$3&

����%�

���� �"1$3&

1%)��&4�5$&"�

����%�

��		���

��������

��6�� #�

��������

��6�� ��

������

�����	�� �
� �

�����	�� �
� �

��		���

����
������

��������

���
�
�
�

��
����

����
������

����
������

��6�� #�

����
������

��6�� ��

��������

Figure 5: Protocol

���	� ����7��

����7��

��������

���

�

#

Figure 6: State diagram of the RX parser for Intel Hex format

at level 0 of the script hierarchy, acknowledges to the host with a

LOADED message, and the host sends a REBOOT/SWITCH message

to start the dispatcher to execute the script on the node. In dispatch
mode, the node may need to send response messages back to the

host for sampled data, query results, or node state. Anytime during

the dispatch, the host can send a command for reboot or application

switch.

5.3 Packet Format
The packet format consists of a command plus parameters. The

command can be CONNECT, CONNECTED, LOAD_SCRIPT, SCRIPT,

LOADED, RESPONSE, and BOOT/SWITCH, as shown in Fig. 5. The

SCRIPT type contains code and must be handled in a special way.

We use a binary version of the Intel hex format to represent the

code, which can be either native code for the actors or the com-

piled scripts. A motivation of using such format is that the length

of each data field can be adapted to the current buffer utilization.

The Intel hex format consists of newline-separated lines of records,

each of which consists of the fields count, address, type, data, and

crc. Count indicates the length of data, address is the 2 byte address

of the program memory (or buffer memory for the script) to store

the data, type indicates whether the packet is the last one, data is the

actual content to save, and crc is the error-detection checksum. Al-

though the Intel hex by default is defined in human-readable ASCII

text, we encode it in binary instead and achieve about 50% of the

payload size.

5.4 Bufferless Packet Handling
The conventional way of handling data packets is to have the in-

terrupt handler copy the data into a buffer and then perform the

parsing outside the interrupt handler. While this minimizes the

Table 2: Buffer usage in each RX parsing state.
count addr-hi addr-lo type data crc

r+0 csum - - - - →
r+1 count - - - - →
r+2 c-var - - - →
r+3 addr-hi - - - →
r+4 addr-lo - - →
r+5 data[0] →
... data[...] →

// rx interrupt handler
void parser(void)
{

unsigned char ch;
ch = (unsigned char) rx_read();
plugin(ch);
// initially plugin = p_count

}

void p_count(unsigned char ch)
{

// save checksum, c-var, ch
// into Buffer[r+0 ... r+2].
if (ch <= MAXDATASIZE)

// within valid range
plugin = p_addr_hi;

}

Figure 7: Implementation of bufferless packet handling

amount of time spent in interrupt handlers, this increases the buffer-

ing requirement. To address this problem, we structure the states of

the parser’s state machine (Fig. 6) as replaceable plugins, or func-

tions that are called through a function pointer from inside the in-

terrupt handler. To make a state transition, each plugin changes the

plugin to that for the next state. This way, as the same interrupt

handler gets invoked to handle each byte, it calls the plugins for the

current state without having to buffer the bytes first.

Fig. 7 shows parser code, where parser() serves as the inter-

rupt handler for Rx. It calls the rx_read routine to read a byte

from the communication port and passes it to the plugin parser,

which is initially set to p_count corresponding to the “count” state

in Fig. 6. To transition to the next state, p_count sets the plugin

to p_addr_hi, which will be invoked by the interrupt handler upon

receiving the next byte. Table 2 shows the memory usage during

one round of the state diagram. In the table, dashes show occupied

slots while arrows indicate that consumption of the token and thus

freeing the slot. The routines can use a variable, named r in the

leftmost column of the table, as the offset within the shared data

buffer so that the host can determine the buffer usage map. The

code size overhead of this plugin-style parser is 220 bytes. It short-

ens the response time and eliminates buffer locking. It also has the

side benefit of consolidating the active intervals so that the MCU

can have a longer idle interval for power management.

6. RECURSIVE DISPATCHER
A novel feature with Nucleos is the recursive dispatching struc-

ture to support formal MoCs. That is, the dispatcher is not only a

bottom-level loop that invokes actors, but it can invoke itself, just

like any other actor, to dispatch another script at a higher level.

This is how we can use the minimal code to build up layers of ab-

straction in a consistent, efficient way. All of the same mechanisms

including the memory assignment to the actors are reused at all

levels; each script instance just needs its own memory space plus

data. This section illustrates the script hierarchy with an example,

the use of special actors to support this structure, the dispatcher’s

algorithm, and optimization of the dispatcher.

6.1 Illustration of Recursive Dispatch
To illustrate recursive dispatch, consider the example shown in

Fig. 4 earlier. On power-up, the dispatch actor is run at level L0.

It loads the script for the boot-up sequence at level L1, including

EOST()

1 Pw ← Pr � to write back the repeating value
2 repeat ← POPPARAM()
3 if (repeat−−)
4 PUSHPARAM(repeat)� save repeat
5 Ar ← POPPARAM()� beginning of script
6 Pr ← POPPARAM()
7 else
8 TerminateScript ← 1

(a)

EOSS()

1 Pw ← Pr � to write back the repeating value
2 repeat ← POPPARAM()
3 x ← POPPARAM()� beginning of script
4 y ← POPPARAM()
5 if (repeat−−)
6 PUSHPARAM(repeat)� save repeat
7 (Ar,Pr)← (x,y)� beginning of script
8 else
9 (Aw,Pw)← (x,y)� set write pointer

10 LOADSCRIPT()
11 (Ar,Pr)← (x,y)� set read pointer

(b)

EVENT()

1 if (F0 == 1)� check flag
2 Temp ← Pr � save current pointer
3 Pr ← E0 � addr of event handling script
4 while 1
5 POPACTOR()()� dispatch and execute
6 if TerminateScript � end of script flag set
7 break
8 if (F1 == 1)
9 ...

10 F ← [0,0, ...,0]� unset flags
11 Pr ← Temp� back to main thread

(c)

Figure 8: Pseudocode for (a) End-of-Script-and-Terminate (EOST) (b) End-of-Script-and-Switch (EOSS) (c) Event-Checking special
actors.

system initialization, communication initialization, connection to

the host, and delay; and spawns another instance of dispatch actor

to execute the application at level L2.

Each instance of the dispatcher is maintained by two pointers:

(a) the program counter to its script, and (b) reference to its pa-

rameter space. A script may have already been loaded or may need

to be loaded into a script segment, and the specific instance of the

dispatcher is initialized with the starting address of the script and

reference to its parameter space. For ease of illustration, we show

these addresses as a tuple of indices instead.

For instance, initially, the L0 base dispatcher has the default (ac-

tor address, param address) of L1, which is (0,2) before it starts

executing in L1. The dispatcher at index 4 on L1 then is loaded

with the tuple (6,8) before dispatching the script on level L2. The

first segment on L2 performs ADC initialization, and then jumps to

L3 (at (10,15)) to test ADC readings of different channels. The test

applications to read each ADC channel are switched after a number

of iterations (e.g., 45 in this example). When the execution of the

last segment is over, the script is terminated, freeing up the memory

used for both the script and data, and the script pointer returns back

to L2. L2 script continues, and switches to the next segment, which

is for version checking and reboot.

Although the regular sequence would be to terminate L2, roll

back to L1 and eventually return to the base dispatcher at L0, this

specific example ends with reboot, and directly restarts from L0; it

is for testing the soft reboot function. As explained earlier, an actor

fetches its own parameters sequentially. At the end of a script seg-

ment, the dispatcher either repeats the same script segment, switches

to another script segment, or terminates and returns to the previous

level. The following section explains these tasks in more details.

6.2 Special Actors for Dispatching Support
To keep the dispatcher’s inner loop as simple as possible, we

use special actors to handle conditional behavior and termination

instead of testing these boundary conditions inside the dispatcher.

The dispatcher actually does not know the length of the script and

thus does not know when to stop the dispatch. Instead, we attach

special actors called EOSS (End of Script, Switch) or EOST (End of
Script, Terminate) at the end of the script segments. Figs. 8(a) and

8(b) show the algorithms for these actors.

To support repeating, the dispatcher first checks the current repeat
value. If not zero, the value is decremented then pushed back to the

script, and the script pointer (Ar, Pr) is reset to the beginning of

the script. When the repeating value reaches zero, the script can

either get replaced by a new script or just terminate. The EOST

DISPATCHER()

1 x ← POPPARAM() � actor to jump to...
2 y ← POPPARAM() � parameter to jump to...
3 PUSHRET() � save current pointers
4 Level++
5 (Aw,Pw)← (x,y) � set write ptr
6 LOADSCRIPT()
7 (Ar,Pr)← (x,y) � set read ptr
8 while 1
9 POPACTOR()() � dispatch and execute

10 if TerminateScript � end of script flag set
11 break
12 TerminateScript ← 0 � reset flag
13 Level−−
14 POPRET() � reset pointers

Figure 9: Pseudocode for the Dispatcher.

special actor sets the script termination flag to notify the dispatcher

to stop. The EOSS special actor requests that new script replace the

old script at the same script address, and resets the script pointer.

To handle hardware interrupts, users may insert EVENT actor

(Fig. 8(c)), which checks predefined flags (P0, P1, ...) for certain

interrupts; interrupts are written to set flags only, and the handling

routines are to be invoked shortly when event handling scripts are

dispatched. Users should define the corresponding event handling

scripts at the reserved script locations (E0, E1, ...). This enables

flexible handling of external events with dynamically composable

scripts.

6.3 Dispatching Algorithm
Fig. 9 shows the pseudocode of the dispatcher. It first pops pa-

rameters to get the target script address to jump to (lines 1–2).

Then, the pointers (Ar and Pr) to the current script (READ) are

pushed onto the return stack. After incrementing the level, the

pointers (Aw and Pw) to the WRITE script are set to the target ad-

dresses (x,y) for where the script can be loaded (line 5). LOAD-

SCRIPT is invoked to request and load the script from the host, and

then the script pointers are set (line 7). The dispatcher enters an

infinite loop to dispatch actors until a termination flag is set by an

actor. The dispatcher resets the flag returns, pops the return address

and returns to the previous script level.

6.4 Optimization of Dispatcher Core
The core optimization is critical to keeping the application per-

�������
� ���		�
�������
� ���� ���������
� ����� ���
� ���� ����������������
� ����� ���
� ���� �������
� ����� ������
�������
� ���� ��
��� �!"�� #�"
�$� ������

�

�

�������
� 	��		�
�������
� ���� �%���	
� ���� �&����
� ����� ��%
� ����� ��&
� ���� ���������
� ����� ���
� ���� ����������������
� ����� ���
� ����� ��%
� ����� ��&
� �"
�������
� ���� ��&
� ���� ��%
� ���� ��
��� �!"�� #�"
� �$� ������

�

�

��'�()*+
�

���,-.��)+)+�
')/-�'�.0(�
'1,.(+

��(,��

��������	
������������������
������ �������	�	����������
������

�����	������	��������	���

Figure 10: Code optimization at various levels for Nucleos ker-
nel.

Table 3: Dispatching overhead of different core implementa-
tions

Implementations code (bytes) delay (cycles)

Switch/Case 99 151

Call-threaded 32 55

Direct-threaded (opt) 17 39

formance competitive. The most common and straightforward way

to implement an interpreter is to use a switch-case statement to map

each opcode to its corresponding primitive, but it incurs high over-

head both in code size and execution delay. A more efficient way

is to apply the idea of threaded code [5] by collecting all the in-

coming opcodes on a stack, then sequentially fetch and jump. A

simple implementation in high level language such as C, looks like

the following:

p = fetch_next(); // get the function pointer
(*p)(); // call the function pointed to by opcode

It fetches the pointer to the function that implements the opcode and

invokes it. This implementation style is called call threaded code
because the interpreter in fact calls the primitive with a subroutine-

call instruction. In assembly generated from above code, the prim-

itive address is pushed onto the stack then returns. Further opti-

mization can be achieved by coding in assembly. This way, direct
threaded code can be realized in its original form, i.e., by a jump
instead of call instruction.

Fig. 10(a) shows the core of the dispatcher in C. The compiler

generates the assembly code (Fig. 10(b)). We apply several levels

of optimization to reduce the code as shown in Fig. 10(c). First, all

redundant code is eliminated. Sometimes, reordering lines makes

other code redundant. We also apply such reordering. Second,

some opcodes are replaced with more efficient ones, by exploiting

static knowledge (e.g., relative addresses of functions). Third, an

alternative implementation is inserted. These methods are high-

lighted and numbered in the illustration of Fig. 10. This optimiza-

tion is performed not only on the dispatching core but also through-

out the kernel code. Table 3 shows the code size and delay of the

different implementations – switch/case, call threaded code, and

our optimized direct threaded code. Our optimized core is 17.2%

of the code size and incurs 25.8% of the execution overhead of the

straightforward switch/case implementation. The assembly opti-

Figure 11: Eco node vs. a dime coin; Eco Debugging Board.

 Internal RAM

Indirect-access

Program Stack

 Data Buffer

 Script Buffer

 Return Stack

 Etc.

 ROM

 Actor 3

 Actor 2

 Actor 1

 CONST

 Utilities

 Dispatcher

 Script Loader

 Binary Loader

 Startup, Interrupts

Figure 12: Memory structure of Nucleos on Eco node.

mization reduces the kernel size by 36.2% compared to the C im-

plementation of the threaded code.

7. IMPLEMENTATION
We implemented Nucleos on Eco node v2.0 [24] shown in Fig. 11.

The kernel implementations are written in a mix of C and assembly,

where the assembly-optimized core is inserted as specially tagged

functions and is compiled by SDCC [2]. In this section, we sum-

marize the platform specification and the Nucleos memory parti-

tions mapped to the Eco node’s 8052 memory architecture. We

also briefly describe Ecosim for simulation, followed by sample

applications used in our experiments.

7.1 Platform
The MCU on the Eco node is the Nordic nRF24LE1. It is an

integrated chip with an 8052-compatible core running at 16 MHz,

a 2.4 GHz radio at 1 Mbps, a 9-channel ADC, 4 KB of on-chip

RAM shared between program and data, and 256 bytes of internal

RAM. On startup, the MCU loads its program code from the 4 KB

external EEPROM. The MCU is connected to an integrated triaxial

accelerometer and temperature sensor, a light sensor, and an LED

on the same PCB. In our experiments, we mount an Eco node onto

the Eco Debugging Board, which serves as a break-out board with

a serial port adapter and provides an external power source to the

Eco node.

7.2 Memory Structure
Fig. 12 shows the memory structure of Nucleos implemented on

Eco. The memory reserved by the Nucleos kernel is framed in thick

borders. As defined by 8052 architecture, the internal RAM of

Eco is divided into 128 bytes of directly and indirectly addressable

RAM (00-7FH) and 128 bytes of indirect-only RAM (80-FFH).

The indirect-only portion is left available for the system stack start-

ing at 80H. The higher part of the direct memory is allocated to our

��������	

���
��	��
���

��� ���
��
���
��	��
���

���
��������	

�����
����

�	��
����

��		
����

�	��
��� ����� ��� %��&

�	��
�%� ��� %��� �	��

��" ��� %���

Figure 13: Initialization sequence in SDF hierarchy.

�# �
���	* ����� %��&

������	 ������

(a) App 1. Blinker

��"
���� ����

�# �
%���

��� ������	 � �

��	�
 2�2

������	�
�������!�������

(b) App 2. Light detector

��"
����

����

�#

��"
����

��"
����

��	�

�

�

�

�#
�#

%��&

��� ������	 �"�

��� ������	 �#�

��� ������	 �$�

(c) App 3. Motion tracker

Figure 14: Sample applications modeled in SDF.

shared data buffer. The RAM space reserved for the Nucleos ker-

nel includes script buffer, return stack, global variables, and buffer

pointers.

The Nucleos kernel resides at the bottom portion of the 4 KB

ROM. It includes startup code and interrupts starting from address

0000H, and loaders for binary actors and scripts, the script dis-

patcher, and utilities used by actors, such as push/pop data. Con-

stants include node’s hardware and firmware versions, and prede-

fined messages to the host. Although the regions in Fig. 12 are not

shown in proportion, the Nucleos kernel consumes about 25% of

the total 4 KB ROM, while the rest of the space remains available

for the loadable actors.

7.3 Simulator
To help development and evaluation of the Eco platform, we

developed Ecosim as a simulator for the 8052 core. It simulates

the SDCC-generated assembly code. Written entirely in Python,

Ecosim is cross platform and fast enough for compact codes. It is

used to quickly obtain the code size and memory overhead of Nu-

cleos components in terms of instruction cycles and bytes, respec-

tively. We verified all simulated results by actual measurement.

7.4 Applications
Fig. 13 shows the SDF models for defining low-level compo-

nents, starting from the default base dispatcher, the default initial-

ization sequence, and the system initialization at one level above.

The dispatchers are highlighted in bold, where each jumps to one

level higher and returns after execution. L0 and L1 scripts are

shared among different applications, whereas the system initializa-

tion can be replaced and customized to the specific needs of the

application.

The sample SDF applications used in our experiments are shown

in Fig. 14, where only non-uniform rates are tagged on each chan-

nel. Some of the actors are attached with an additional smaller

(red) arrow for specifying the actor-specific configurable param-

Table 4: Overhead of Nucleos kernel
Components code (bytes) delay (cycles)

Dispatch 82 39 per actor
Hierarchy Support 116 158
Ext. Memory Mgmt 16 24
Load Script 110 70+α per actor
Load Binary 580 690+α per actor

Total 904 N/A

eters, which are provided by the user. These parameters include

selection of an LED, ADC channel, or setting a threshold value.

Fig. 14(a) shows the SDF graph for the blinker application, which

keeps turning the LED on and off followed by a one-second delay

(100 ms delay ×10). Fig. 14(b) shows the light detector applica-

tion, where the ADC channel for the light sensor is read to retrieve

the luminance reading, followed by sampling, and if the value is

greater than or equal to a certain threshold, then it is sent to the

host. Fig. 14(c) shows the motion tracker application, where the x,

y, z acceleration values are continuously read on the corresponding

ADC channels and sent to the host.

8. EVALUATION
To evaluate Nucleos, we first analyze the overhead of the ker-

nel in terms of code size and delay. Then, we show the memory

consumption and performance of the sample applications running

on Nucleos in comparison with the same applications written na-

tively but in a structured way (e.g., using library modules). We also

discuss the flexibility provided by Nucleos.

8.1 Kernel Overhead
The components of Nucleos include the dispatcher, hierarchi-

cal dispatching support, host-assisted memory management, and

loader for scripts and binary. The dispatching mechanism entails

fetching the script from the script buffer and the loop to invoke

the actors. Recursive dispatching is supported by push/pop return

stacks plus the end-of-script special actors. The loader handles the

host-to-node communication protocol, parsing functions, and copy-

ing code to the script buffer and the EEPROM.

Table 4 shows a summary of the code size of each kernel com-

ponent and the estimated delays. The total code size of the Nucleos

kernel is 904 bytes. Delay of loading scripts and binary includes

the communication delay α, protocol handling, and parsing. The

dispatching of an actor in Nucleos costs 156 clock cycles (= 39 ×
4), compared to 470 cycles for DVM [4] to fetch and decode an

opcode, and 600 cycles in ASVM [19].

8.2 Memory Consumption
We compare memory consumption between applications run-

ning on Nucleos and native ones. The native implementations of

the blinker, light detector, and motion tracker applications consume

470, 871, and 1003 bytes, respectively, including startup code, con-

stants, library, and application. We divide memory sizes into appli-

cation code and data sizes.

8.2.1 Application Size
The interface to the library can make a difference in the appli-

cation size. The library routines for actors on Nucleos are de-

signed to actively fetch parameters and data from the shared buffer,

whereas those for native code are written to access parameters that

are passed as function arguments. Nucleos actors are slightly larger

in size due to extra code to fetch the parameters and the repeat-

ing factor. Table 5 shows the difference in the first corresponding

Table 5: Application size (bytes).
Program

Native Nucleos
lib app (binary) total lib app (script) total

Blinker 167 30 197 199 12 211

Light. 330 146 476 422 22 444

Motion. 353 249 602 360 41 401

Table 6: Data size
Program Native Nucleos Savings

Blinker 0 0 0%

Light detector 28 22 21.4%

Motion tracker 33 26 21.2%

columns, ranging from 2.0% to 22%, which varies significantly ac-

cording to the number of actors included. However, actors in Nu-

cleos are dynamically composable with other actors.

When considering the entire executable, a Nucleos application

can actually be significantly more compact than the corresponding

native implementation written with a main() function, as shown in

Table 5. Considering the total code size for an application, the more

complex the application is, the more compact the Nucleos version

is compared to the native. For instance, the Nucleos version of the

motion tracker is 33% smaller than the native version.

8.2.2 Data Size
We compare the data memory consumption of Nucleos and na-

tive versions in Table 6. It shows that Nucleos is able to save up to

21.4% of data memory in applications that use more data buffers.

The savings are due to scheduling of shared buffers based on data

lifetime analysis. In contrast, native implementations must stati-

cally declare local buffers by the application programmer manu-

ally.

8.3 Application Performance
Table 7 shows the result of evaluating the application develop-

ment cycle from compilation to execution. The compilation time is

measured by the unix time command, which measures the elapsed

time of compiling the source by SDCC when invoked from the

command line prompt. The wall clock time is measured from the

user’s point of view. Nucleos applications are written as scripts that

invoke existing actors and thus require no compilation or linking.

To measure the delay for loading applications with deterministic

results while amplifying the effect of communication delays, we

use a slower serial channel (19 Kbps) instead of wireless (1 Mbps).

Latency due to loading native applications is measured by our cus-

tom binary transfer module, which transfers the binary code from

the host to the node line by line and written to the EEPROM. The

loading speed of Nucleos is measured by an on-chip timer. The

timer values are read before and after the loadscript module, which

starts by sending script request to the host, and finishes upon re-

ceiving the last byte of script. Since Nucleos scripts are much more

compact and loaded directly to RAM, the loading delay appears to

be orders of magnitude smaller than native, as shown in the sec-

Table 7: Time to compile, load, and execute applications.
Step

Blinker Light detector Motion tracker
Native Nucleos Native Nucleos Native Nucleos

Compile 0.839 s – 0.902 s – 0.939 s –
Load 29.5 s 0.202 s 35.7 s 0.671 s 41.5 s 0.369 s
Execute 1.63 s 1.79 s 5.1 ms 4.7 ms 51.0 ms 42.8 ms

ond rows of Table 7. The execution delay is also measured by the

on-chip timer. In both cases, the timer value is read in between

executions.

The blinker application does not use any data, and therefore the

Nucleos takes more time due to dispatch overhead. However, the

other two applications use data buffers for reading and passing the

sensor data between actors, and Nucleos benefits from the zero-

copy mechanism. The speedup actually exceeds the dispatching

overhead, and the total execution delay is even smaller than the

native implementation. The speedup is amplified in the motion

tracker application (delay reduced by 16%), which exhibits more

usage of data buffer.

8.4 Flexibility
Nucleos offers flexibility with low overhead, partly due to the

dynamically loadable scripts and modules, and partly due to dy-

namically defined buffer usage patterns, where buffer pointers are

passed at runtime. This is enabled by having the actors conform

to the design template (Section 4.2). The benefits of flexibility are

explained as follows.

8.4.1 Interactive Testing
Interactivity provided by the dynamically loadable scripts proved

useful for testing and debugging the sensor nodes. This is espe-

cially true for embedded systems that lack observability and con-

trollability without simulators or JTAG or other external interface.

In our anecdotal experience, we were able to interactively discover

and fix a bug due to accessing the wrong I/O pin that was mistaken

for a hardware component failure. Also useful is when fine-tuning

delays. A common bug in MCU programs is caused by not wait-

ing long enough for a slow device to finish its task. Scripting helps

scanning and finding the proper delay parameter in the same man-

ner the port value was scanned.

8.4.2 In-Field Reconfiguration
After deployment, the nodes may need to be reconfigured for

various reasons, including fine-tuning the device parameters. For

example, when the deployment site has strong RF interference, it

may be desirable to boost the radio transmission power level or

switch to a different frequency channel for more robust commu-

nication. Nucleos supports this type of in-field reconfiguration by

allowing direct reload of a parameter; not even the entire script

needs to be retransferred, thanks to the separate handling of actors

and parameters within the same script. Although a system can be

programmed in advance to handle such configurations, the size of

such code can easily exceed that of Nucleos itself, and the general-

ity that is rarely needed can become a burden especially for highly

resource-constrained platforms.

8.4.3 Software Update
Software update may be done at two levels: scripts and actors.

Scripts can be loaded with a modified sequence or parameters, and

actor code can also be updated by writing into the EEPROM. Al-

though technically possible to update the kernel this way, currently

we write-protect the fixed-address region occupied by the Nucleos

kernel. When actor code is modified, the linker can perform various

optimizations including appending the modified binary to the end

of the image or overwriting, based on the previous versions. Ongo-

ing studies include efficient update of the actor library to minimize

the update cost while retaining compact actor layout [16].

8.4.4 Resource Management
Due to the separation of policy and mechanism, the management

policy can be generated at runtime by either a remote system or on

the same node itself. These policies are then represented as scripts

or parameters for scripts. In the case of memory, the loaded policy

controls the data buffer to be used in an efficient layout over time

with minimal fragmentation. The actors can be viewed as memory

manageable components, while the scripts can be viewed as plug-in

management policies. The same concept can be applied to power

and time. If applied, each actor instances may run the associated

device at a certain power level or a certain CPU speed to reduce

the overall energy consumption and increase the battery life of a

node. Such power management or CPU clock management poli-

cies would be dynamically generated and plugged into the node at

runtime. By giving users flexibility in controlling resource man-

agement with scripts, Nucleos is expected to be adaptable to a wide

range of applications by effectively utilizing the platform’s limited

resources.

8.4.5 Limitations
Because the primary objective for Nucleos is to fit in very small

platforms, the kernel does not provide memory protection, garbage

collection, or fault handling. Most other compact runtime systems

also lack similar features. Another limitation today is that we show

examples in a restricted SDF model [12] for simplicity. However,

we believe that this is largely orthogonal to Nucleos.

9. CONCLUSION
This paper presents a new runtime support system called Nu-

cleos. Its use of recursive threaded code enables software to build

up layers of abstraction using this self-similar mechanism. Its min-

imal memory footprint and low runtime overhead makes it appli-

cable to ultra-compact WSN platforms. Moreover, even on larger

platforms, there is a pressing need to support industry standard pro-

tocol stacks such as ZigBee, whose relatively large footprint of 64–

100 Kbytes often leaves very little resource available for the appli-

cation, let alone the OS. Nucleos can also fill this gap by supporting

both vertical and horizontal composition of these software blocks

dynamically. Our experience with Nucleos has shown that SDF

represents a good match with many sensor applications by enabling

structured modeling. More importantly, the high-level knowledge

with SDF enables systematic, automatic optimization of memory

buffers between concurrently actors. These optimizations are often

too complex for humans to handle manually, and we have shown

that the efficiency gained by optimized memory access dominates

the small runtime overhead, enabling our code to outperform man-

ually crafted code in several cases.

Acknowledgments
This work is sponsored by the National Science Foundation CA-
REER Grant CNS-0448668. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National
Science Foundation.

10. REFERENCES
[1] Embedded ethernet. http://www.ethernut.de/.

[2] SDCC – Small Device C Compiler.
http://sdcc.sourceforge.net/.

[3] L. S. Bai, L. Yang, and R. P. Dick. Automated compile-time and
run-time techniques to increase usable memory in mmu-less
embedded systems. In Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded
systems (CASES’06), pages 125–135, October 2006.

[4] R. Balani, S. Han, R. Rengaswamy, I. Tsigkogiannis, and M. B.
Srivastava. Multi-level software reconfiguration for sensor networks.
In EMSOFT’06, pages 112–121, October 2006.

[5] J. R. Bell. Threaded code. Communications of the ACM,
16(6):370–372, 1973.

[6] S. Bhattacharyya, P. Murthy, and E. A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Publishers, Norwell MA, 1996.

[7] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han. MANTIS OS: An
embedded multithreaded operating system for wireless micro sensor
platforms. ACM/Kluwer Mobile Networks & Applications
(MONET’05), 10(4):563–579, August 2005.

[8] A. Boulis, S. Han, and M. B. Srivastava. Design and implementation
of a framework for efficient and progr ammable sensor networks. In
Proceedings of the First International Conference on Mobile
Systems, Applications, and Services (MobiSys’03), pages 187–200,
May 2003.

[9] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic
linking for reprogramming wireless sensor networks. In Proc.
SenSys, pages 15–28, November 2006.

[10] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads:
Simplifying event-driven programming of memory-constrained
embedded systems. In Proc. SenSys, pages 20–42, November 2006.

[11] L. Gu and J. A. Stankovic. t-kernel: Providing reliable OS support
for wireless sensor networks. In Proc. SenSys, pages 1–14,
November 2006.

[12] J. Hahn and P. H. Chou. Buffer optimization and dispatching scheme
for embedded systems with behavioral transparency. In EMSOFT’07,
pages 94–103, October 2007.

[13] S. Han, R. Rengaswamy, R. S. Shea, E. Kohler, and M. B. Srivastava.
A dynamic operating system for sensor nodes. In Third International
Conference on Mobile Systems, Applications and Services
(Mobisys’05), pages 163–176, June 2005.

[14] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo, T. Yan,
R. Stoleru, L. Gu, G. Zhou, J. Hui, and B. Krogh. VigilNet: An
integrated sensor network system for energy efficient surveillance.
ACM Transactions on Sensor Networks (TOSN’06), 2:1–38, February
2006.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors. In Proceedings
of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’00),
pages 93–104, November 2000.

[16] J. Kim and P. H. Chou. Remote progressive firmware update for
flash-based networked embedded systems. In Proceedings of the
International Symposium on Low Power Electronics and Design
(ISLPED), pages 407–412, San Francisco, CA, USA, August 2009.

[17] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[18] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor
networks. In Proceedings of the 9th International Conference on
Architect ural Support for Programming Languages and Operating
Systems (ASPLOS’02), pages 85–95, October 2002.

[19] P. Levis, D. Gay, and D. Culler. Active sensor networks. In Second
USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI 2005), pages 343–356, May 2005.

[20] R. Mueller, G. Alonso, and D. Kossmann. JavaT M on the bare metal
of wireless sensor devices – the squawk java virtual machine. In
Proceedings of the Second International Conference on Virtua l
Execution Environments (VEE’06), pages 78–88, June 2006.

[21] R. Mueller, G. Alonso, and D. Kossmann. SwissQM: Next
generation data processing in sensor networks. In Proceedings of the
Third Biennial Conference on Innovative Data Systems Research
(CIDR’07), pages 1–9, January 2007.

[22] P. Murthy and S. Bhattacharyya. Shared memory implementations of
synchronous dataflow specifications. In Design, Automation and Test
in Europe Conference and Exhibition (DATE’00), pages 404–410,
November 2000.

[23] H. Oh and S. Ha. Fractional rate dataflow model for efficient code
synthesis. Journal of VLSI Signal Processing Systems, 37(1):41–51,
May 2004.

[24] C. Park and P. H. Chou. Eco: Ultra-wearable and expandable
wireless sensor platform. In Third International Workshop on Body
Sensor Networks (BSN’06), April 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

