
TeleScribe: A Scalable, Resumable Wireless
Reprogramming Approach

Min-Hua Chen
Department of Computer Science

National Tsing Hua University, Taiwan
orca.chen@gmail.com

Pai H. Chou
University of California, Irvine, CA USA and

National Tsing Hua University, Hsinchu, Taiwan
phchou@uci.edu

ABSTRACT
TeleScribe is a software mechanism for efficiently reprogramming

embedded systems such as wireless sensor nodes over a shared

communication link. One distinguishing feature is its ability to re-

sume update on any node after power failure, link disconnection, or

many other indefinite disruptive events. The nodes are guaranteed

never to be left in a bad state as a result of such incomplete repro-

gramming procedures. Moreover, TeleScribe efficiently dissemi-

nates the binary image to as many nodes as possible, thereby min-

imizing redundant communication while ensuring that, in a later

round as needed, all nodes receive packets that were lost earlier.

Experimental results show TeleScribe to be the fastest and smallest

among similar systems, achieving an update rate of about 95 bytes

per node per second in a 100-node system. The total code size

of our implementation on the node is around only 2 KB, making

TeleScribe easily adaptable to a wide range of platforms with little

overhead.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-time

and embedded systems

General Terms
Design, Reliability

Keywords
Wireless sensor networks, resumable remote reprogramming, TDMA

1. INTRODUCTION
A robust and reliable mechanism to program sensor nodes is an

important issue while building applications on wireless sensor net-

works (WSNs). Recent research works [1, 2] propose schemes

to assist developers in building sensor applications and reducing

the development cost. However, they assume that the sensor nodes

have no hardware failures such as power failures and memory er-

rors. Although detailed statics of such failure rates are not widely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

available, the users manuals of many modern digital devices warn

the user about power interruptions during firmware update render-

ing the systems inoperable. To address this problem, this paper

describes a remote reprogramming scheme that not only quickly re-

programs all sensor nodes in the network but also enables all sensor

nodes to recover from power failure during reprogramming. There-

fore, our scheme greatly improves robustness over existing works.

Our work specially considers those applications of WSNs in wear-

able motion tracking and vital sign monitoring for health care, fac-

tory machinery monitoring, and laboratory experiments, where ro-

bustness is essential. Sensor nodes in the applications above are

densely deployed on the order of hundreds to thousands of nodes

in a relatively small area. We assume that the sensor nodes to be

compact, simple and low cost, and that dense deployment with non-

trivial data rates can be achieved with star topology and tiered net-

working. However, this work is equally applicable to reprogram-

ming distributed, ad hoc WSNs where the sensor nodes have more

resources than assumed in our experiments.

1.1 Problem statement
The goal of our work is to design an efficient, robust, scalable bi-

nary code reprogramming mechanism for WSNs. We assume that

every sensor node in the network has a unique ID, and the base sta-

tion always knows the maximum node ID in the network, which is

an upper bound on the number of sensor nodes in the network. We

also assume the network topology to be a star, where every node is

in one-hop range from the base station. The final assumption is that

all nodes in the network run the same binary image, although this

assumption can be relaxed by adding a simple filter. In the upper

tier, multiple base stations form a network of their own, and each

base station may operate on a distinct frequency channel. Nodes

may be dynamically associated with different base stations by a

fast-handoff protocol [3].

1.2 Requirements
Remote reprogramming in wireless sensor networks is a multi-

faceted problem, which covers reliable data transmission, energy

saving, data propagation protocol, hardware error detection, and

satisfying constraints on sensor nodes, including the size of usable

RAM and the limited capability of the radio transceiver. We first list

the requirements of a remote binary code reprogramming scheme

as follows:

1. Reliable Data Transmission
Remote reprogramming requires reliable delivery. Binary code

must be transmitted completely and correctly; otherwise, the pro-

gram will not work properly. All wireless links have inherently

unpredictable packet loss. Either the sender or the receiver should

keep track of the missing packets, and the sender or its delegate

should re-send them to the receivers.

2. Robust to Temporary Failure
Additional challenges are posed by temporary failures, particu-

larly power outage. Battery-powered nodes may run out of power

before they are replaced manually. Even nodes that harvest energy

may temporarily run out of power before more energy becomes

available again. Moreover, a worse problem is that the base sta-

tion itself or a sender node may crash, thereby interrupting repro-

gramming of all of the nodes under its jurisdiction. In all cases,

the remote reprogramming mechanism is expected to be able to re-

sume the interrupted update process after the failed systems recover

again.

3. Scalability
WSNs have grown in size quickly in recent years. A sensor net-

work may contain several hundred to several thousand nodes. A

remote reprogramming scheme should be able to distribute the bi-

nary data to the entire network quickly with minimal redundancy.

4. Compatibility
The remote reprogramming mechanism should be compatible

with the original user program and the updated user program. The

user program should not need to be aware of the reprogramming

mechanism. With good compatibility, programmers should be able

to build their own program with few restrictions on resource access.

5. Energy Consumption and Completion Time
Energy is the main limitation on many wireless sensor nodes.

Some high energy-cost operations such as radio communication

and external memory read/write [4] should be used with care. The

remote reprogramming mechanism should avoid wasting energy.

Completion time is another important metric. Remote reprogram-

ming should complete the process within reasonable time and should

not grow much with the size of the network.

6. Code Optimization
Wireless sensor nodes have limited storage space. Both the re-

mote reprogramming program and the user program share the same

storage space. Reducing the code size of the remote reprogram-

ming program can increase the available storage space for user pro-

grams. Therefore, code size optimization of the remote reprogram-

ming program is important on these wireless sensor nodes.

1.3 Objectives
Besides correctness of remote reprogramming, TeleScribe strives

for robustness, quick completion time, high data rate, and small

code size. Robustness is achieved by recording all necessary meta-

data during the update process in the non-volatile memory on the

nodes, and it enables each node to resume the update process af-

ter interruptions such as power failure. Code written to nonvolatile

memory is verified for correctness. Quick completion time is achieved

by pre-scheduled broadcast communication with a novel group-

based NACK protocol for retransmitting lost packets. The code

size of our implementation is about 2.7KB as a stand-alone pro-

gram. For compatibility, the user program only has to follow some

guidelines as imposed by our current platform such as the interrupt

service routine (ISR) sharing and the code allocation at compile

time. With better hardware and software support, these restrictions

can be lifted. Basically the user program is not aware of the re-

mote reprogramming program. Users do not have to combine an-

other boot loader with their program [5] to keep the reprogramming

mechanism working.

The rest of this paper is organized as follows. In Section 2, we

discuss related works in the remote reprogramming area. Section 3

describes our design and implementation in detail. We evaluate

TeleScribe and present the experimental results in Section 4. Sec-

tion 5 concludes and discusses directions for future research.

2. RELATED WORK
In this section, we discuss related work on remote reprogram-

ming. They can be divided into reliable transmission, data dissem-

ination protocols, and remote reprogramming mechanisms.

2.1 Reliable Transmission
Reliable transmission is essential in the remote programming

area. A binary program must be received and written completely

and correctly, or else it cannot work as expected.

RMST [6] partitions large data objects into small pieces of code

called segments and transmits them separately instead of sending

the whole large data objects at once. The receivers reassemble

small segments after receiving them. A receiver sends negative ac-

knowledgments (NACKs) to its one-hop neighbors to request lost

segments. The hop-by-hop error recovery reduces the retransmis-

sion times.

PSFQ [7] (pump slowly, fetch quickly) suggests sensor nodes

to send data at a relatively slow speed and to fetch lost data at a

high speed. In this way, a sensor node can fetch lost data from

its one-hop neighbors when the lost data is still in the neighbors’

local cache, so that it does not have to fetch the lost packet from the

source, which may be a few hops away.

Our work, named TeleScribe, borrows ideas such as fragmenta-

tion/reassemble, NACKs, and hop-by-hop error recovery from pre-

vious work. The fragmentation/reassemble approach can help sen-

sor nodes send large binary data, and hop-by-hop error recovery

reduces the cost compared to end-to-end error recovery.

2.2 Dissemination Protocol
Different data dissemination protocols make different assump-

tions about the network. In the classic flooding protocol, a node un-

conditionally forwards data to all its neighbors. This simple proto-

col causes the broadcast storm problem [8], where redundancy and

collision impair the efficiency and reliability. Another variant of

flooding is called gossiping, which sends messages to a randomly

chosen neighbor. In this way, only one copy of a given message ex-

ists in the network, and thus gossiping reduces the data traffic and

saves energy. However, gossiping distributes data slowly.

SPIN [9] suggests a three-stage handshaking protocol using three

types of messages: advertisement (ADV), request for data (REQ),

and data message (DATA). When a node has data to share, it ad-

vertises ADV messages to its neighbors. A node receives an ADV

message and replies with a REQ message if it wishes to receive

the data. A node sends a DATA message if it receives a request

for that data. SPIN provides a family of protocols to solve the

implosion problem and the overhear problem under different as-

sumptions. TeleScribe uses an enhanced version of the three-stage

handshaking protocol with SPIN.

2.3 Remote Reprogramming
For remote reprogramming, Multi-hop Over-the-Air Program-

ming (MOAP) [10], Deluge [2], and Multi-hop Network Repro-

gramming (MNP) [4] partition the binary program into segments

of data and transmit the segments separately instead of sending the

whole binary image directly. The receiver maintains a bitmap to

detect the packet loss. If a packet loss is detected, then the receiver

sends a NACK message to the sender to request the lost packet.

This NACK-based retransmission approach can reduce the control

traffic. The fragmentation/reassemble approach also improves the

propagation performance. Deluge and MNP pipeline the transfer

of segments to achieve full capabilities of the network.

Considering the data dissemination protocols, the naive flood-

ing approach causes the broadcast storm problem, and several so-

lutions have been proposed to address this problem. Trickle, Del-

uge, and MNP take an epidemic/gossip approach to propagating

data [11, 12]. Trickle uses a “polite gossip” policy to suppress net-

work traffic, where a node broadcasts an advertisement message to

its neighbors but remains quiet if it has recently heard an identical

advertisement message. TinyOS supports remote programming by

XNP [5]. It is a single-hop reprogramming solution with an ex-

pensive loss detection mechanism. Moreover, programmers must

combine another boot loader with their program to reserve the re-

mote reprogramming function.

Difference-based approaches have been proposed to reduce the

cost of remote reprogramming [13]. Instead of sending the whole

binary program, a difference-based technique sends the difference

between two different versions of a binary program when sending

the difference part is cheaper. Maté [14] is a stack-based virtual

machine, where a virtual program is represented as one or more

code capsules. The virtual program is propagated by sending small

code capsules; thus the cost of sending virtual programs is lower

than sending binary programs. However, the virtual machine ap-

proach is more restricted, because sometimes the virtual machine

itself may need to be reprogrammed.

TeleScribe broadcasts control messages and data to all the nodes.

TeleScribe shares ideas with [6, 4, 2, 10], where every receiver

maintains its bitmap to track lost packets. The loss detection method

is cheaper than XNP, which scans the EEPROM to detect lost data.

To solve the collision problem, TeleScribe takes a time division

multiple access (TDMA) approach to sending NACKs to the source

node. The one-to-many data broadcast and TDMA improve the

performance of TeleScribe.

2.4 Power Interruption During Remote Pro-
gramming

If remote reprogramming is interrupted due to a power failure or

system crash, whether on the nodes or the base stations, previous

reprogramming approaches might not be able to recover from the

interrupted reprogramming process, and the sensor node may not

work again because of the incomplete binary program. TeleScribe

considers the power failure problem during reprogramming pro-

cess. The status of reprogramming is reserved in the non-volatile

memory, and the update process can be recovered after the power

becomes available again. This design improves the robustness, not

just reliability of remote programming.

3. DESIGN AND IMPLEMENTATION
This section describes the design and implementation details of

TeleScribe. The two main components in our implementation are

the sensor nodes and the base station. We first show our protocol

design and explain our implementation.

3.1 Protocol Description
Figure 1 shows an example scenario, where the base station has

a new binary code image to propagate to the entire network. It

first broadcasts an advertisement message (ADV) to all the nodes

to notify them of the newly available program. The ADV message

contains several attributes, the most important of which is the ver-

sion number of the new binary program. If the new version number

differs from its own number, then the sensor node understands that

it is a new program and initializes the remote code update process.

After receiving the ADV message, every sensor node sends its re-

quest (REQ) to the base station. To avoid packet collision, every

sensor node is assigned a unique time slot to send its request. Fi-

nally, the base station broadcasts the requested data (DATA) to the

(a) Base station broadcasts an
advertisement message.

(b) Nodes reply requests to the
base station.

(c) Base station broadcasts
data.

Figure 1: Example scenario.

sensor nodes. This process is repeated until the base station re-

ceives no more REQ messages.

It is entirely possible that some nodes still might not have been

updated completely by the time no node sends more REQ mes-

sages. This is because REQs are effectively NACKs, which con-

firm not-receiving, but the absence of NACKs is not sufficient to

conclude receiving, even though in practice all our nodes are up-

dated successfully in the laboratory experiments. In order to elim-

inate the uncertainty of the update status of every sensor node, we

make a slight modification to the three-stage handshaking protocol:

all completely updated sensor nodes still send REQ messages after

receiving an ADV message from the base station, but the REQ mes-

sages request nothing. This effectively tells the base station that the

node has been updated successfully. When all nodes have been up-

dated completely, the base station broadcasts a start signal to the

entire network to notify the sensor node to start running the newly

updated program. If incompletely updated nodes still exist after no

node NACKs, either due to power outage or other temporary fail-

ure, once these nodes recover from failure, they will be ready to

resume the update process without being stuck in a bad program

state.

3.1.1 TDMA for REQ
In order to apply the TDMA technique to the REQs from the

nodes, we implement a simple time synchronization mechanism.

According to our assumption, every member node has a unique

ID, and the node ID also determines the time slot of each node.

We also assume that the base station knows the maximum node

ID in the network, so that the base station can adjust its TDMA

frame to cover all time slots. After receiving an ADV message, a

node waits until its time slot comes and sends the REQ message

to the base station. We also assume that all member nodes are in

the radio range of the base station, and thus the transmission delay

(a) Base station broadcasts an
advertisement message.

(b) Nodes reply requests to the
base station.

(c) Time slots allocation.

Figure 2: The TDMA technique.

is negligible. Figure 2 illustrates our TDMA technique for REQ

scheduling, where three nodes have unique node IDs x, y, and z.

The unique IDs are mapped to their unique time slot by the time

slot function S.

S(t) = t ·C (1)

where the constant C is the length of a single time slot. After some

experiments, we set C to 3.75 ms for our specific radio and micro-

controller speed.

3.1.2 Improved TDMA for REQ by Progressive Dou-
bling of Groups

An obvious disadvantage of the fixed TDMA technique is that

the communication time is proportional to the number of nodes in

the network. When the size of the network is large, the cost of

communication time will be considerable if not prohibitive. The

following describes an improved TDMA scheme. The base station

first broadcasts special ADV messages to the entire network. The

ADV messages have a special attribute called the group number. A

node is a group member if its node ID is less than or equal to the

group number. Only group members are asked to send their REQ

messages to the base station after receiving the ADV message with

the group number. Non-members may not send REQ messages

but may keep listening to the radio channel and grab any data that

they might not have received. When the base station broadcasts

DATA messages in response to the REQ messages from the group

members, the non-members can receive them, too.

With this group concept, our approach is to progressively in-

crease the group size until all nodes are covered. That is, starting

from a relatively small group number, after a whole round without

effective REQ messages from the member nodes, the base station

doubles its group number (thereby doubling the frame size) and

sends another ADV message again. Since the new group is a su-

perset of the old group, members of the old group can still send

REQ messages to the base station for its lost data. The doubling

action is repeated until the group number is equal to the size of

Figure 3: (a) TDMA with fixed frame size (b) Improved TDMA
technique with progressive group doubling.

the entire network. In this way, the base station can reprogram the

entire network by the REQ messages from many different small

groups instead of receiving the REQ messages from the entire net-

work every time. This turns out to be a very effective technique for

speeding up the TDMA phase. We have implemented both TDMA

techniques and evaluate them in our experiments.

The difference between the fixed and improved TDMA tech-

niques is explained in Figure 3. Figure 3(a) shows the time usage

of the fixed TDMA technique. To simplify explanation, we assume

that there are 40 sensor nodes in the network, and each of them has

a 1-unit-long time slot. As the figure shows, the fixed frame size

is 40 and sum of the TDMA frames for receiving REQ messages

from sensor nodes dominates the reprogramming time.

Figure 3(b) illustrates the time allocation of the improved tech-

nique with the initial group size of 10 (so is the frame size). In the

first three rounds of handshaking, the base station handshakes with

a 10-member group and broadcasts the DATA messages requested

by the group. All sensor nodes can grab the DATA messages if they

have not received them. In the fourth handshaking round, the base

station received no effective REQ messages and doubles the group

number. In the fifth round, the base station receives a small number

of effective REQ messages and hence broadcasts a small number

of DATA messages. After the sixth round (group size of 20) of no

REQ, in the seventh round, the frame size is increased to 40 and

can cover all time slots. After this round, the base station receives

no effective messages and broadcasts a start signal to the network.

Comparing both techniques in Figure 3, we can see significant time

improvement contributed by the improved TDMA technique.

3.1.3 Error Recovery
To increase reliability, every member sensor node keeps a bitmap

to track packet loss, and the bitmap is initialized to zero. After

receiving an ADV message, a node sends a REQ message to the

base station. The REQ packet contains the node ID and its bitmap,

so that the base station knows the reprogramming progress of every

sensor node after gathering REQ messages. Finally, the base station

re-broadcasts the lost data to the network.

3.2 The Sensor Nodes
Before describing the implementation details of the sensor nodes,

it is important to understand the address space usage on the sensor

nodes when writing a new binary program to the nonvolatile mem-

ory. In our design, the address space is divided into two areas: the

system area and the user program area. The system area stores the

essential program with the remote reprogramming function, named

the “image loader,” and the user program area stores user programs.

struct image_struct {
unsigned char status; // image status
unsigned char version; // version number
unsigned int id; // node ID
unsigned char count; // segment counter
__code char *bm_ptr; // bitmap pointer

}

Figure 4: The image_struct data structure in C language.

By default, the system area is loaded in the sensor nodes and never

overwritten by other user programs, but the user programs can be

replaced by other user programs.

The readers may wonder if the system area can be reprogrammed

by the remote reprogramming mechanism. The answer is positive,

but there are some risks. First, since the reprogramming informa-

tion is recorded in the non-volatile memory, reprogramming the

system area destroys this information. Hence, the reprogramming

cannot be recovered if there is any interruption during the repro-

gramming. Second, if the successfully updated program has some

serious bugs with the remote reprogramming functions, then there

may be no way to reprogram the buggy program by using the buggy

program.

To explain the details of remote reprogramming and reliable trans-

mission, one important data structure must be introduced: a data

structure named image_struct. It stores important information such

as the status of the user program, the version number of the cur-

rent user program, the node ID, and other information, as Figure 4

shows. The image_struct is stored in the non-volatile memory of

the sensor nodes and is always up-to-date. The non-volatile prop-

erty makes remote reprogramming more reliable, because the im-

age loader can resume reprogramming even after a power interrup-

tion has occurred during remote reprogramming, all by using this

information.

3.2.1 Remote Reprogramming Mechanism
Now we explain our design of TeleScribe. When the system

boots up, the image loader first checks the image_struct for the sta-

tus of the user program. If the user program is ready to run, then the

image loader will jump to the starting address of the user program;

otherwise, the image loader assumes the current user program is

incomplete and enters remote reprogramming mode to resume up-

dating the user program.

An important question is, when should the image loader change

the status of the user program from ready to remote reprogramming

mode? The answer is upon receiving an ADV message during ex-

ecution of the user program. An ISR for the transceiver is shared

by both the image loader and the user program. When the base sta-

tion broadcasts an ADV message to a sensor node, the ISR parses

the ADV message and knows that a new program is available, and

the ISR changes the status of the user program from ready to ini-

tial mode. In this implementation we assume single-threaded code

without race conditions; in a more general execution model, addi-

tional mechanisms for atomicity may be required. In initial mode,

the image loader initializes a bitmap in its non-volatile memory to

track packet loss and changes the status to remote reprogramming

mode.

When the image loader is in remote reprogramming mode, it fol-

lows the three-stage handshaking protocol. The sensor node waits

for an ADV message from the base station. After receiving the

ADV message, the sensor node sends its ID and bitmap (REQ)

back to the base station, and then waits for DATA messages. When

a DATA message arrives, the image loader checks its bitmap to see

whether the DATA has already been received. If the DATA mes-

sage has not been received, then the image loader writes the seg-

ment of binary program to its non-volatile program memory and

updates its bitmap. Otherwise, the image loader drops the DATA

message. When the remote reprogramming is complete and the

sensor node receives a start signal from the base station, the image

loader changes the user program status to ready and reboots.

3.3 The Base Station
In TeleScribe, the base station connected to the host computer is

the only source of a new user program, and the base station takes

care of all requests from the entire network in a short time. There-

fore, we build a base station using a 16-bit microcontroller unit

(MCU) that is powerful compared to the 8-bit MCU on the highly

resource-constrained nodes. In a more distributed version, nodes

similar to the iMote with much more resource may be considered

for performing the same tasks as our base station here.

3.3.1 Components of the Base Station
To build a base station with high processing speed and high data

receive/transmit speed, we choose a PC to be the host to process the

REQ messages from sensor nodes, and a base station communicate

with the sensor nodes via a compatible transceiver module. We

implemented our base station with an evaluation board and an RF

transceiver module. The base station communicates with the PC

host via Ethernet and with the sensor nodes via its RF transceiver.

3.3.2 Manipulating the Binary Program
To address the packet loss problem, the base station and the sen-

sor nodes cooperate to increase the transmission reliability. The

sensor nodes keep their bitmaps to detect packet loss, and the base

station divides the user program into small pieces of code called

segments. The segments of code are packetized and sent to the sen-

sor nodes.

4. EVALUATION RESULTS
This section shows the evaluation results of TeleScribe. We first

describe the hardware platforms, software tools, and the experi-

mental environment. We evaluate completion time in both fixed

TDMA and improved TDMA techniques. We also assess the effec-

tiveness of the resumable feature of TeleScribe. To stress test our

scheme, we repeat the remote reprogramming at least 2000 times.

4.1 Experimental Setup
Our experimental setup consists of the hardware platform and

software development tools.

4.1.1 Sensor Platform
TeleScribe has been implemented on the Eco sensor node [15],

an ultra-compact system that is 1cm3 in volume and weighs 2 grams.

It consists of four subsystems: MCU/Radio, Sensors, Power, and

the expansion port. The 8051-compatible MCU has a 512-byte

ROM for the bootstrap loader, a 4K-byte RAM for data and code,

a 4K-byte serial EEPROM for code and read-only data, and a 9-

channel ADC. Eco has a built-in triaxial acceleration sensor (±3g)

and a 16-pin expansion port. The transceiver on Eco is the Nordic

nRF2401, which is integrated with the nRF24E1 MCU, and the

transmission speed can be set to either 1 Mbps or 250 Kbps. Tele-

Scribe is compact enough to fit in Eco’s small memory.

4.1.2 Base Station
We also built a base station by connecting the Freescale DEMO-

9S12NE64 evaluation board with the Nordic nRF24L01 transceiver

Figure 5: Experimental setup.

module. The board uses the Freescale MC9S12NE64 MCU with

an integrated Fast Ethernet MAC/PHY controller. The Ethernet

base station has a Fast Ethernet (100 Mbps) interface, enabling it to

communicate with the PC host quickly.

4.1.3 Software
The binary code for the Eco nodes is built by the Small Device

C Compiler (SDCC), version 2.6.0. The development tool for the

Freescale evaluation board is CodeWarrior. The control program

on the host PC is written in Python.

4.1.4 System Setup
Figure 5 shows our entire setup. All Eco sensor nodes are con-

nected to the cascaded battery charging boards to be powered dur-

ing the experiments. The power switch on the charger board allows

us to turn off and on a group of up to 10 Eco nodes at a time instead

of individually. The transceiver power level of every Eco sensor

node is configured for 0 dBm, and the data rate is configured for

1 Mbps. All Eco sensor nodes are placed within the radio range of

the base station. The PC host and the base station are connected via

an Ethernet cable.

4.2 Results: Completion Time
This subsection presents the experimental results and analyzes

the performance of TeleScribe in terms of the completion time.

The completion time here is defined as the time from the start of

the remote reprogramming to the successful completion of repro-

gramming all sensor nodes in the network. Note that we mean fully
acknowledged completion, i.e., not only have all nodes been pro-

grammed successfully but the host has also received the positive

confirmation from all nodes. Other papers may report completion

times that are visually confirmed by the authors, but their protocols

might not have a way for the nodes to acknowledge their successful

programming to the host.

We repeat reprogramming the entire network by alternating be-

tween two different user programs. The size of each user program

is 998 bytes and is partitioned into 63 segments of 16 bytes each.

The size of the user program is limited by the size of the user pro-

gram area. Every sensor node is assigned a unique node ID, and

the IDs are sequential, starting from 1. In other words, if there are

n sensor nodes in the network, the IDs are 1,2, ...,n. During our

(a) Completion time.

(b) Number of rounds of handshaking.

Figure 6: Experimental results of completion time and number
of rounds of handshaking for Fixed TDMA.

experiments, the remote reprogramming is repeated at least 2000

times, and it also shows the reliability of TeleScribe.

We test window sizes of 1,2,4, ...,64 (i.e., powers of 2) with dif-

ferent network sizes and measure the completion time of remote

reprogramming. The window size in our experiment is the num-

ber of data segments that the base station broadcasts to the entire

network at a time.

4.2.1 Fixed TDMA
Figure 6(a) shows the relationship between the window size and

the completion time for the fixed TDMA scheme. The completion

time decreases rapidly as the window size increases from 1 to 8 and

decreases slowly as the window size increases from 16 to 64. The

larger speed-up from 1 to 8 is due to the fact that the number of

rounds of ADV-REQ-DATA handshaking decreases as the window

size increases.

For example, if the size of a user program is 32 segments and the

window size is 8, then the number of rounds of handshakings is 4

in the best case. The smaller speed-up from 16 to 64 is due to the

small size of the user program. The window sizes are large enough

to complete the small size reprogramming in a few broadcasts. Al-

though a larger window size can complete the reprogramming in

fewer steps, after recovering the lost packets, the transmission time

is not very different from that of smaller window sizes.

Figure 6(b) shows the number of rounds of handshaking in this

experiment. An interesting fact is that the number of rounds of

handshaking is almost the same over different window sizes. It im-

plies that the data transmission time does not cause the difference

in completion time of different network sizes. Combining Figures

6(a) and 6(b), we can conclude that the size of the network domi-

(a) Complection time.

(b) Completion time improvement(%).

Figure 7: Completion time of improved TDMA technique with
initial group number 10.

nates the transmission time, since the larger network has a longer

TDMA frame to communicate with all sensor nodes.

4.2.2 Improved TDMA
In Section 3.1.2, we propose an improved TDMA technique to

reduce the time spent by the fixed TDMA technique. Figures 6(a)

and 7(a) show the completion time of the fixed and improved TDMA

techniques. The initial value of the group number is 10. The re-

sults show significant improvements in larger network sizes. The

improvement is not obvious when at large window sizes, because

the cost of fixed TDMA handshaking and the cost of the improved

TDMA are almost the same.

Figure 8 shows that, despite incurring slightly more handshak-

ing, the improved TDMA technique completes reprogramming sig-

nificantly faster than the fixed TDMA technique. This is because

the handshaking cost increases progressively and is much cheaper

for smaller group sizes in the improved TDMA scheme. To under-

stand this fact, we express the main components of the completion

time as:

Timecompletion
∼= ∑

1≤k≤n
Fk + ∑

1≤k≤n
Tk (2)

where n is the number of rounds of handshaking, and Fk and Tk are

the frame size and data transmission time at the kth round.

In the fixed TDMA technique, all the frame sizes remain the

same during the remote reprogramming and are long enough to

cover all time slots. On the other hand, the improved TDMA tech-

nique (Section 3.1.2) first selects a small group of sensor nodes

and handshakes with them. This way, it needs only a small frame

size to cover this group. When the base station receives no effec-

tive REQ messages from the original group, the group size and the

(a) 20 nodes.

(b) 50 nodes.

(c) 100 nodes.

Figure 8: Number of rounds of handshaking of improved
TDMA techniques with group number 10.

frame size are progressively doubled until the group size is equal

to the network size. The difference in the total number of transmis-

sions between the two techniques is not obvious, as Figure 9 shows.

There, the completion is dominated by the sum of frame sizes in

each handshake. In a large network, the fixed TDMA technique

has a long and fixed frame size, but the improved TDMA technique

has mostly shorter frame sizes and very few longer frame sizes.

Back to Figure 8, the small amount of increment means that the

DATA messages requested by the group members are greatly bene-

ficial to the non-members. Therefore, the non-members have fewer

or no lost packets to recover. To support this conjecture, we exam-

ine the experimental data and count the number of transmissions

at different group numbers. After analyzing the data, we find a

consistent result that most of the transmissions occur in the initial

small group in all different window sizes. Figure 10 shows the

results when the window size is 64. We find that most of the trans-

missions occur when the group number is 10, and there are much

fewer transmissions in other larger group sizes.

Figure 11 show the overall throughput of different network sizes,

(a) Fixed TDMA.

(b) Improved TDMA.

Figure 9: Number of transmissions of fixed and improved
TDMA.

using our improved TDMA scheme. The overall throughput is de-

fined to be

Overall Throughput =
Size(user program)

Completion time
(3)

Combining Equation (3) and the definition of the completion time,

which is the time from the start of the remote reprogramming to

the successful completion of reprogramming all sensor nodes in the

network, the overall throughput can be considered to be the lower

bound of the throughput of all the nodes in the network. In other

words, the throughput of every sensor node is higher than or equal

to the overall throughput. The throughput decreases as the net-

work size grows. This decrease is due to the fact that the TDMA

techniques need larger frame sizes in larger networks, regardless

of fixed or our improved TDMA scheme. The overall throughput

of TeleScribe is about 95 bytes per second per node in a 100-node

network, and this is considered relatively fast. To recall, our com-

pletion time is what the host reports after full confirmation with ev-

ery node, not just when each node finishes programming itself but

might not have told the host. This also means in reality, our nodes

finish programming much earlier. The high throughput shows that

the improved TDMA technique can significantly reduce the over-

head of fixed TDMA technique and thus makes TeleScribe an effi-

cient remote reprogramming mechanism. Table 1 lists the through-

put of existing works.

4.3 Discussion: TDMA or CSMA
Some readers may speculate that the completion time will be-

come shorter if we choose TDMA protocol instead of CSMA pro-

tocol for REQs. This seems plausible, since when the group size

is doubled, the TDMA frame time will cover nearly half of the

(a) 20 nodes.

(b) 50 nodes.

(c) 100 nodes.

Figure 10: Number of transmission at different group number,
window size = 64.

Figure 11: Overall throughput in different network
sizes(Improved TDMA).

Table 1: Overall throughput comparison.
Work Network Size Throughput (bytes/s) Platform

TeleScribe 100 95 Eco mote

Deluge 75 90 Mica2

MNP 25 70.4 Mica2

Table 2: TDMA time frame usage.
Network size stage 1 (s) stage 2 (s) stage 3 (s) total (s)

20 0.20 0.06 0.08 0.34

50 0.17 0.55 0.19 0.91

100 0.17 0.75 0.38 1.30

completely reprogrammed sensor nodes. In other words, half of

the doubled frame time will be wasted. Figure 10 shows more de-

tails. After the complete reprogramming of the initial group, only a

small number of sensor nodes need retransmission. If we switch to

the CSMA protocol, it seems we may have a good chance to save

the doubled frame time.

To estimate the benefits of the CSMA protocol, we analyze the

experimental data of the TDMA approach and divide the frame

time of the reprogramming process into three stages: reprogram-

ming of the initial group, reprogramming of the other sensor nodes,

and the final confirmation by all the sensor nodes. Table 2 shows

the total frame time consumed in the three stages, using the TDMA

protocol. Switching to the CSMA protocol may reduce the time of

stage 2. However, stages 1 and 3 would require the entire network

to send REQs to the base station, and CSMA would cause serious

collision problems during these two stages.

Table 3 shows the best-case completion times for CSMA. It turns

out CSMA performs better than TDMA during stage 2 for network

sizes of 50 and 100 but worse for the network size of 20. However,

for stages 1 and 3, CSMA performs exponentially worse with the

size of the network. The major reason is that all the sensor nodes

have to compete for a limited period of time to send their REQs.

When the time is shorter, the CSMA protocol can save more time in

stage 2. On the other hand, a shorter time will cause more collisions

in stages 1 and 3. Hence, the CSMA protocol might not perform as

well as expected.

4.4 Result: Resumable Reprogramming
To assess the effectiveness of our resumable reprogramming fea-

ture, we injected power failures by turning off the power at various

times during the remote reprogramming. In all of our tests, all the

interrupted sensor nodes can fully resume the remote reprogram-

ming process after the power is turned on again [16]. In fact, the

resumable reprogramming feature helps a great deal during our ex-

periments, not necessarily due to node failure, but due to the base

station overheating and crashing, which caused interruptions to the

remote reprogramming for the entire network. The resumable re-

Table 3: Estimated CSMA time frame usage.
Network size stage 1 (s) stage 2 (s) stage 3 (s) total (s)

20 0.23 0.11 0.23 0.57

50 0.50 0.23 0.45 1.18

100 1.13 0.38 1.32 2.83

programming feature enables the sensor nodes to resume update de-

spite incomplete binary images on all these nodes and saves much

time.

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions
We propose TeleScribe, a scalable and resumable remote repro-

gramming approach for WSNs. TeleScribe is capable of recover-

ing from bad states caused by interruptions such as power failures

during the remote reprogramming, thereby enhancing the robust-

ness of remote reprogramming. In order to achieve high-speed

reprogramming, TeleScribe uses a Fast-Ethernet base station and

uses a progressive frame-size doubling TDMA technique for lost-

packet requests. Evaluation results show an overall, fully-verified
throughput of 95 bytes/sec in a 100-node network. It means each

node effectively receives at least, not at most, 95 bytes/s, since the

completion time of the network is determined by last the node that

completes the reprogramming and positive confirmation with each

node.

TeleScribe make three contributions in the remote reprogram-

ming area. First, it provides a large scale, high-speed, reliable re-

mote reprogramming mechanism for WSNs. Second, TeleScribe

builds a resumable reprogramming feature so that a node with an

incomplete user program can recover from the bad state and even-

tually receive a complete user program. Finally, the code size of

TeleScribe is about 2K bytes. The small code size can easily fit the

platforms with small memory spaces such as Eco sensor nodes.

5.2 Future Work
TeleScribe can be extended in several directions, including more

general network features, further improving the TDMA, and power

management.

5.2.1 Larger Scale WSNs
Results presented in this paper are based on one base station

handling at least 100 to 200 nodes with little difficulty. To scale

to larger networks, it will be necessary to consider either multi-

ple base stations or multi-hop topologies. Multiple base stations

that employ frequency-division multiple access (FDMA) with fast

handoff [3] already enables TeleScribe to scale up by two orders

of magnitude with no increase in reprogramming time in a two-

tier network. This translates into 10000 to 20000 nodes and 100 to

200 base stations, as limited by the number of available frequency

channels, even if their coverage areas completely overlap. Whether

by peers or base stations, it will be important to consider repro-

gramming authentication and program data validation for security

reasons. Even without malicious attacks, nodes may contain stale

versions of a program and should be suppressed from further propa-

gation. The current scheme for program version number generation

based on MD5 cannot tell which version is newer, since the version

number is more like a hash key, although this can be easily extended

with more bits. Upon receiving code segments, the nodes should

verify the program data and catch inconsistency either intentionally

injected by attackers or introduced by bit errors in memory buffer.

5.2.2 Further Improved TDMA Technique
The improved TDMA technique (Section 3.1.2) significantly re-

duces the overhead of the fixed TDMA technique (Section 3.1.1);

however, the doubled frame size still covers nearly half of com-

pletely reprogrammed sensors, causing wasted time. To eliminate

the wasted time slots, the base station can broadcast the reprogram-

ming status of each sensor node to the entire network. Every sensor

node can recalculate its new time slot after receiving the informa-

tion, thereby reducing the waste of time slots.

5.2.3 Power Management
Energy is a main constraint in WSNs. TeleScribe assumes all

sensor nodes keep listening to the radio for the messages from the

base station. The idle listening undoubtedly wastes a considerable

amount of energy. Thus, reducing the idle listening time is an im-

portant issue for future work. We already considered several ways

to address the energy waste problem. Sensor nodes can adopt new

radio modules with lower power consumption to save energy. An-

other solution is to schedule sensor nodes to turn on the radio only

when necessary. To achieve the scheduling solution, there must be

a precise time synchronization mechanism. Except turning off the

radio when it is idle, the energy consumption can be controlled by

dynamically adjusting the power level of the transceiver. The sen-

sor node can monitor its link quality and lower its power level if the

quality is acceptable or increases its power level when the quality is

going down. The power level should be minimized if the link qual-

ity is acceptable. Such power management schemes are currently

being implemented in the handoff mechanism [3].

Acknowledgments
This work was sponsored in part by the National Science Founda-

tion CAREER Grant CNS-0448668, CNS-0721926, the National

Science Council (Taiwan) Grant NSC 96-2218-E-007-009, and Min-

istry of Economy (Taiwan) Grant 96-EC-17-A-04-S1-044. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily re-

flect the views of the National Science Foundation.

6. REFERENCES
[1] Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo

Voigt. Run-time linking for reprogramming wireless sensor

networks. In SenSys’06, pages 1–3, November 2006.

[2] Jonathan W. Hui and David Culler. The dynamic behavior of

a data dissemination protocol for network programming at

scale. In SenSys’04, pages 3–5, November 2004.

[3] Chung-Yi Ke, Nai-Yuan Ko, Chih-Hsiang Hsueh,

Chih-Hsuan Lee, and Pai H. Chou. EcoPlex: Empowering

compact wireless sensor platforms via roaming and

interoperability support. In Proceedings of the Sixth Annual
International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services
(MobiQuitous 2009), Toronto, Canada, July 13-16 2009.

[4] Sandeep S. Kulkarni and Kimin Wang. MNP: Multihop

network reprogramming service for sensor networks. In

Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems (ICSCS’05), 2005.

[5] Crossbow Technology Inc. Mote in-network programming
user reference.

http://www.tinyos.net/tinyos-1.x/doc/Xnp/pdf.

[6] Fred Stann and John Heidemann. RMST: Reliable data

transport in sensor networks. In IEEE Workshop on Sensor
Net Protocols and Applications (SNPA), May 2003.

[7] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman

Krishnamurthy. PSFQ: A reliable transport protocol for

wireless sensor networks. In WSNA’02, September 2002.

[8] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The

broadcast storm problem in a mobile ad hoc network. In

International Conference on Mobile Computing and
Networking, 1999.

[9] Hoanna Kulik, Wendi Heinzelman, and Hari Balakrishman.

Negotiation-based protocols for disseminating information in

wireless sensor networks. Wireless Networks, 2002.

[10] Thanos Stathopoulos, John Heidemann, and Deborah Estrin.

A remote code update mechanism for wireless sensor

networks. Technical report, CENS Technical Report, 2003.

[11] J. Pereira, L. Rodrigues, M.J. Monteiro, R. Oliveira, and

A.-M. Kermarrec. NEEM: Network-friendly epidemic

multicast. In Proc. 22nd Symposium on Reliable Distributed
Systems (SRDS), pages 15–24, October 2003.

[12] Indranil Gupta, Anne-Marie Kermarrec, and Ayalvadi J.

Ganesh. Efficient and adaptive epidemic-style protocols for

reliable and scalable multicast. In Proc. IEEE Symposium on
Reliable Distributed Systems (SRDS), 2002.

[13] Niels Reijers and Koen Langendoen. Efficient code

distribution in wireless sensor networks. In WSNA,

September 2003.

[14] Philip Levis and David Culler. Maté: A tiny virtual machine

for sensor networks. In ASPLOS, 2002.

[15] Chulsung Park and Pai H. Chou. Eco: Ultra-wearable and

expandable wireless sensor platform. In Proc. Third
International Workshop on Body Sensor Networks (BSN
2006), pages 162–165, April 2006.

[16] Min-Hua Chen. TeleScribe – 100 nodes with power failure.

http://www.youtube.com/watch?v=bu90xtj-yfY.

[17] Fred Stann, John Heidemann, Rajesh Shroff, and

Muhammad Zaki Murtaza. RBP: Robust broadcast

propagation in wireless networks. In Sensys’06, pages 1–3,

November 2006.

[18] David Chu, Lucia Popa, Arsalan Tavakoli, Joseph M.

Hellerstein, Phillip Levis, and Scott Shenker. The design and

implementation of a declarative sensor network. In

SenSys’07, pages 6–9, November 2007.

[19] Philip Levis, Neil Patel, David Culler, and Scott Shenker.

Trickle: A self-regulating algorithm for code propagation

and maintenance in wireless sensor networks. Technical

report, University of California, Berkeley, 2004.

[20] S.T. Hedetniemi S.M. Hedetniemi and A.L. Liestman. A

survey of gossiping and broadcasting in communication

networks. Networks, 18:319–349, 1988.

[21] Chulsung Park and Pai H. Chou. AmbiMax: Automous

energy harversing platform for multi-supply wireless sensor

nodes. In IEEE SECON 2006 proceedings, 2006.

[22] Farhan Simjee and Pai H. Chou. Everlast: Long-life,

supercapacitor-operated wireless sensor node. In ISLPED
2006 proceedings, 2006.

[23] Chung-Ye Ke. EcoMAC: A fast-handoff, collision-free,

lightweight MAC protocol for multi-channel heterogeneous

wireless sensor networks. Master’s thesis, National Tsing

Hua University, 2008.

[24] David Wikie. EEPROM Endurance Tutorial, 2005.

[25] Microchip Technology Inc. Everything a System Engineer
Needs to Know About Serial EEPROM Endurance, 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

