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ABSTRACT

Software components are modular and can enable post-deployment
update, but their high overhead in runtime and memory is pro-
hibitive for many embedded systems. This paper proposes to mini-
mize such overhead by exploiting behavioral transparency in mod-
els of computation. In such a model (e.g., synchronous dataflow),
the state of buffer requirements is determined completely by the
firing sequence of the actors without requiring functional simula-
tion of the actors. Instead of dedicating space to each channel or
actor statically, our dispatcher passes buffer pointers to an actor
upon firing. Straightforward implementations are counterproduc-
tive, as fine-grained allocation incurs high pointer overhead while
coarse-grained allocation suffers from fragmentation. To address
this problem, we propose medium-grained, “access-contiguous”
buffer allocation scheme. We formulate the problem as 2-D tiles
that represent the lifetime of the buffers over time and define op-
erators for their translation and transformations to minimize their
memory occupation spatially and temporally. Experimental results
on real-life applications show up to 70% data memory reduction
compared to existing techniques. Our technique retains code mod-
ularity for dynamic configuration and, more importantly, enables
many more applications that otherwise would not fit if implemented
using previous state-of-the-art techniques.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]: Real-time
and embedded systems; B.3.2 [Memory Stuctures]: Performance
analysis and design aids—Simulation, Optimization
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Algorithms, Design, Experimentation
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1. INTRODUCTION

The ability to organize software as modular, dynamically load-
able components is becoming critical. Once deployed, it is diffi-
cult and costly if not impossible to retrieve these systems from the
deployment site to perform firmware update or other maintenance
tasks individually. Also, it is desirable to support higher level pro-
gramming and code reuse in terms of invocation of a stable API
provided by the platform. This way, the user program can be kept
small, and an update entails changing sequencing and parameter
values, rather than re-implementation of low-level primitives.

1.1 Support for Dynamic Execution

The combination of small memory footprint and high adaptivity
in software architecture is challenging. On the high end, software
component architectures such as CORBA are too heavyweight, as
they use the middleware layer on top of an OS to repackage remote
procedure calls and to provide a lookup service. On the low end,
recent works on firmware update for sensor networks have concen-
trated on optimizing firmware writing, but they mainly operate on
binary images without maintaining a modular structure.

1.2 Memory Optimization

Another key problem is how memory is assigned. In the most
general case, all memory is allocated dynamically with malloc()
and free() calls, but this approach can be prohibitive for many em-
bedded systems. On the other extreme, such as in TinyOS [8|] and
others, memory is allocated statically for each routine’s own stor-
age. However, static memory allocation can lead to memory frag-
mentation, since much of the memory may be declared but never
fully utilized simultaneously. Although a programmer can manu-
ally optimze the memory as overlays, it is not a scalable technique.
Moreover, as some program code gets updated, the statically allo-
cated memory locations of unchanged modules may also need to
be shifted.

1.3 Scripted Dispatch and MoC-enabled Buffer
Optimization

To enable dynamic update of software components, we use a
compact dispatcher that invokes native code modules according to
a “script.” This enables modular update to scripts and native code
remotely without reboot. To enable memory optimization without
a resident memory manager, we exploit behavioral transparency in
models of computation (MoCs) to help optimize memory alloca-
tion. A behaviorally transparent model is one whose memory re-
quirements is completely defined by the actors’ firing sequence, in-
dependent from their actual functionality. This property implies
that the memory allocation decision can be made for the entire
application prior to execution. One such model is synchronous



dataflow (SDF), widely used for modeling and optimization of dig-
ital signal processing (DSP) applications.

However, the combination of buffer minimization has to be ex-
amined carefully in the context of scripted execution. To maintain
modularity, all buffer references could be passed as parameters to
each invocation of an actor (i.e., primitive function), but the prob-
lem is that the references to the buffers themselves also take up
space — as much as the buffers. A more practical way is to allocate
buffers contiguously as far as each actor is concerned, so that only
a single pointer needs to be passed for each port.

The main contribution of this work is the combination of scripted
dispatching structure and buffer minimization as enabled by behav-
ioral transparency. For buffer optimization, we propose a 2-D tile
formulation for representing the lifetime of buffers. The algorithm
explores alternative schedules to reshape these tiles so that the total
memory occupancy is minimized in space and in time. This tech-
nique is suitable for scripted execution with minimum overhead on
a wide range of embedded systems. The resulting software not only
uses minimal memory buffers but also combines the efficiency ad-
vantage of statically scheduled code with the dynamic update and
modularity advantages of scripting.

We evaluated our techniques with several real-life applications
ranging from wearable wireless sensors to networked medical de-
vices. Experimental results show that our implementations satisfy
all the code size and memory buffer constraints where previous
works have failed, and our solutions also achieve similar runtime
efficiency. Our solution will unleash the full potential of these low-
power, low-cost embedded systems by enabling them to solve many
nontrivial problems using minimal, optimal amounts of resources.

2. BACKGROUND
2.1 Synchronous Dataflow (SDF)

Synchronous dataflow (SDF) is a model of computation for data
regular applications including many in DSP [4]. It models compu-
tation with a directed graph G(V,E), where the vertices v € V rep-
resent computing processes called actors, and the edges E CV xV
represent channels that connect an output port of one actor to an
input port of another actor. In general, the actors are behaviorally
transparent in that when an actor is fired (i.e., executed for one it-
eration), it consumes and produces a known number of tokens as
annotated on each of its I/O ports; in SDF, these numbers are con-
stants. These fixed numbers are called consume rate and produce
rate. Each token tk € E x N carries data and is uniquely identified
by the channel and sequence number. In general, SDF graphs may
be cyclic, though we use acyclic ones for the purpose of illustrating
behavioral transparency without loss of generality.

Fig. [I] shows an SDF graph with actors A, B, C. Each time A
is invoked, it outputs 3 tokens. B consumes 2 and produces 2,
and C consumes 1. The channel state of an SDF graph is a vec-
tor 5= (cy,... A ClE| )T of the token counts on all channels. Firing an
actor v € V will change the state of the SDF graph by adding rate
vector V that subtracts a fixed token count (i.e., consume rate) from
each of the actor’s input channels and adds a fixed token count (i.e.,
produce rate) to each of the actor’s output channels. For instance,
the state 5; can be formed for the two channels (4,B) and (B,C).

Valid Schedules:

1.AABBBCCCCCC

2.ABCACBCBCCC

Figure 1: Example SDF graph and its valid schedules

Initially the channels are empty, or 5y = (8) The rate vectors are
A=(3).B=(2).6=(").

A schedule is a sequence of actor firings. An actor v is eligible
for firing in state s; if the next state §;.1 = §; + V does not result
in any channel with a token count < 0. Each actor is required to
consume and produce tokens in a deterministic sequence, but the
timing of their firing is otherwise unconstrained. In this paper, we
consider full serialization for the purpose of software implemen-
tation. We consider well-posed SDF graphs for which the relative
rates can be resolved with finite, bounded buffer space. Because of
behavioral transparency, static scheduling (or pre-runtime schedul-
ing) can be applied efficiently with low runtime overhead by re-
peatedly invoking the same finite schedule. Different schedules and
implementations of runtime support can make a dramatic impact on
the code size and buffer size.

2.2 Code Size of SDF Implementations

A valid SDF schedule is by definition finite, deadlock-free, and
fires each actor at least once. Two valid schedules of the SDF graph
shown in Fig.[T]are AaBBBCCCCCC and ABCACBCBCCC (makespan =
11). A compiler could perform code generation by inlining copies
of the code to produce a single routine for the whole SDF graph.
It has low runtime overhead, but it uses the most code memory.
Moreover, if any actor requires update, then the entire routine needs
to be replaced, making it costly for in-field update.

One solution to the code size problem is to introduce one level
of indirection. A schedule can simply call an actor as a subrou-
tine, though runtime overhead is incurred on the extra level of indi-
rection. One approach that addresses these problems is the single
appearance schedule (SAS) approach, where each actor appears
exactly once, but each may be marked with a number of iterations.
For instance, one of the valid schedules in Fig. [I] is aaBBBCCC-
ccc, and it can be converted into an SAS form as 2A3B6C (execute
A twice, B 3 times, and C 6 times). It has reduced code size and
simpler dispatch, but the trade-off is that SAS results in larger data
buffer requirements, to be discussed in Section

2.3 Data Buffer Optimization in SDF

Data memory can be much more constrained than program mem-
ory in low-power embedded systems. The program can be stored
in either RAM or ROM, and EEPROM and NOR flash may sup-
port execute-in-place (XIP) without having to load the program
into RAM first. Flash and EEPROM are nonvolatile and do not
have the leakage problem that RAM has, but transient data can
be allocated only in registers or RAM and thus tend to be much
more constrained. Existing techniques that minimize memory for
SDF can be classified by their buffer assumptions, into dedicated
buffers, shared buffers, and merged buffers.

The dedicated buffer approach maps each channel to a dedicated
buffer space. This is the default implementation option for SAS
and for most implementations that rely on circular buffers. Because
SAS decreases code size at the expense of buffer size, several stud-
ies attempt to reduce SAS memory by scheduling [5| [12]. Sung
[[18] and Zitzler [[19] relax the assumption by also considering non-
SAS for data memory reduction. Oh et al combine the benefits
of both approaches by representing non-SAS schedules in an SAS
form, and expanding it by a dynamic loop mechanism [[13|].

With shared buffers, different channels can share the same buffer
space if their tokens’ lifetimes do not overlap. In [14], memory
is divided into global and local buffers, where local buffers store
pointers to a global buffer. Their approach is eftective for applica-
tions with large streaming data, as in multimedia systems. How-
ever, for resource-constrained systems, the pointers themselves can



take up as much space as data. Murthy et al [10] target shared
SAS buffer allocation, though they assume the coarsest granular-
ity, which results in high fragmentation as shown in Section 3
Ritz et al |[17]] present an ILP formulation to minimize buffer size,
though their assumptions on flat-SAS (without nested loops) results
in large buffer requirement, and their primary objective is code-size
reduction.

With I/O buffer merging, an actor reuses the input buffer space
also for its output buffer. The assumption is that input token is con-
sumed before the output token is generated and no longer needed
afterwards [[11]. While this enables aggressive buffer sharing, it
usually requires additional temporary space to be allocated to each
actor. There is no inherent difficulty in applying other techniques
with this assumption.

2.4 Runtime Support

Buffer optimization can be effectively applied on adaptive em-
bedded platforms with lightweight runtime support. A recent ap-
proach to the runtime support is scripting. ASVM [9] builds an in-
terpretive layer that enables user defined instructions to map to na-
tive code, which can correspond to actors. Rappit 7] uses a frame-
work to synthesize the runtime system with a given set of primitives
for code size saving. In both cases, a script is more compact than
the corresponding compiled binary while retaining the ability for
dynamic reconfiguration. However, current scripting schemes have
no provisions for buffer memory optimization. Most assume that
buffering space is allocated as part of each actor, and the runtime
system simply invokes the actor without managing memory. On the
other extreme, t-kernel [|6] provides virtual memory and SOS [16]
provides memory protection for sensor-class microcontrollers, but
both incur high runtime overhead and do not exploit knowledge
such as SDF firing rates for optimization.

3. ILLUSTRATIVE EXAMPLE

Memory requirements can vary significantly over either different
schedules or different buffer allocation schemes for a given sched-
ule. To illustrate these points, consider the SDF graph in Fig.

3.1 Memory Requirements of Different
Schedules

For the two valid schedules of the example SDF graph, let us de-
termine the buffer requirement by counting tokens on each channel.
We can use a vector of token counts on the channels to represent
the state of the SDF graph, as explained in Section

A A B

The first schedule has the state sequence (8) — ((3)) = (8) —

4\ B /2y B 70\ C 10y CCCCC
(3)=(3) - (s) _’.(5) =
memory requirement is 6.

9). Therefore, the minimum

The second schedule has the state sequence (8) 4, ((3)) EN (é) <,

H2HSE>G G20 S0) <050
Therefore, the minimum memory requirement is 5 (when the input
buffer space is allowed to be reused as output buffer space).

The minimum memory requirement is a lower bound for a sched-
ule, but it is not always achievable by all allocation schemes due to

fragmentation or contiguity constraints.

3.2 Buffer Allocation Schemes for a Given
Schedule

Fig.[2]shows the solutions generated by different buffer mapping
schemes for the same schedule ABcacBcBcccC. In each chart, the
schedule over time is shown across the top along the X-axis, and
the state of the buffer memory cells is shown along the Y-axis. Each

data token is labeled by its channel name and its sequence number
(e.g., a;). A blank cell indicates the memory is free; a cell with
a token’s label means it is being produced; “-” indicates that the
token is still alive, and — means it is being consumed.

3.3 Coarse-grained, Shared Memory
Allocation

Most previous works take the coarsest grain approach, as shown
in[2(a)] Each channel is allocated a contiguous chunk of memory
that is shared between the input and output ports, but different chan-
nels do not share space. When A and B fire for the first time, they
occupy 3 and 2 units of space, respectively. B also consumes to-
kens a; and a,, but because a3 is still unconsumed, a4, as,ag must
be placed adjacent to a3 when A fires for the second time (so that
as,as will be contiguous to B). Hence, six units of space are allo-
cated to channel (A, B). When B fires for the second time, all tokens
have been consumed, so tokens b3,bs can reuse the space. How-
ever, when B fires for the third time, bs, bg must go into contiguous
space, hence bringing (B,C)’s size to 4. The total buffer space is
10, and each firing of A, B, C requires passing 1, 2, 1 pointers,
respectively.

3.4 Fine-grained Allocation

Buffer memory can be reduced by fine-grained allocation, and
here we consider dedicated and shared schemes. The former means
each channel has its own space, whereas the latter allows different
channels to share space. The fine-grained dedicated scheme shown
in[2(b)|addresses the internal fragmentation problem of 2(a)| by us-
ing a circular FIFO of size 4 for (A, B) and size 3 for (B, C), thereby
cutting the total buffer space from 10 to 7 units. The fine-grained
shared scheme shown in [2(c)] further eliminates external fragmen-
tation by allowing both channels to allocate space from the same
pool, similar to register allocation. It uses 6 units.

However, there is a price to be paid. In the dedicated case, each
queue requires a FIFO head and FIFO count, which themselves
occupy 2 units of space for each channel and must be referenced
by each port. Therefore, the hidden overhead of 2 (head, count)
x 2 channels + 1 (pointer) x (2 input ports + 2 output ports) = 4
+ 4 = 8 total, just to keep track of 7 units of buffer space in the
dedicated scheme. In the shared case, each buffer location must be
passed to each invocation (or else it must be inlined in the compiled
code). A requires 3 pointers on its output port, B requires 2 on input
and 2 on output, and C requires 1 pointer on its input. This is 8
additional units of overhead data space for 6 units of buffer space,
not including the space taken up by the script.

3.5 Our Approach: Medium-grained,
Access-Contiguous Allocation

Our approach is to reduce fragmentation of coarse-grained ap-
proaches by shared allocation, and to reduce overhead of fine-grained
approaches with contiguous token placement on a per-access basis.
We call this medium-grained allocation scheme “access-contiguous”
allocation. Figs.[2(d)] 2(e)] and 2(F)] show the three steps that lead
to our solution. We start with 2(d)} which is similar to in re-
specting the contiguity constraint, but without attempting to greed-
ily reuse the space. Next, [2(e)|compacts the memory by rearranging
the token-lifetime “islands” in space, similar to the Tetris game, and
this cuts the space from 12 downto 7 units.

To achieve even more aggressive mapping, we apply (i) flip with
buffer access direction encoding, and (ii) shift with copy operations,
as shown in2()] For flip (i), during the second firing of A, instead
of placing tokens as,as,as upwards, we can allocate them down-
wards so that a3 ...ag are contiguous — just in the opposite orien-
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a2 | = a2 | — a6 — a2 | — a6 | - - - | =
al | = al | = a5 =D al | = as | - - - | =

(a) Coarse-grain shared (depth D = 10)

(b) Fine-grain dedicated (D = 7)

(c) Fine-grain shared (D = 6)

A|B|C|A|C|B|C|B|C]|C]|C
g
b2 = A|B |C |A|C C |B|C|C|C
bl | — g| [b2|-]|-]|—> A|B|C|A|C|B|C|X|B|C|C]|C
a6 | - - - | = bl | = | a6 — g | a3
S| === a5 = VA a4
a4 | - | = a4 | - al | — a5
a3 | - - - - | = a3 B d a6
a2 | = a2 | = b2 | - -
al | = al | = bl | =

(d) Medium-grain, step 1 (D = 12)

(e) Medium, after compaction (D = 7)

(f) Medium, after flip and shift (D = 6)

Figure 2: Possible buffer mapping solutions for a schedule in Fig.m The schedule is shown on the top row along x-axis, which denotes

time, and the y-axis indicates memory depth.

Table 1: Buffer requirements for different allocation schemes.

Scheme data buf | buf ptr | head/len. | total
Coase-grained 10 4 0 14
Fine-grained dedic.. 7 4 4 15
Fine-grained shared 6 8 0 14
Medium-grained (ours) 6 4 0 10

tation. This can be encoded with a single bit in the pointer. For
shift (ii), we effectively defragment the memory by inserting a new
actor X to copy as,ag into the space of az,ay after they are con-
sumed. This increases the makespan (i.e., schedule length) by 1,
but it enables by, b, to be re-mapped, resulting in 6 units of total
buffer space.

In terms of overhead, it uses the same space as the coarse grained
approach in that each firing of A, B, C requires passing 1, 2, 1
pointers, respectively. This is the lowest total requirement of all.
Table [T] summarizes the total memory usage of each scheme.

4. PROBLEM FORMULATION

This section defines data structures and operators used by our
main algorithm for optimizing medium-grained contiguous buffer
assignment for SDF schedules. When an actor is fired, it sees each
of its input and output ports as a contiguous bufter up to the depth it
produces or consumes, though the entire channel need not occupy
contiguous space. The objective is to minimize the total memory.

4.1 Data Structures

We now define the symbols and data structures to be used by the
main algorithms in the next section.

FSM(S,d,L) is a directed graph that captures the schedule state

space, where S is a set of states as spanned by token-count
vectors § as shown in Section [3] the state-transition function
8 C §x S, and the labeling function L : 8 — V, which maps
an edge to an actor.

G(V,E) is a directed graph that captures the dataflow, where V
represents the set of actors, and E the set of channels.

¥ is an |E|-tuple associated with each actor v € V. It indicates the
number of tokens to produce (positive) or consume (nega-
tive) on each channel each time it is fired.

tk = (e,k) € [1,|E|] x [1,M] is called a token of sequence number
k on channel (edge) numbered e.

ord :[1,|E|] x [1,M] — Z7 is the total ordering function, which
maps a token (e, k) to a globally distinct integer in the range
[1,M].

M 1is the total number of tokens produced by firing each actor ac-
cording to a given schedule.

T is the makespan of a schedule, namely the number of timesteps.

tp,te :[1,|E|] x [1,M] — Z7 are the two functions that map a token
to the time (step) of its production and consumption, respec-
tively.

N = |Byet| € Z7T is the number of blocks, as defined by Def. El

D called the memory depth, is the size of a contiguous region of
memory to be allocated to the channels. Note that D is upper
bounded by M. D, is the optimal memory depth.

Definition 1 (Schedule ) is one path of an FSM. {sp,...,s7},
where §5; € S, T = period of a schedule, and sy = s7.



Definition 2 (Schedule Sets S,;;, Sse;) S, is set of all possible sched-

ules derived from G(V,E), and S;,; is a selected subset of S;.

Definition 3 (Token Lifetime Chart 7LC)
whose entries are

is an M x T matrix

)

p tk if token tk is alive at time j
Cii—
Y 0 otherwise

where i = ord(rk) the total ordering of the token.

Definition 4 (Block B) C [1,|E|] x [1,M] a set of tokens such that
for any two tk;,tkj € B, (1) e; = ej = e, and (2) tk; overlaps tk;
transitively, that is, if k; < k;, either

ty(thi) <ty (tkj) <tc(th;) < t.(tkj) or,
token (e,k; + 1) overlaps (e, k;) transitively for k; +1 < k;

Definition 5 (Block Set By,,) C 2[LIEIX[1M] is the set of all blocks
formed by all tokens produced according to a given schedule.
{B1,...,Bn}, where B € By, is a block, and B;\B; = 0 if i # j.

Byer serves as the unit entity of the problem. The problem is to
correctly place all the block elements in By, inside a given area.

Definition 6 (Block Lifetime Chart BLC) is an N x T matrix where

@

bl 1 if block B; contains a live token at timestep j
Cii—
Y 0 otherwise

Each block is mapped to its lifetime from the earliest produced time
to the latest consumed time based on those of its member tokens.
That is,

tp(B) = mint (tk) ()
t(B) = max 1 (tk) “4)

Definition 7 (Block order vector B,) [B;...By]| is one permuta-
tion of By, for the purpose of determining each block’s relative
placement in memory. Normally a block with a smaller index is
placed first in a lower address, and a subsequent block is placed at
the next higher address that does not cause overlap.

Definition 8 (Buffer Map Bmap) D x T matrix where

b tk  if token tk is mapped to mem. loc. i at time j
map; ; =
Pij 0 otherwise

&)

Each column shows a snapshot of buffer usage while an actor is
being invoked. The maximum token count over all columns is the
lower bound of data memory requirement.

4.2 Block Operators

To compact memory, we define five operators that move, reorder,
and re-shape the blocks: SHIFT, SWAP, FLIP, COPY, and P-FLIP.
Fig.[Billustrates their usage with simple examples.

SHIFT is a basic operator for shifting up or down the block by
a specific offset. It is normally used to collapse down the upper
blocks.

SWAP is to switch the vertical ordering of two blocks. Although
it is conceptually easy, it can be computationally expensive to switch

(2) Swap A,B

JEN a2|a2
al|b1[b1]
b1[b1] (3) Fijp A bilbT] (1) shire
a2|a2 — al —  [a1]b1]b1]
la1] a2]a2] a2[a2
[bib1] o
(4)Ci)pya2 %1 %) (1&;&8 5 % BIE
al fa2ga2 al a2
X
c3[c3]
2fe2 1(5)2‘_)“!3 X [e2]e2
1] c1]c3]a3]

Figure 3: Illustration of the five operators for the buffer layout
algorithm.

A C

C #{A

[A] C
B
»>[A »[c] | |[»[C
A

A

remove B swap A,C collapseall redraw B

Figure 4: Example of SWAP operation: a direct switch (block A
and C) can be invalid due to conflicts with other blocks (block
B), and in general requires a full sequence to operate.

two blocks, since a straightforward swap may result in intersection
with other blocks. For correct swapping, it should follow the se-
quence shown in Fig. 4]

FLIP is to horizontally flip a block. We classify these shapes
and their variations into four types as shown in Fig. 5] Flipping
increases the opportunity to compact adjacent blocks.

P-FLIP is to partially flip the block starting from an offset x. It
is only allowed when there is only one input token at the flip-point.
This is especially useful for Type4 shapes as in Fig. 3] since the
staircase-shaped blocks tend to cause fragmentation and prevent
other types of optimizations.

CoPY is to insert a simple actor that copies input data to a spec-
ified output location for the purpose of defragmentation. It can re-
duce the memory depth but at the expense of extra execution delay.
It can be applied optionally for more aggressive optimizations.

5. BUFFER OPTIMIZATION ALGORITHMS

This section first defines the top-level steps for memory opti-
mization and introduces the core algorithms for buffer mapping.

5.1 Top-level Flow

Fig.[f]captures the flow of our memory optimizing approach. In-
put to the host is an SDF graph and output is a generated script that

,_H
] 1 : H_, ) flip
0= Ho
e

Figure 5: Possible shapes of blocks



Scheduling Pre-processing Buffer mapping

Input: 1. construct 1.collect tokens 1.block mutation Output:
SDF graph —p{  schedule set —| 2.build TLC [—»| 2.block placement (— Script
2.schedule 3. collect blocks 3.block adjustment

selection 4. build BLC

Figure 6: Top-level flow of our memory optimization

SCHEDULE SELECTION (SDF graph G(V,E))
Phase I: Build FSM

1 Q.push(sp) > Q is queue of next states to visit
2 while O do
3 for each v € (V —{vg.}) do > try firing all nonsrc actors
4 if v eligible to fire then > 3 enough tk to consume
5 E;MXZ — Ecur + ‘7
6 FSM .addTransition(v, e ) > add transition and state
7 Q.push(Syexr)
8 if not (4 fired v) do > if necessary, fire source actor
9 Snext < Scur + V;rc
10 FSM .addTransition(v, $ex) > add transition and state
1 1 Q'pUSh(Enext)

Phase II: Collect all schedules
12 for each path € FSM do
13 if not (35),ex¢) Or (Spexr = 50) then
14 Sanr — SanU {puth}
Phase III: Select schedules
15 for each min S,; do
16 if Dyp; # max(|5]) then
17 Sser = Sai—™
18 if |Sse| > maxNS then > max Number of T is configurable...
19 sort Sg. in the incr. order of the longest subsequence of v
20 Sser — Sset[1... maxNS]
21 return Sy,

Figure 7: The Schedule Selection Algorithm.

> add path to the all schedule set

> rm opt-unreachable schedules

contains the final schedule and buffer map. Each line of script in-
cludes an actor and i/o pointers. The script is dispatched to remote
node at runtime and is executed according to its order.

The first step is to obtain the schedule set and select best candi-
date schedules. The second step is the preparation for the next step,
by obtaining the building blocks and data structures. Finally, buffer
mapping is performed by mutation, placement, and adjustment of
the blocks for each schedule. The following sections present de-
tailed algorithms for these steps.

5.2 Schedule Selection Algorithm

The idea of the SCHEDULE SELECTION algorithm is to build
and prune a finite state machine (FSM) that effectively captures the
states of schedules for a given SDF graph. To recall, the state can
be represented as a vector §; that indicates the number of tokens
on each channel. The algorithm constructs an FSM that connects
these § vectors in breadth-first (BFS) order, and the transitions are
labeled with the actor whose firing causes the change of state. This
way, a sequence of 7' path labels along this FSM starting from vy,
corresponds to an actual schedule for the given SDF graph. The ad-
vantage to using the FSM is that it is a compact representation that
captures all possible schedules of a given SDF graph, without hav-
ing to explicitly enumerate all schedules. Moreover, it also enables
very effective pruning during the construction of the FSM, thereby
enabling selection of the optimal (or a near-optimal) schedule with-
out state explosion.

The SCHEDULE SELECTION algorithm is shown in Fig.[7] It
consists of three phases: 1. Build the FSM, II. Collect the sched-
ules, and III. Select schedules. While choosing which next state of
the FSM to add or traverse, we use a greedy heuristics to help prune
the solution space. It chooses those states that have the minimum

Phase operators Level Sequence of phases

1| Initialization | - Default | 1 — 3a
2| Mutation FLIP Opt-1 1 — 3(ab)
3| Placement SWAP, SHIFT Opt-2 1 — 3(abc)

a. EPF Opt-3 1 — 3(abc) — 4

b. LBF Opt-4 1 —2—3(abc) — 4

c. BOA Opt-5 1—2—3(abc) -4 —
4| Adjustment | P-FLIP, COPY 1 — 2 — 3(abc) — ...

(@) (b)

Figure 8: Buffer mapping steps and level-specific sequences

of the maximum number of live tokens. The number of live tokens
can be computed by summing values of a state vector §;. The max-
imum value reached during an entire schedule execution is a lower
bound on the memory buffer depth (D,r), although it is not always
achievable due to fragmentations. In addition, the configuration
parameter maxNS$ can be used to set a threshold on the maximum
number of schedules to consider. When the number of schedules
exceeds this threshold, another heuristics can be triggered for a dif-
ferent level of pruning. Another heuristic is to order the schedules
in increasing order of length of consecutive subsequence of an ac-
tor. For example, AABAA is preferred over AAAAB, as it enables
more modular blocks and leads to less fragmentation, as shown in
Section[7]

The worst case runtime complexity of the algorithm is O(|V| x
|S|). FSM state space |S| itself can be exponential in general, but
it can be pruned during construction using the greedy heuristic and
the maxNS threshold as suggested above, in addition to others such
as maximum channel depth and the maximum number of live to-
kens while choosing the next state vector to add. Also, during Phase
II, a greedy heuristic can prune paths that violate certain criteria
(e.g., monotonic increase of live tokens beyond a threshold length).

5.3 Buffer Layout Algorithm

Among the selected candidate schedules, we iterate through each
and apply the Buffer Layout algorithm to find the best solution.
Fig.[8(a)| shows the four phases of the algorithm. These phases are
applied in different combinations based on the optimization level
chosen. We provide one default level plus five optimization levels,
as shown in Fig.[B(B)] Each level progressively reduces the buffer
requirement while taking more time to compute the layout.
Initialization From schedule set Sy, retrieve one 7 and perform
the following sequence:

step | time complexity
Obtain TLC o(M)

Collect B o(M)

Obtain BLC O(T xM)

Collect blocks’ 2-D information

(borders, shape, size, etc) O(T xM)

Mutation is performed by selectively flipping a set of blocks,
based on the shapes of the intersecting blocks (i.e., blocks with
overlapping lifetimes).

Placement is the actual block layout. One possible solution is
to layout the initial configuration, and continuously perform SWAP
and SHIFT to reach a more compact layout. However, as shown
in Fig. [ the operations may be costly. Alternatively, we can ex-
plore in a bottom-up manner by choosing block orders that build
up a compact layout. A solution is derived from a block order B,
dropping each block B; from top to the lowest possible memory lo-
cation. The key to the optimal solution is to find the best B,.. Three
ways of obtaining B,s are 1) Earliest Produce-time First (EPF),
2) Largest Block-size First (LBF), and 3) Block Order Algorithm
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Figure 9: Example of redundant block orders (in gray). Top:
BLC of Fig.2(d); Lower: possible block orderings.

BOA(BLC)
1 11
2 fort—2toT do >> get sliced intervals iv € Iv
3 for each B € Bset do
4 if (f = Byare) then D> start a new interval
5 iv « (to,t) > iv is an interval
6 v —IvUiv > Iv is an interval set
7 to«— 1t
8 sort v in increasing order of iV

9 foreachiv e Ivdo
10 to < Wstart
11 intvBset < [blocks with fy]
12 if 1% iteration then

> set of blocks starting at to
> no fixed blocks at the beginning...

13 slots — {1} D> thus, only one slot available
14 else

15 slots < all slots between fixed blocks

16 for each B in intvBset > constructing all paths to min B, set
17 for each slot in slots

18 partial_B, «— computed placement

19 partial_B,set < partial_B,set\U {partial_B,}

> for the next interval
> walk through partial_b,set

20 select a partial_B, to fix
21 Build min(Byset)

Figure 10: The Block-ordering Algorithm.

(BOA). 1) and 2) are straightforward, and Section[5.4]explains 3).
Adjustment attempts further optimization by P-FLIP and COPY.

5.4 Block-ordering Algorithm (BOA)

Block-ordering Algorithm (BOA) prunes out all the redundant
B,’s and provides minimum B, set. The redundancy of exhaustive
search is illustrated in Fig. [0] with example BLC (Block Lifetime
Chart) derived from Fig.[2(d)] Although there are six possible B,’s,
two B,’s ([ACB],[CBA]) are redundant, since they point to already
existing solutions.

Fig. [T0] shows the algorithm. Minimum B, set is obtained by
chronological relative ordering. Note that we are considering only
the lifetimes and vertical ordering of blocks without the 2-D knowl-
edge. Fig. [TT]illustrates the algorithm with the same example. The
first step is to slice the whole period into smaller intervals iv € Iv.
We have three intervals in this example, and the borders are where
each block’s lifetime starts. For each iv, we first collect vertical
slots that indicate the relative orders the block can choose from.
They are spaces between already fixed blocks. By placing each
block in each slot, we derive partial B, s, which are paths to obtain-
ing the final B, set. We fix the block to one slot before proceeding
to the next interval. It is shown that the output B, set obtained this
way is the same as the one in Fig. [§] without redundancy.

BOA reduces the worst-case runtime complexity from O(N!)
downto O(N X Iy ), wWhere I, is the average number of intersect-

* Input: BLC 1.Splitinto intervals
A vl iv2| iv3
Lc Lc
LB Ls ‘
LA LA ‘ ‘
[ |
foreach 2.Collect slots 3.Place blocks 4.Get partial Bv | 5.Fix for nextiv
interval
A \
i1 LA
v slot 1 A
A
A Ls A
lot >—=u
iv2 A [ AB
BA
AB, BA
A p Lc
slot 1 AB [ ABC * Output:
iv3 A [ CAB [ABC, CAB, BAC,CBA]
BA [ BAC
CBA
ABC,CAB

Figure 11: Illustration of Block Ordering Algorithm (BOA). Lp
is block B’s lifetime and shaded area indicates current slots for
each time interval.

ing blocks at each time unit. For the example in Fig. [[4(a)] the
solution space is pruned from 362,880 to 4,374.

6. DISPATCHING SCHEME

The dispatcher is part of an embedded OS being developed by
the authors. Its details are outside the scope of this paper, and here
we summarize the part relevant to buffer allocation. The buffer-
optimized result from Section[5]is formed as a script and then trans-
ferred and loaded into the embedded system. It specifies a sequence
of actors to fire in the following format:

[ actor address | repeat factor | input ptr(s) | output ptr(s) |

Actor address is the pointer to the function that implements an
actor, repeat factor is the number of consecutive iterations of an
actor instance, and input ptr(s) and output ptr(s) are the pointers
to input/output buffers respectively, and could be more than one,
depending on fan-in/out property of an actor.

The script dispatcher simply fetches an actor address from the
script memory and jumps to the address. The following fields (e.g.,
repeat facter, etc) are fetched locally by the actor, whose format
conforms to the script interface. The idea is based on threaded-code
[3], but our dispatcher is much simpler in that it fetches only op-
erators (i.e., actors), and arguments are automatically fetched and
used by the operators. The behavioral transparency is exploited via
the actors’ predefined memory usage. The trade off of the reduced
dispatch overhead is the offline effort to write actor functions in a
memory-explicit fashion and to format the script at the host side.

7. EXPERIMENTS

The techniques described in this paper have been implemented
and tested over a suite of applications on a number of resource-
constrained platforms. This section describes the experimental setup,
applications, and experimental results.

7.1 Tools and Experimental Platforms

We implemented our SDF modeling, schedule selection, and buffer
optimization algorithms in an integrated tool, whose GUI front-end
is shown in Fig. [[2] It visualizes the memory map and memory
usage profile. The tool also produces a text report which contains
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Figure 12: GUI for modeling, scheduling, buffer optimization.

layout information as in Fig.[T6 Our experimental results are gen-
erated by this tool. In addition, the back-end of this tool is inte-
grated into our development framework named Rappit [7]], which
supports host-assisted, interactive environment for reprogramming
and rapid prototyping embedded systems. In this environment, both
firmware and application code can be loaded to a remote system at
runtime. The firmware is compiled by SDCC [[I], and the applica-
tion is composed as a script by our utility tools.

We ported the applications onto several sensor platforms, in-
cluding Eco [T3]| and Atmel’s AVR Butterfly 2] shown in Fig.[T3]
Eco contains 4KB RAM and 4KB EEPROM. The AVR Butterfly
contains 1KB RAM, 512B EEPROM, 16KB program flash, and
512KB external data flash, and its built-in sensors include temper-
ature/light sensors, and 3-axis accelerometer (Eco). Other periph-
erals on the AVR butterfly include an SD (Secure Digital) Card
interface through SPI, an LCD screen, a speaker (PWM output),
and a joystick.

Sample SDF applications are shown in Fig. [T4] The first is
the filter bank [I0]. We also have three wireless sensor appli-
cations, including 3-axial accelerometer to RF, wireless receiver,
and a wireless data logger with a secure digital (SD) card and an
LCD. These benchmarks are of representative complexity for ultra-
compact wireless sensor nodes and many other deeply embedded
systems. The SDF graphs may appear simple, but the state space
explodes quickly in naive implementations. Automation is needed
because we expect the user to load new SDF graphs as script in-
teractively, and thus the host computer must perform on-the-fly
scheduling and buffer allocation before transmitting the schedule
to the embedded system. Fig. shows the interactive environ-
ment, where host wirelessly communicates with the sensor node
through a base station node, which is connected to host via serial
port.

7.2 Results

7.2.1 Impact of Schedule Selection

The total buffer savings depend on both scheduling and buffer
mapping performance. Fig.[T3]reveals the importance in schedul-
ing. Each schedule imposes its own D, value, and they can vary
in a wide range. For instance, the schedule of Fig. @ cannot
reach D < 27 due to the large block sizes and shapes. An alter-
native schedule, which generates more modular blocks, shown in
Fig. [I3(b)} enables much better compaction, with D = 17. There-

Figure 13: Target platforms and experimental setup. (a) Eco
wireless sensor node (b) Eco on a finger (c) AVR Butterfly (d)
Eco as sensor node and base station (e) Integrated host/node
scripting environment
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Figure 14: SDF graphs used in experiments. (a) Depth-1 filter
bank (b) 3-axis acceleration sensor (c) Wireless receiver (d) RF
data logger w/ SD card, LCD (e) Synthetic
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Figure 15: Different amounts of buffer savings enabled by dif-
ferent schedules. Top graphs start from D = 37 and bottom
graphs are the optimized results. (a) A schedule with 3 blocks,
reached D = 27. (b) A schedule with 4 blocks, reached D = 17.

fore, it is useful to generate or select schedules that compose a
number of modular blocks. More modular blocks are achievable
by controlling the actors’ firing in a way that keeps the number of
net tokens low, so that no channel buffers tokens for too long. Such
direction highly improves the performance of our heuristics, since
a good schedule set prunes out unnecessary iterations for buffer
mapping and helps derive an optimal schedule much faster.

7.2.2  Convergence of Heuristics

Fig. [16] displays an automatically generated output of our al-
gorithm for the input filter bank application whose SDF graph is
shown in Fig.[T4](a). The blocks are highlighted in different shades.
It starts from a straightforward initial allocation, and then applies
GREEDY FIT, SWAP, and PFLIP-AND-COPY. Each step shows grad-
val reduction of memory depth and fragmentation (denoted as F)
until the final result reaches the optimal buffer depth D, = 5. It
shows in detail how blocks are transformed and reordered to find
an efficient layout in a 2-D space.

Fig. shows the collected results of buffer saving steps. For
each SDF graph, the amount of buffer depth D is shown along
buffer reduction steps (1 to 5). Each line in a graph is a result of
a different schedule. Some show results of less number of sched-
ules since its SDF permits only a few possible schedules (e.g., one
schedule for Fig.[T7(c)). It is shown that different schedules show
slightly different saving patterns, but as the algorithm reaches the
last step (block adjustment with P-FLIP and COPY) they all reach
optimal solution. Note that each step further causes more execution
delay during interactive execution, and thus a user may choose to
stop at step 3 or 4. It is also observed that each schedule not only
sets the lower bound of possible savings as shown in Section|/.2.1]
but also shows how many iterations it takes to reach Dy,.

7.2.3 Memory Savings

Table [2] shows the results of buffer size reduction. The base-
line is unshared buffer, where each channel has its own space, and
this is how most SDF implementations work. Here we present our
results based on medium-grain assumptions, where the contiguity
constraint applies. Our level-3 optimization achieves an average
memory saving of 53.6% while incurring similar overhead.

Table[3|compares the overhead incurred by fine-grained vs. medium-

grained. The former requires that every buffer location be tracked
and becomes expensive quickly with the number of tokens pro-
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Figure 16: Result of filter bank example
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Figure 17: Convergence of buffer savings. x-axis denotes the
optimization level, y-axis denotes memory depth. Each line in-
dicates a fixed schedule. (a) filter bank (b) sensor (c¢) receiver
(d) data logger (e) syntheticl (f) synthetic2

Table 2: Buffer size comparison. Opt-1 is greedy fit; Opt-2 is
swap; Opt-3 is pflip and copy;

Opt | Opt | Opt %
1

Application  Fig# Ded | Sh 2 3 | sav.
filter bank 14(a), 14 | 13 7 5 51 643
sensor 14(b) 36 | 35 21 16 16 | 55.6
receiver 14(c), 36 | 35 29 29 29 | 194
data logger  |14(d) 76 | 75 29 23 23 | 69.7
syntheticl 1 12|11 9 7 6 | 50.0
synthetic2 14(e)| 30 | 29 9 9 7 | 60.0
geometric mean 53.6



Table 3: Memory requirements of medium vs. fine grained with
bookkeeping overhead.

Fine grained Medium grained || %sav.

Application [ buf | ptr | tot ][ buf | ptr [ tot
filter bank 5120 25 51 16 21 16.0
Sensor 16 | 23 | 39 16 6 22 43.6
receiver 29 | 48 | 77 29 6 35 54.5
data logger 23 | 47 | 70 23 | 12 35 50.0
syntheticl 6 8| 14 6 4 10 28.6
synthetic2 711522 7 8 15 36.8
geo. mean 40.2
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Figure 18: Memory requirements (buffer+pointer) of different
applications by different granularities. Medium grained con-
sistently shows high savings.

duced or consumed on each firing. The latter requires 2 x the num-
ber of channels independent of the number of tokens and thus scale
much better. We achieve an average reduction of 40.2% over fine
grained solutions when bookkeeping overhead is accounted for.

Fig. @ shows the final result of buffer requirement including
the bookkeeping overhead. Although coarse-grained approach nor-
mally shows largest requirement due to its worst-case buffer as-
signment, in some cases, fine-grained result appears to be the worst
(e.g., receiver). It is due to the high bookkeeping overhead. Our
medium grained approach consistently shows higher savings than
the other approaches.

8. CONCLUSION

This paper presents a new buffer optimization scheme combined
with a script dispatching structure for memory-constrained, behav-
iorally transparent embedded systems. It saves code size by script-
ing, and exploits the regularity of dataflow models for memory
buffer optimization. Our medium, “access-contiguous” buffer gran-
ularity effectively reduces fragmentation often seen with coarse
grained approaches, without the high overhead of fine-grained ap-
proaches. Combined with our lightweight dispatching mechanism,
the buffer optimization is effectively applied to modular embed-
ded systems with minimal overhead. It enables emerging ultra-
compact, highly adaptive embedded platforms to fully utilize the
precious memory without paying a high price for the abstraction.
As memory is currently the limiting factor, our technique has shown
to be an enabling technology for a new class of real-world, deeply
embedded applications.
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