
Energy-Efficient Progressive Remote Update for
Flash-Based Firmware of Networked Embedded
Systems

Jinsik Kim

University of California, Irvine

Irvine CA, USA 92697-2625

jinsikk@uci.edu

and

Pai H. Chou

University of California, Irvine, CA,92697-2625, USA and

National Tsing Hua University, Hsinchu, 30013 Taiwan

phchou@uci.edu

Firmware update over a network connection is an essential but expensive feature for many em-

bedded systems due to not only the relatively high power consumption and limited bandwidth,
but also page-granular erasure before rewriting to flash memory. This work proposes a page-level,

link-time technique that minimizes not only the size of patching scripts but also perturbation to

the firmware memory, over the entire sequence of updates in the system’s lifetime. We propose
a tool that first clusters functions to minimize caller-callee dependency across pages, and then

orders the functions within each page to minimize intra-page perturbation. Experimental results

show our technique to reduce the energy consumption of firmware update by 30–42% over the
state-of-the-art. Most importantly, this is the first work that has ever shown to evolve well over

41 revisions of a real-world open-source real-time operating system.

Categories and Subject Descriptors: D.3.4 [Processors]: Code generation

General Terms: Algorithms, Management, Measurement, Performance

Additional Key Words and Phrases: High-level analysis, NOR Flash memory, Page, Diff, Clyco-

matic complexity, Progressive code update, Embedded systems

The authors’ contact address is: University of California, Irvine, CA 92697-2625, USA. Email

{jinik, phchou}@uci.edu.
A previous version of this paper appeared as Jinsik Kim and Pai H. Chou, “Remote Progressive

Firmware Update for Flash-Based Networked Embedded Systems,” in Proc. International Sym-

posium on Low Power Electronics and Design (ISLPED), San Francisco, CA, USA, Aug. 19-21,
2009, pp. 407–412. This manuscript contains a significant amount of new materials, including
mathematical formulation for more rigorous definitions as well as all new experimental results on

42 revisions of FreeRTOS, an open-source embedded operating system.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 1084-4309/2010/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010, Pages 1–0??.

2 · Kim and Chou

1. INTRODUCTION

The ability to update firmware over a network link is becoming an increasingly im-
portant feature. Updates are applied for enhanced security, feature upgrade, bug
fixes, and conformance to newly finalized industry standards, among many rea-
sons. Another increasingly important reason is runtime optimization with dynamic
compilation by the host. For instance, if a variable is determined to be a runtime
constant, then it can be compiled as more efficient code without many conditional
statements or unnecessary instructions. By patching the code at runtime, the re-
sulting system will be able to run faster using less energy. Of course, the premise
is that the patching overhead is kept low.

Firmware is usually stored in nonvolatile memory such as EEPROM or flash.
Remote firmware update can be an expensive process for many embedded sys-
tems, especially considering the potential application to dynamic compilation. In
many systems that have been designed to date, RF transceivers and flash memory
consume more power than other components by a wide margin. While one may
overwrite the entire firmware image, it is less desirable due to unnecessary wear-
and-tear and potentially long time. The problem is exacerbated if the firmware
update process is done by peers.

Previous works have attempted to reduce the cost of firmware update by trans-
mitting differences in the code images. Even if the difference is small, any change
in code size can cause shift in potentially unchanged data, translating into more
energy consumption, delay, and additional wear-and-tear of the flash memory. For
dynamic compilation, an additional requirement is that the patched code evolves
well over the entire lifetime of the system. Existing techniques may leave gaps
intentionally to avoid shifts, but their effectiveness over time has not been demon-
strated.

We propose a new technique called Remote Progressive Firmware Update (RPFU),
which improves over the state-of-the-art by considering the characteristics of dif-
ferent functions in not only grouping them in the same pages but also ordering
them within each page. This is a step performed during linking after compilation.
The resulting code image translates into a small patching script to minimize energy
for transmission. Moreover, the patching script performs minimal shifting, thereby
reducing the number of unnecessary rewrites to the flash memory. A distinguish-
ing property of our technique is that it evolves well over the entire lifetime of the
system, not just between some randomly chosen pair of successive revisions. Note
that dynamic compilation is only one of many possible applications of this work
but not the primary one. Our contribution is much more general, and we show the
effectiveness of our technique over 8 to 41 consecutive revisions of real applications.

2. RELATED WORK

Previous works have studied cost reduction of firmware update. The costs are
associated with the communication and the number of rewrites. Note that low
communication cost does not automatically imply fewer rewrites, because one may
transmit a small script that commands many data movements.

To reduce communication cost, previous works have considered transmitting the
difference of code between different revisions [Reijers and Langendoen 2003; Jeong

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 3

and Culler 2004; Marrón et al. 2006; Li et al. 2007]. They have the effect of reducing
communication cost but do not consider additional cost of page writes when there
are references across different pages. The main difference with flash memory is
that data modification requires explicit erasure before writing, as it cannot simply
overwrite existing data. Moreover, erasure is done in units of pages. Erasure costs
power, time, and wear-and-tear. Conventional memory management techniques,
when applied to flash memory, have the problem of shifting of unchanged data in
order to accommodate newly written data of a different size. To address this prob-
lem, fragmented layout [Koshy and Pandey 2005] has been proposed by inserting
gaps between erasure units. However, this leads to memory fragmentation, and
their effectiveness over a series of firmware updates has not been demonstrated.

Another problem with shifting code is control-flow dependency. That is, if a callee
is moved, then all callers of that function must be updated with the new address,
and these callers may reside on several different pages. A common solution is to
make an indirect call through a jump table, so that only the jump table needs to
be updated, but this incurs runtime overhead each time. To minimize the domino
effect of code shift, feedback linking [von Platen and Eker 2006] takes a code-layout
approach by placing modified functions at the end of an image or gaps between
functions. However, it does not analyze the callers to effectively minimize their
updates when the callee is shifted.

Our proposed work makes several contributions. It computes a code layout based
on the structure of the program, so that it will be efficient to update throughout the
system’s entire lifetime. It minimizes not only the difference between two arbitrary
successive revisions but also the total Hamming distance from the first to the last
revision. This means it will be not only energy efficient to transfer, since the
patching script is small, but also energy efficient to patch, since the shifting and
rewriting are minimized.

3. PROBLEM STATEMENT

The concept of a page is central to the operation of different types of flash memory.
Unlike EEPROM or RAM, which are byte-writable, flash memory must be erased
in units of pages before it can be rewritten. This property is true for both NAND
and NOR types of flash memory. In this paper, the erasure unit of NOR flash
memory is called a page, even though the term segment, block, or sector may be
used in the data sheet. Mathematically, a flash memory system can be defined
as an array of physical pages Φ = 〈φ1, φ2, . . . , φnp〉, where all pages are of the
same size M . Because physical pages are to contain executable code after the
linker has performed the linking step, they are also called post-linking pages, to be
distinguished from pre-linking pages to be defined later.

Functions that define the firmware in the flash memory are representations of
code units before the linker stage. A (pre-linking) function is denoted by fi for
i ∈ A, where A = {1, 2, . . . , n} is the index set. The set of (pre-linking) functions
is denoted by F = {f1, f2, . . . , fn}. An array of (ordered, pre-linking) functions is
denoted by F ′ = [f ′1, f

′
2, . . . , f

′
n], where fi = f ′j such that j ∈ A ∧ o(i) = j, where

o : A → A defines a linker order for the array F ′. While O(fi) , F ′[o(i)] ← fi is
defined as a function that places a function in the set F into the jth position in

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

4 · Kim and Chou

the array F ′, O−1(fi) , f ′j ← F ′[o(i)] is defined as a procedure that obtains an
element in the array F ′ corresponding to a function fi in the set F .

In contrast, function images can be defined as models that are outputs of the
linker and consist of strings of bytes. A (post-linking) function image is denoted
by βi in terms of a byte string, and an array of (post-linking) function images is
denoted by B = [β1, β2, . . . , βn]. The firmware image β after linking functions in
the firmware is the concatenation of function images separated by holes, or padded
space. That is, β = β1 · d1 · β2 · d2 · . . . · βn · dn, where di is padded space between
βi and βi+1.

The firmware is represented by a set of functions F , and some subsets of F
are clustered into pages in a set, which is named a pre-linking page set : Π =
{π1, π2, . . . , πnp}, where πi ∈ 2F ,

⋃
1≤i≤np πi = F , and πi ∩ πj = ∅ ∀i 6= j and

i, j ∈ [1, n].

The procedure Cluster(F,Π) , Π′ takes a set of subsets denoted by SSF , i.e.,
SSF = {Fj |Fj ∈ 2F ∧

⋃
1≤j≤ppn Fj = F ∧ |Fj | ≤ M}, and clusters all functions

of each subset into a pre-linking page set denoted by Π′, i.e., Π′ = {π′j |π′j ∈ Π ∧⋃
1≤j≤ppn ∧π′j = F}, where ppn ≤ n ≤ pn.

Functions in pre-linking pages are relocated to their specific positions in the image
by a linker defined by the function composition of O−1 : F → F ′ and Λ : F ′ → B,
i.e., L(fi) = (Λ ◦O−1)(fi). (Λ ◦O−1)(fi) = βj maps i in the arbitrary order to oj
in the linking order as well as a function fi to its image βj for i, j ∈ A.

On the other hand, since a firmware image in a flash memory system is partitioned
into multiple post-linking pages, a binary string in a post-linking page is denoted
by 〈βh ·dh〉 that is one of the substrings of the firmware image β, where h is denoted
by 〈h|a ≤ h ≤ b, a ∈ A, b ∈ A〉. We assume that every function image fits in a page,
or else a preprocessing step partitions the function image. So, |βi| ≤M ∀i.

Firmware may be associated with a revision number γ ∈ Γ = {1, 2, . . . , l}. We can
qualify the functions and the corresponding images with a revision number using

the parenthesized superscript notation, e.g., F (γ) = {f (γ)
1 , f

(γ)
2 , . . . , f

(γ)
n }. Note

that a function may be added, deleted, modified, but its index does not change
over different revisions. Instead, its code size is set to zero before adding or when
deleted. A revision is a concept for a build, similar to the Subversion (SVN) system,
rather than a file-specific version as in Concurrent Versions System (CVS). This

means f
(γ)
i and f

(γ+1)
i may be identical or entirely different. We may omit the

revision number γ when it is understood or whenever convenient.

Furthermore, the code difference between the functions in successive revisions is

denoted by ∆(f
(γ)
i , f

(γ+1)
i) that generates a segment information set of a func-

tion pair, i.e., S
(γ)
i . In the ensuing text, we use ∆(f

(γ)
i) as a shorthand for

∆(f
(γ)
i , f

(γ+1)
i).

The segment information set of a function pair is defined as S
(γ)
i = {s(γ)

ik
|k ∈

[1, ns
(γ)
i]}, where ns

(γ)
i is the number of difference strings between β

(γ)
j and β

(γ+1)
j ,

s
(γ)
ik

consists of (µ
(γ)
ik
, ν

(γ)
ik

), µ
(γ)
ik

is the start address of the kth difference string, ν
(γ)
ik

is the kth string that is one of the slices of β
(γ+1)
j , and |S(γ)

i | ≤ |β
(γ+1)
j |.

Based on S
(γ)
i , a set of the properties of different image is denoted by DC (γ),

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 5

i.e., DC (γ) = {dc
(γ)
1 , dc

(γ)
2 , . . . , dc(γ)

ns }, where dc
(γ)
i corresponding to µ

(γ)
i consists

of an attribute ATT , source address SRC , and destination address DST , i.e.,

dc
(γ)
i = (ATT

(γ)
i ,SRC

(γ)
i ,DST

(γ)
i). An attribute can be either “copy”, “replace”,

or “insert”.
∆(f

(γ)
i) is defined by a function composition of δ(β

(γ)
i , β

(γ+1)
i) = S

(γ)
i andO−1(fi) =

βj , i.e., ∆(f
(γ)
i) = δ(O−1(f

(γ)
i), O−1(f

(γ+1)
i)), where δ(β

(γ)
i) = S

(γ)
i maps two

firmware images to the set S
(γ)
i , and δ(β

(γ)
i) is a convenient expression of δ(β

(γ)
i , β

(γ+1)
i).

In this paper, we define ||∆(f
(γ)
i)|| =

∑|S(γ)
i |

k=1 |µ
(γ)
ik
| to be the total number of bytes

of code difference.

The set of function pairs is defined as FF (γ) = {(f (γ)
i , f

(γ+1)
i)|1 ≤ i ≤ n}. In

addition, based on ∆(f
(γ)
i), a set of modified functions between successive revisions

can be extracted and denoted by MF (γ). Assuming f
(γ+1)
i = f

′(γ+1)
j :

—if |β(γ)
j | < |β

(γ+1)
j |, then f

(γ+1)
i is an enlarged function;

—if |β(γ)
j | ≥ |β

(γ+1)|
j , then f

(γ+1)
i is a shrunk function;

—if |β(γ+1)
j | = 0, then f

(γ+1)
i is a removed function; and

—if |β(γ)
j | = 0, then f

(γ+1)
i is a newly added function.

Functions can be related to each other as callers and callees, as defined by the
caller-to-callee pairs: C ⊆ F × F . Several functions related to caller-to-callee pairs
are defined as follows. r : F → 2F maps a function to its callees, i.e., r(fi) =
{fj |(fi, fj) ∈ C}, and r−1 : F → 2F maps a function to its callers, i.e., r−1(fi) =
{fj |(fj , fi) ∈ C}. R : 2F → 2F maps the union of functions to their callees, i.e.,
R(F1) = {r(fi)|fi ∈ F1} for F1 ∈ 2F and R(F1) ⊆ 2F , and R−1 : 2F → 2F maps
the union of functions to their callers, i.e., R−1(F1) = {r−1(fi)|fi ∈ F1} for F1 ∈ 2F

and R−1(F1) ⊆ 2F . While the function p(fi) = πj : fi ∈ πj (uniquely) maps a
function to the (pre-linking) page where it is located, P (F1) = {p(fi)|fi ∈ F1}
maps a set of functions F1 ∈ 2F to the subset of the power set of pre-linking pages
where those functions are located. In the same manner, these function P and p
are applied to function images and post-linking images, i.e., P : 2B → 2Φ and
p : B → Φ. Furthermore, P (r−1(fi)) then denotes the subset of the set of pages
that contain callers to fi where fi is the ith function in a set of modified functions.

Modifying a function may induce additional modifications to other functions in
two different ways: in-place modification and page reassignment. In the first case,
modifying a function in-place may mean shifting code of other functions located
after the modified function that is within the same page. This will in turn cause
other pages containing callers to those shifted functions that are to be updated as
well, and this represents the worst case of modification. In the second case, all
pages containing callers to the function that is modified need to be updated.

If a callee must be shifted, then it is necessary to update all callers to the new
address of the callee. After clustering functions in a page, they need to be properly
ranked to reduce the code shift, since a different ordering results in a different
amount of code shift due to the complexity, number of inter-page and intra-page
references of each function. The number of inter-page and intra-page references
is denoted by NR({{βi}},Π\{φi}) + NR(P (R({βi)}), P (R(φi))), where NR : 2β ×

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

6 · Kim and Chou

D irty -
C h eck

n ew
so u rce

n u ll o r
o ld S o u rce

C lu sterin g Im ag in g

n u ll o r
o ld Im ag e

n ew im ag e
an d d iff scrip t P arser

Host Side
Node Side

Fig. 1. Framework Block Diagram

2β → Z and βi ∈ φi. We denote that NR(PB1,PB2) = |{βx|B1 ∈ PB2 ∧fx ∈
B1 ∧ B2 ∈ PB2 ∧βx ∈ B2}|, where PB1 ⊆ 2β contains callers, and PB2 ⊆ 2β

contains callees.
The number of pages to be modified is equal to |P (β

(γ+1)
j)|+ |P (r−1e(β

(γ+1)
j))|

such that f
(γ+1)
i ∈ MF (γ). The number of pages to be modified varies according

to the different order of functions within the page, because the number of inter-
page references to be modified depends on the number of callees to be shifted,

i.e., |R−1(e(β
(γ+1)
j))|, and the amount of code to be shifted, i.e., |P (e(β

(γ+1)
j))|, is

different from the order of the functions that are within the page, because there

are |πi|! different orderings in a page πi, where MΠ (γ) = {mπ
(γ)
k |k ∈ [1,mp]}, and

mp is the number of pages to be modified, and e(β
(γ+1)
j) outputs a set of shifted

functions that are located at higher positions than β
(γ+1)
j .

In summary, since flash memory has the different characteristic from byte-writable
memories, firmware should be partitioned into pages with maximizing multiple
modifications into pages, minimizing additional updates caused by code shift.

4. TECHNICAL APPROACH

Our proposed approach is called RPFU, for remote progressive firmware update.
Fig. 1 shows the the top-level algorithm, which calls two procedures named Clus-
tering and Imaging for the purpose of generating code images and patching
scripts.

The Clustering procedure performs grouping of functions into pages, while the
Imaging procedure inputs these groups and produces the final layout as well as
a patching script. The patching script contains commands and difference data for
updating the firmware, and it is what is actually disseminated to the sensor nodes
over the communication link. In Fig. 1, Clustering and Imaging procedures are
performed on the host side, while the patching script is parsed and executed on the
deployed node side.

4.1 Assumptions

We make several assumptions. First, this method applies to updates of monolithic
binaries for real-time system platforms without memory management units. The
updates are through a communication interface, which is relatively costly to operate
in power consumption (e.g., RF module of a wireless sensor node) and relatively
slow. In addition, the requirement of nonvolatile memory to erase a page further
adds to the energy and time costs of code updating processes.

Flash memory is widely used in networked embedded systems including mobile
ones [Park et al. 2004]. While flash memory can be of a NOR or NAND type, we

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 7

RPFU(NSC ,OSC ,OPBI)

1 MF ← DirtyCheck(NSC ,OSC)

2 MF2 ← copy(MF)
3 URPBI ← Clustering(MF ,OPBI)

4 DFFS ,PBI ← Imaging(MF2 ,URPBI)
5 return DFFS ,PBI

(a)

Clustering(MF ,OPBI)

1 DSS ,PBCG ← Splitting(MF ,OPBI)
2 URPBI ← Reclustering(DSS ,PBCG)

3 return URPBI
(b)

Imaging(DSS ,URPBI ,OPBI)

1 PBI ← Ordering(URPBI)
2 DFFS ← GenDiff(DSS ,OPBI ,PBI)

3 return DFFS ,PBI

(c)

Fig. 2. (a) Top-level algorithm. (b) Clustering algorithm. (c) Imaging algorithm.

assume the use of a NOR-type flash memory for firmware execution in place due
to its ability to perform byte-reading and page-erasing. Also, it is a more popular
and simpler form of nonvolatile program memory for embedded systems.

4.2 Algorithm

Clustering and Imaging for the purpose of generating code images are shown
in Fig. 2(a), RPFU() pseudocode. The symbols in all pseudocode in this paper are
listed in the Appendix. The Clustering algorithm is shown as pseudocode and
as a flow chart in Figs. 2(b) and 3. The Splitting and Reclustering procedures
are presented next. The pseudocode for Imaging is shown in Fig. 2(c). The
primary objective is to minimize the influence of code shift on references, and then
to minimize the size of the patching script that it generates. Imaging is further
decomposed into two procedures named Ordering and GenDiff.

5. CLUSTERING WITHIN PAGES

The Clustering procedure performs grouping of functions to fit in pages whenever
possible, such that the number of references across pages (i.e., caller to callee, or
NR(Π,Π)), is minimized. In other words, the Clustering procedure minimizes
the number of references crossing pages, and then it generates an unresolved (pre-
linking) page-based image Π′ .

The Clustering procedure is further divided into Splitting and Recluster-
ing. Splitting extracts a call graph structure for the functions in the input source
code. In this paper, the call graph is named a page-based-clustering call graph de-
noted by G(V,E,H), where V is the set of vertices, E ⊆ V ×V , and H ⊆ Π. Some
of the vertices are grouped by pages while the rest are split from pages in that they
represent the modified functions.

If this is the very first version of the program, then the graph covers the entire
set of function images. Otherwise, it covers the set of modified function images that

are the user-modified ones as well as callee-induced modified ones (β
(γ−1)
i 6= β

(γ)
i),

plus those in an existing page-based image. The call graph structure is fed to the
next step, Reclustering. The purpose of Reclustering is to create either a

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

8 · Kim and Chou

Dirty-Check
: Function granuarity

new source

null or
old source

Splitting
: Page granuarity

-> generating
call graph

null or
old image

new image
and

diff script

Reclustering
: Page granuarity

-> generating
unresolved page-

based image

Clustering

Ordering
-> generating resolved

page-based image

Imaging
Diff Script

Generator
-> generating

diff script

Fig. 3. Framework on the host side in detail

good initial grouping or minimally different grouping that will result in low energy
consumption when transmitted and updated. Each group of functions will fit within
a page and then ordered to further minimize intra-page shifts.

5.1 Splitting

When Splitting is being performed, it is necessary to estimate the influence of
relocating a modified function on those pages that contain references to the modified
function. The number of page-crossing references is defined by Equation (1). Since
Splitting can split the modified function in diverse ways, it should determine
which way causes a code update to consume less energy.

Different ways to split the modified function can lead to different numbers of
referring pages to be modified, which is equal to the cardinality of the set (union)
of pages that contain callers to the given function, i.e., P (r−1(fi)) that is defined
as follows.

P (RFS) = {πi|fj ∈ RFS ∩πi ∧ (fj , fi) ∈ C}, where RFS = r−1(fi). (1)

As compared to an exiting prior image, a function is considered modified if it is
enlarged, shrunk, removed, or newly added because those functions have their own

splitting options. For example, in Fig. 4, β
(γ)
4 is enlarged and renamed as f

(γ+1)
4

before linking.

One option is to write (the image of) f
(γ+1)
4 to a newly assigned (physical page

of) π
(γ+1)
5 , which necessitates updates to β

(γ)
4 ’s callers on φ

(γ)
2 . π

(γ+1)
5 and φ

(γ+1)
2

then become the pages into which the modified functions would be clustered during
Reclustering.

Another option is to write (the image of) f
(γ+1)
4 back to φ

(γ+1)
3 by shifting β

(γ)
3 .

Although this does not affect (the image of) the callers of β
(γ)
4 , it affects (the image

of) the callers of β
(γ)
3 and thus requires update to φ

(γ)
1 . φ

(γ+1)
1 and φ

(γ+1)
3 then

become pages where modified functions would be clustered during Reclustering.

Therefore, the “enlarged function,” f
(γ+1)
4 (i.e., function whose image increased in

size from one revision to the next), affects not only φ
(γ+1)
1 and φ

(γ+1)
2 but also

φ
(γ+1)
3 , where β

(γ+1)
4 belongs. Among these influenced pages that would become

π
(γ+1)
1 , π

(γ+1)
2 , and π

(γ+1)
3 , respectively, Splitting should determine a way to

minimize energy consumption for some of the pages that will be split and then
clustered.

Consequently, the cost of update is directly related to (1) the number of pages
that need to be updated and (2) the style of update for each function as Fig. 4

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 9

 (new ly used)

(a) (b)

β (γ)
1 β(γ)

2

β(γ)
3β(γ)

4

β (γ)
5

β (γ)
6

β (γ)
7

β(γ)
9 β(γ)

8

Ф 3(γ)

Ф 1
(γ)

Ф 2
(γ)

Ф 4
(γ)

π 5
(γ+ 1)

Ф 3
(γ+1)

Ф 3
(γ+ 1)

Ф2
(γ)

Ф 4
(γ)

β(γ)

β(γ)
1 β(γ)

2

β (γ)
9 β (γ)

8 β(γ)
6

β(γ+1)
5β(γ+1)

7

β (γ+ 1)
3

β (γ)
1

β(γ)
7 β(γ)

5

β (γ)
9

β (γ)
8 β(γ)

6
β (γ)

3

β (γ+1)
2

f (γ+ 1)
4

Ф 1(γ+1)

f (γ+1)
4

β (γ+1) β (γ+1)′ ′′

Fig. 4. Splitting in case of an enlarged function, f
(γ+1)
4 . (a) the enlarged function, f

(γ+1)
4 , moved

to the φ5 : φ1, φ3, and φ5 to be updated. (b) f
(γ+1)
4 in place : φ1 and φ3 to be updated.

illustrates. A page needs to be updated if it contains either a modified function
or references a relocated function. Note that a modified function may be of the
same size, enlarged, shrunk, removed, or newly added with respect to the previous
revision. The update style for each function can be further classified into

(1) in-place update, i.e., same starting address on the same page. Formally, a(β
(γ)
i) =

a(β
(γ+1)
i)∧|β(γ)

i ·d
(γ)
i | = |β

(γ+1)
i ·d(γ+1)

i |, where a(βi) stands for the start address
of βi.

(2) anew-in-place update, which means updating one or more of the function im-

ages, i.e., β
(γ+1)
j , on the same page where in-place with β

(γ+1)
i occurs at the

same time. Formally, (in-place update condition) ∧a(β
(γ+1)
i) < a(β

(γ+1)
j) ∧

β
(γ)
j 6= β

(γ+1)
j ∧ p(β(γ+1)

i) = p(β
(γ+1)
j).

(3) writing the modified function β
(γ+1)
i to free space, or hole, i.e., dj , and i 6= j, in

another page, i.e., p(β
(γ)
i) 6= p(d

(γ)
j). Formally, a(β

(γ+1)
i) ≥ a(d

(γ)
j)∧ |β(γ+1)

i | ≤
|d(γ)
j | ∧ p(β

(γ)
i) 6= p(d

(γ)
j).

(4) shifting some other functions’ images that are equal to e(β
(γ)
i) and e(β

(γ+1)
i)

on the same page in addition to writing the modified function image β
(γ+1)
i .

Formally, a(β
(γ)
i) = a(β

(γ+1)
i) ∧ |β(γ)

i | < |β
(γ+1)
i | ∧ a

(
(β

(γ)
k)∀β(γ)

k ∈e(β
(γ)
i)

)
<

a
(

(β
(γ+1)
k)∀β(γ+1)

k ∈e(β(γ+1)
i)

)
.

(5) anew-shifting update, i.e., updating one of the shifted function images on the
same page with shifting at the same time. Formally, (shifting update condition)

∧a(β
(γ+1)
i) < a(β

(γ+1)
j) ∧ β(γ)

j 6= β
(γ+1)
j ∧ p(β(γ+1)

i) = p(β
(γ+1)
j),

(6) allocation of a new page for newly added functions, i.e., |β(γ)
j | = 0∧ |β(γ+1)

j | 6=
0 ∧ β(γ+1)

j ∈ π(γ+1)
j or for modified function images that leave holes that have

the same bytes as those of previous revision of the modified function images.

Formally, p(β
(γ+1)
i) ∈ Φ(γ+1) ∧ p(β(γ+1)

i) 6∈ Φ(γ) ∧ p(β(γ)
i) = ∅ ∧ β(γ+1)

i 6=
β

(γ)
i ∧ a(β

(γ+1)
i) 6= a(β

(γ)
i) ∧ |β(γ)

i · d(γ)
i | = |d

(γ+1)
i |,

(7) removing a function image β
(γ)
i , i.e., |β(γ)

j | 6= 0 ∧ |β(γ+1)
j | = 0

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

10 · Kim and Chou

The energy consumption for these update styles is modeled as Equations (2)
through (8). On the right-hand side of the equations, the energy subscript refers
to the component such as the flash memory, RAM, CPU, or an RF transceiver;
and the parenthesized superscript, if present, refers to the task to perform on that

component. For instance, E
(RF)
CPU (x) refers to the energy consumed by the CPU to

perform the RF access of x units of data.

Einplace(fi) = (E
(flash+buf)
CPU (|p(fi)| ×M) + E

(read+write)
buf (|p(fi)| ×M)

+ E
(read+erase+program)
flash (|p(fi)| ×M)

+ ERF(||∆(fi)||) + E
(RF)
CPU (||∆(fi)||) (2)

Eanewinplace(fi) = (E
(flash+buf)
CPU (|p(fi)| ×M) + E

(read+write)
buf (|p(fi)| ×M)

+ E
(read)
flash (|p(fi)| ×M)

+ ERF(|R−1(e(fi))|+ ||∆(fi)||) + E
(RF)
CPU (|R−1(e(fi))|+ ||∆(fi)||) (3)

Ehole(fi) = E
(flash+buf)
CPU (|p(fi)| ×M) + E

(read+write)
buf (|p(fi)| ×M)

+ E
(read+erase+program)
flash ((|p(fi)|+ |P (R(fi))|)×M)

+ ERF(|r−1(fi)|+ ||∆(fi)||) + E
(RF)
CPU (|r−1(fi)|+ ||∆(fi)||) (4)

Eshift(fi) = E
(flash+buf)
CPU (|P (e(fi))| ×M) + E

(read+write)
buf (|P (e(fi))| ×M)

+ E
(read+erase+program)
flash ((|P (e(fi))|+ |P (r(fi))|)×M)

+ ERF(|R−1(e(fi))|+ ||∆(fi)||) + E
(RF)
CPU (|R−1(e(fi))|+ ||∆(fi)||) (5)

Eanewshift(fi) = ERF(|R−1(e(fi))|+ ||∆(fi)||) + E
(RF)
CPU (|R−1(e(fi))|+ ||∆(fi)||) (6)

Enew(fi) = ERF(|R−1(e(fi))|+ ||∆(fi)||) + E
(RF)
CPU (|R−1(e(fi))|+ ||∆(fi)||)

+ E
(read+erase+program)
flash (|P (r−1(fi))| ×M) (7)

Eremove(fi) = E
(flash+buf)
CPU (|P (r−1(fi))| ×M) + E

(read+write)
buf (|P (r−1(fi))| ×M)

+ ERF(|r−1(fi)|) + E
(RF)
CPU (|r−1(fi)|)

+ E
(read+erase+program)
flash (|P (r−1(fi))| ×M) (8)

The symbols in Equation (2) to (8) in this paper are listed in the Appendix.

The Splitting algorithm inputs a set of modified functions, MF (γ), and the
page-based (post-linking) image from the previous revision Φ(γ). It first calls CG-
DataStructure to analyze the caller-callee relationship and the complexity of
the functions, and then partitions them among the pages. In Fig. 5(b), Vertex-
DataStructure establishes each function’s data structure that consists of the
function’s name, size, complexity, the set of callees, and the set of callers in order
to retain the caller-callee relationship and complexity of the functions. We assume
that a preprocessing step divides larger functions into smaller ones that can each fit
within a page. Then, Splitting calls PBCallGraph to construct a page-based
call graph (PBCG). The objective of Splitting is to minimize the cost of the
PBCG .

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 11

Splitting(MF ,OPBI)

1 DSS ← CGDataStructure(MF)
2 DSS2 ← copy(DSS)

3 PBCG ← PBCallGraph(DSS ,OPBI)
4 return DSS2 ,PBCG

(a)

CGDataStructure(MF)

1 DSS ← []

2 while MF 6= []
3 do fk ← MF .pop()

4 x ← VertexDataStructure(fk)
5 DSS .push(x)

6 return DSS

(b)

PBCallGraph(DSS ,OPBI)

1 PBCG ← empty graph
2 while DSS 6= []

3 do x ← DSS .dequeueVertexWithHighestFunctionAddress()

4 if x .fk is EnlargedFunction
5 then UpdateCostForEnF(x ,OPBI ,PBCG)

6 elseif x .fk is ShrunkFunction

7 then UpdateCostForShF(x ,OPBI ,PBCG)
8 else UpdateCostForRmF(x ,OPBI ,PBCG)

9 return PBCG
(c)

Fig. 5. (a) Splitting pseudocode. (b) CGDataStructure pseudocode. (c) PBCallGraph

pseudocode. Underlined parameters are modified as a side effect.

f1 f2

f3f5f7

f8f9 f6 f4

f1 f2

f3f5
f7

f8f9 f6 f4

f1 f2

f3f5f7

f8f9 f6 f4

f1 f2

f3f5f7

f8f9 f6 f4

(a) (b) (c)

(a)
(b)

(c)

π 1
π 1 π 1

π 1

π 2
π2

Fig. 6. Different ways of Clustering: (a) with a caller, (b) with an independent, (c) with a callee.

5.2 Reclustering

In terms of a caller-callee update, moving the start address of callees as a result
of code shift causes the linker to modify the caller’s image. To recall, to write
even just a single byte to NOR flash requires erasing and rewriting the entire page.
Therefore, the purpose of Reclustering is to reduce the total number of page-
granular accesses by folding multiple writes into one page rewrite through grouping
callers and callees on the same page. In other words, maximizing the total number
of intra-page references tends to minimize the number of inter-page references and
therefore the total number of callee-induced page updates. This is simply because

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

12 · Kim and Chou

the total number of references consists of inter-page and intra-page ones:

|C| = NR(Π,Π)︸ ︷︷ ︸+

np∑
i=1

NR(πi, πi)︸ ︷︷ ︸
interpage intrapage (9)

where |C| is the total number of references, NR(Π,Π) is the total number of inter-
page references, and

∑np
i=1 NR(πi, πi) is the total number of intra-page reference.

Of course, the number of callee-induced pages to modify need not be proportional
to the total number of inter-page references, but in practice it is a good heuristic.

Fig. 6 shows the different ways that a set of functions from a call graph can
be grouped. The call graph is generated after Splitting, where the edges rep-
resent caller-callee relationships and the vertices represent functions. Whenever
Reclustering is performed with one of the modified functions, it traverses the
page-based-clustering call graph according to depth-first search (DFS) to find the
page in which to cluster the modified function. Reclustering repeats until the
rest of the modified functions are clustered.

At the very first version, all of the functions are clustered into an image of pre-
linking pages URPBI = Π′, which is called an unresolved page-based image. The ob-
jective of Reclustering is to ensure that URPBI has the minimum number of ref-
erences crossing pages that could potentially minimize the number of page-granular
accesses. Then, starting from the first revision (second version), Reclustering
repeats the same way as the very first version except with modified functions.

Reclustering adds the modified functions (MF) to the page-based call graph
(PBCG) to generate an unresolved page-based image, URPBI . UPBCG is defined
as a graph G(V,E,Q), where the vertices V represent F , the edges E represent
C, Q represents a set of pages Π, and the vertices are grouped by the pages, and
PBCG is also defined as a graph G(V,E,Q), where the vertices V represent β, the
edges E represent C, Q represents pages Φ, and all vertices are clustered into the
pages.

The objective of Reclustering is to minimize the number of inter-page refer-
ences. To do this, Reclustering explores grouping functions that are related as
(a) callers with a vertex, (b) independents, i.e., vertices with a common caller, and
(c) the vertex with a subset of its callees. Fig. 6 shows an example of these three
ways to cluster with respect to the function f7.

The objective of reclustering is to minimize the number of inter-page references.
Formally,

minimize NR(Π,Π) (10)

Equations (11), (12), and (13) express the number of reference crossing pages
(NRCP) after clustering with one of a caller, independent, and callee, respectively.
RecursiveClustering finds and merges a function into its caller, independent,
or callee page.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 13

Reclustering(DSS ,PBCG)

1 URPBI ← []

2 VS ← []
3 while DSS 6= []

4 do x ← DSS .pop()
5 VS .push(x)

6 RecursiveClustering(VS ,URPBI ,PBCG)

7 return URPBI

Fig. 7. Reclustering pseudocode.

NRCPcaller(fi, fj) =NR(Π,Π) \NR({fj}, {fi}), where fj ∈ r(fi) (11)

NRCP independent(fi, fj) =NR(Π,Π) \NR({fh}, {fi}) (12)

where fi ∈ r−1(fh) ∧ fj ∈ r−1(fh) ∧ fh ∈ r(fi) ∩ r(fj)

NRCPcallee(fi, fj) =NR(Π,Π) \NR({fi}, {fj}), where fj ∈ r−1(fi)

(13)

Based on Equation (14), FindPartnerVertex finds the vertex that will be clus-
tered with the vertex x in Fig. 8. The found vertex is called a PartnerVertex , which
is used as an input for ClusteringTwoVertices. ClusteringTwoVertices
clusters x with PartnerVertex and adds the clustered vertex to an unresolved page-
based call graph UPBCG , from the existing page-based call graph.

FindPartnerVertex(fi, fj) =
fi if |fi|+ |fj | > M

fj ∈ r(fi) if Eq.11 = MM ∧|fi|+ |fj | ≤M

fj ∈ r−1(fh) ∧ fh ∈ r(fi) ∩ r(fj) if Eq.12 = MM ∧|fi|+ |fj | ≤M

fj ∈ r−1(fi) if Eq.13 = MM ∧|fi|+ |fj | ≤M

(14)

, where MM = min(Eq. (11), Eq. (12), Eq. (13)), and M is the size of a page.

Consequently, the RecursiveReclustering finds the clustering that can min-
imize the number of references, NR(Π,Π), through traversing the page-based call
graph according to DFS . To illustrate this algorithm, let us consider the exam-
ple in Fig. 6. There, when considering the CurrentVertex f7, the PreVertex is its
caller f1. When CurrentVertex is used as an input for EstimatePtrVertex. It
determines which partner vertex (which can be f1, f5, or f9 in the example) is
proper to be combined with CurrentVerex in order to consume less energy. The
determination is based on Equation (14).

While CurrentSave is the number of references to be saved at the current reclus-
tering step, PreSave is the number of references to be saved at the prior reclustering

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

14 · Kim and Chou

RecursiveClustering(VS ,URPBI ,PBCG)

1 if VS 6= []

2 then x ← VS .pop()
3 if x .PreVertex is empty

4 then x .PreVertex ← x .CurrentVertex � traverse to callee
5 x .CurrentVertex ← GetCallee(x) � from a set, one callee at a time

6 x .PreSave ← Null

7 else x .PreVertex ← x .CurrentVertex
8 x .CurrentVertex ← x .PartnerVertex

9 x .PreSave ← x .CurrentSave

10 x .CurrentSave, x .PreSave, x .PartnerVertex
← EstimatePtrVertex(x ,PBCG,PreSv)

11 if x .CurrentSave is empty

12 then VS .push(x)
13 RecursiveClustering(VS ,URPBI ,PBCG)

14 else ClusteringTwoVertices(VS ,URPBI ,PBCG)
15 � return VS ,URPBI as side effect

Fig. 8. RecursiveClustering pseudocode.

step. x is the vertex currently being evaluated, while PartnerVertex is a vertex that
would be clustered with x.

6. PAGE-BASED IMAGING

The Imaging procedure shown in the lower part of Fig. 3 is invoked after Clus-
tering to create a page-based image, which is named PBI denoted by Φ(γ+1),
and to generate a patching script DFFS to be disseminated over wireless networks.
That is, the Imaging inputs MΠ (γ+1), and a page array of a previous revision Φ(γ),
and generates an array of pages that have all sets of resolved functions, i.e., Φ(γ+1)

and a patching script that is based on DC so that different code can be copied
from a source address to a destination address, or inserted or replaced at a source
address.

6.1 Ordering

Ordering performs intra-page arrangement of functions. The purpose is to place
those functions that are likely to be modified near the end of the page. This way,
they will less likely disturb other functions within the same page, because only
functions placed after them can potentially be shifted.

It has been reasoned that the more complex a function is, the more prone to
errors it is, and therefore it is more likely to be modified and to cause more code
shift. Also, even a simpler function can have a high influence if it has a large
number of references.

Every function that experiences code shift also causes all incoming references to
these functions to be updated. In short, the influence of a function depends on the
place where the function is located. Consequently, it is critical that we quantify
each function’s complexity and number of incoming references for the purpose of
determining the relative location of the functions.

As an illustration, Figs. 9(a) and (b) show two different images named β′(γ) and

β′′(γ) for the same initial version of the program. The difference is that in φ
(γ)
2 ,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 15

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

c a ll

(a) (b)

β
(γ)

1

β
(γ)
2

β
(γ)
3

β
(γ)

4

β
(γ)

5

β
(γ)
3

β
(γ)
2

β
(γ)
2

β
(γ)

3

β
(γ)
5

β
(γ)
4

Ф 1
(γ)

Ф 2
(γ)

Ф 3
(γ)

Ф 4
(γ)

Ф 4
(γ +1)

Ф 3
(γ +1)

Ф 2
(γ+1)

β
(γ)
2

β
(γ +1)
5

β
(γ +1)

4

β
(γ +1)
2

β
(γ +1)
2

Ф 5
(γ +1)

Ф 1
(γ+1)

β
(γ +1)
1

β
(γ +1)

3

β
(γ)
2 β

(γ +1)
2

β
(γ+1)

3

β
(γ+1)

3

β
(γ +1)
2

β
(γ +1)
3

β
(γ +1)
3

β
(γ +1)
3

β
(γ)
5

β
(γ)
1

β
(γ)
2

β
(γ)
3

β
(γ)
4

β
(γ)
3

β
(γ)
3

β
(γ)
2

β
(γ)
1

β
(γ)
3

β
(γ+1)

2

β
(γ)
4

β
(γ)
5

Ф 2
(γ+1)

β
(γ)
2

β
(γ)
3

β
(γ)
3

β
(γ +1)
2

β
(γ)
2 β

(γ)
2

Ф 1
(γ)

Ф 1
(γ) Ф 1

(γ)

Ф 2
(γ)

Ф 3
(γ) Ф 3

(γ)
Ф 3

(γ)

Ф 4
(γ)

Ф 4
(γ)

Ф 4
(γ)

Ф 2
(γ +1)

β ''(γ)β '(γ) β '(γ+1)

β ''(γ+ 1)

β '''(γ+1)

Fig. 9. Different Layouts and Different Updates. (a) In case of the enlarged function, β
(γ+1)
2

placed at lower address than β
(γ)
3 . (b) In case of β

(γ+1)
2 placed at higher address than β

(γ)
3 .

the former arranges the function β
(γ)
2 before β

(γ)
3 while the latter does β

(γ)
3 before

β
(γ)
2 . The point of this example is to show that a good initial ordering even just

within φ
(γ+1)
2 can lead to dramatically lower perturbation to the code memory,

when function β
(γ+1)
2 is enlarged.

Starting with β′(γ), Fig. 9(a) may evolve into either β′(γ) or β′′(γ), depending

on how the enlarged function β
(γ+1)
2 is kept in the original page (φ

(γ+1)
2) or put

in a newly allocated page (φ
(γ+1)
5), respectively. If kept in the same page, then

β
(γ+1)
2 still has the same starting address, and therefore none of its callers need

to change, but β
(γ+1)
3 is shifted, and therefore all of its callers must be updated,

including β
(γ+1)
4 in φ

(γ+1)
3 and β

(γ+1)
5 in φ

(γ+1)
4 . In total, three pages must be

updated. On the other hand, if the enlarged function β
(γ+1)
2 is placed in a newly

allocated φ
(γ+1)
5 , callers of β

(γ+1)
2 need to be updated, and they also affect three

pages, {φ(γ+1)
1 , φ

(γ+1)
2 , φ

(γ+1)
5 }, as shown in β′′(γ), but it uses a total of five pages

instead of four as β′(γ) does.
Fig. 9(b) shows that a different initial image (β′′(γ)) can reduce the number

of affected pages from three down to one, simply by ordering β
(γ)
3 before β

(γ)
2 on

Page 2. The function β
(γ)
2 can be enlarged within φ

(γ)
2 without affecting the starting

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

16 · Kim and Chou

address of either β
(γ+1)
2 or β

(γ)
3 . Therefore, none of their callers need to be updated,

and the only page that needs to be updated is φ
(γ+1)
2 .

How does one determine what functions are more likely to be modified than
others? Several software metrics can be considered, and Graves et al classifies
fault prediction techniques into product measures (syntactic, including code size,
degree of statement nesting, number of acyclic execution paths, the in-degree of
a statement block, etc.) and process measures (change history). Most product
measures turned out to be highly correlated to the lines of code, which is not a
good predictor of faults [Graves et al. 2000].

However, we have found it effective to adopt a compound metric, called the
influence, by combining cyclomatic complexity and the number of references to
each function. Cyclomatic complexity [McCabe 1976] is based on the number of
linearly independent paths of each function in its control flow graph. The equation
for the cyclomatic complexity is as follows:

M = E −N + 2P (15)

where M is cyclomatic complexity, E is the number of edges, N is the number of
vertices, and P is the number of connected components in the graph. Note that
these variable names are taken from the original definition and are not related to
those defined earlier in this paper. We use the tool called C & C++ Code Counter
(CCCC) [Littlefair 2006] to obtain the quantitative value of cyclomatic complexity.

To quantify the influence of a function on other functions, we define the Influence
Equation ie(fi) of the function fi as the cyclomatic complexity of fi weighted by
the number of references to fi, as shown below:

ie(fi) = cc(fi)× |r−1(fi)| (16)

where cc(fi) denotes the cyclomatic complexity of the function, and SF is a set of
functions {f1, f2, f3, ..., fn} within a page.

Equation (21) calculates the influence value of each function within each page.
The influence value is based on the complexity of each function within each page and
the total number of references to the function. Consequently, we use the influence
value to determine which function is more likely to be modified relative to others in
the same page and should be placed towards the end of the page. The Ordering
procedure ranks each function based on the influence vales. The sets named SC ,
and SR are defined as follows.

SC = {c1, c2, c3, ..., cn} (17)

cj = cc(fj) (18)

SR = {r1, r2, r3, ..., rn} (19)

ri = NR({fi}, SF \ {fi}) (20)

ie(fi) =
m∑
j=1

|R(SF \ {fi})| × cj (21)

where SC is a set of the complexity of the functions, and SR is a set of the numbers
of references to the functions. ie(fk) calculates the influence value of function
fk. Note that SF is for unsorted functions while the sequence NSF is for sorted

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 17

Ordering(URPBI)

1 for k ← 0 to M � the number of pages

2 do Pagek ← GettingPage(k)
3 PageListk

← OrderingWithinPage(Pagek)

4 PBI
← PageBasedImage(PageListk ,URPBI)

5 return PBI

(a)

OrderingWithinPage(SF)

1 NSF ← []

2 iemin ←∞
3 while SF 6= {}
4 do for each element fk ∈ SF

5 do iek ← ie(fk)
6 if iemin > iek
7 then iemin ← iek

fmin ← fk
8 SF ← SF \{fmin}
9 NSF .enqueue(fmin)

10 return NSF

(b)

Fig. 10. (a) Ordering algorithm. (b) OrderingWithinPage algorithm.

functions. After calculating the influence values among unsorted functions one by
one, a function having the minimum influence value is moved from SF to NSF .
OrderingWithinPage(SF) ranks each function within each page to resolve each
function’s start address.

6.2 Patching Scripts

The Imaging procedure generates a patching script based on the set of the proper-
ties of different image, DC , to be disseminated over the wireless link to the nodes.
Issues with dissemination include network protocol design and security, though they
are outside the scope of this work. Our patching script is similar to the previous
work such as [Reijers and Langendoen 2003] in that it includes three primitives:
insert, replace, and copy. The insert and replace primitives have the format of a
variable-byte opcode and variable-byte length destination address with n bytes of
data or instructions. The format of the copy primitive is a variable-byte opcode,
variable-byte length of source address, variable-byte length of destination address,
and variable-byte length of the data or instruction block copied. Each length can
be fixed early on when the host and the nodes first communicate with each other,
and new primitives can be applied by using the copy primitive formation.

7. EXPERIMENTAL RESULTS

We evaluate the effectiveness of the algorithms as follows. In Section 7.1, we shows
the benefits of Ordering (part of Imaging) in minimizing the code differences
in successive revisions. In Section 7.2, we evaluate Clustering and Imaging for
NOR flash memory based on page-granular access in terms of energy consumption.
The first and second test cases are for RX and TX mode images as shown in Table
III, and the third set is for FreeRTOS [Real Time Engineers, Ltd. 2010] images
shown in Table IV. Without loss of generality, for the purpose of our experiments,
we assume power characteristics of Eco platform [Park and Chou 2006] and NOR
flash memory [Atmel Corporation 2008]. The characteristics are in Tables I and II,
respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

18 · Kim and Chou

Table I. Power characteristics of the experimental platform.
Param RF Rx RF Tx EEPROM CPU Active CPU Powerdown ADC

Current 10.5 mA 19 mA 5 mA 3 mA 2 µA 0.9 mA

Table II. Flash energy consumption (unit: µJ/byte)

Component Read Write Erase

AT29C010A 0.25 0.48 0.48

Table III. Sizes of versions of the RX and TX images [bytes]

version 0 1 2 3 4 5 6 7 8

RX Image 3211 3194 3032 2445 2816 2838 2816 2537 2791

TX Image 3211 3194 3032 1912 2247 2282 2247 1924 1957

Table IV. Sizes of versions of FreeRTOS images [bytes]

Version 0 1 2 3 4 5 6 7 8

Image 23046 23554 21767 23554 23554 23569 23796 23583 23583

Revision 9 10 11 12 13 14 15 16 17

Image 23016 22981 22992 22566 22596 22596 22596 22596 22548

Revision 18 19 20 21 22 23 24 25 26

Image 23051 23051 23051 23043 23393 23393 23393 23393 23382

Revision 27 28 29 30 31 32 33 34 35

Image 24521 24511 24511 24370 24370 24370 24520 24628 24628

Revision 36 37 38 39 40 41 - - -

Image 24628 24628 24730 24730 24730 24506 - - -

7.1 Ordering Experiments

Table III shows two of our test cases: eight revisions of RX (receive) and eight
revisions of TX (transmit). Table IV shows the test case with 41 revisions of
FreeRTOS images.

These images are compiled by the Small Device C Compiler (SDCC) [SDCC
2009] targeting Eco, an ultra-compact wireless sensor platform. We use the energy
characteristics of NOR flash memory [Atmel Corporation 2008] with different page
sizes: 128-byte pages are for the RX and TX images, and 1024-byte pages are for
the FreeRTOS images in that the sizes of the FreeRTOS images are around nine
times larger than those of the RX and TX images.

Each of the TX and RX images has two different types of image layouts. One has
the functions in increasing order of the quantitative rank (Eqn. (21)). The other
has the functions in decreasing order of the rank, which is a combination of the
cyclomatic complexity and the number of references to each function.

Figs. 11(a) and 11(b) show the code differences in bytes between successive re-
visions of the RX images and TX images according to the data in Table V. The
lines stand for RX and TX images in order of increasing influence, and the dotted
lines stand for those ordered in reverse. For the RX and TX test cases, the amount
of code difference between successive in-order images are consistently smaller than
those reverse-order images. Not only fewer references need to be modified but also

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 19

Table V. Differences between revisions (in bytes): (a) RX (b) TX.

App Revision (0 to) 1 2 3 4 5 6 7 8

RX
In Order 2974 2632 2015 2031 1502 1418 1787 1541

Reverse Order 2974 2752 2105 2436 2242 2238 2117 2271

TX
In Order 2914 2712 1392 1407 595 327 744 167

Reverse Order 2954 2752 1612 1767 1315 1205 1174 802

Table VI. Similarity between revisions: RX Images; TX Images [%]

App Revision (0 to) 1 2 3 4 5 6 7 8

RX
In Order 6.89 13.19 17.59 27.88 47.08 49.64 29.56 44.79

Reverse Order 6.89 9.23 13.91 13.49 21.00 20.53 16.55 18.63

TX
In Order 6.89 13.19 17.59 27.88 47.08 49.64 29.56 44.79

Reverse Order 6.89 9.23 13.91 13.49 21.00 20.53 16.55 18.63

(a) (b)

Fig. 11. Differences between revisions (a) RX images (b) TX images [bytes].

less code needs to be shifted.
Fig. 12(a) shows the benefits of Ordering for RX images when compared to

those ordered in reverse according to the data in Table VI. The total code size
of the RX images in order is 17% smaller than that in reverse order. In addition,
Fig. 12(b) shows the benefits of Ordering for the TX images compared to those
in reverse order. The total code size of the RX images in order is 24.5% smaller
than that of the reverse order, also according to the data in Table VI. In these
comparisons, Rsync [Tridgell and Mackerras 1996] is used as the diff algorithm.

For FreeRTOS images, each image has two different types of image layouts. One is
in increasing order of the quantitative rank, and the other is in alphabetical order.
Of the 41 revisions, 25 revisions actually changed the code; the other revisions
changed either comments or formatting without affecting the compiled code.

Fig. 14 (a) shows the code difference between successive revisions of FreeRTOS
images, and (b) shows the accumulated code difference in bytes, according to the
data in Tables VII and VIII, respectively.

7.2 Clustering and Imaging Experiments

Based on the same cases as Section 7.1, our comparison results consist of (a) our
approach (Clustering and Imaging), (b) fragmented layouts with slop spaces
[Koshy and Pandey 2005], and (c) feed back linking [von Platen and Eker 2006]
approach to fragmented layouts by placing functions to free spaces to reduce code

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

20 · Kim and Chou

Table VII. Similarity of FreeRTOS images[%]

Revision (0 to) 1 2 3 4 5 6 7 8

In Order 54.86 43.07 39.94 100 74.31 73.83 64.54 100

Alphabetic 28.85 24.78 21.58 100 45.54 44.16 35.11 100

Revision 9 10 11 12 13 14 15 16

In Order 11.04 59.53 78.54 69.61 63.03 100 100 100

Alphabetic 10.86 31.85 62.55 28.50 51.80 100 100 100

Revision 17 18 19 20 21 22 23 24

In Order 69.61 63.03 100 100 82.24 82.77 100 100

Alphabetic 44.15 63.03 100 100 55.25 55.24 100 100

Revision 25 26 27 28 29 30 31 32

In Order 100 82.85 27.74 76.87 100 85.56 100 100

Alphabetic 100 55.48 27.41 49.86 100 55.28 100 100

Revision 33 34 35 36 37 38 39 40

In Order 68.96 74.63 100 100 100 22908 100 100

Alphabetic 41.39 47.26 100 100 100 62.87 100 100

Revision 41 - - - - - - -

In Order 65.41 - - - - - - -

Alphabetic 39.05 - - - - - - -

Table VIII. Code Size Difference of FreeRTOS images[byte]

Revision (0 to) 1 2 3 4 5 6 7 8

In Order 10632 12393 14147 0 6055 6227 8363 0

Alphabetic 16759 16373 18547 0 12835 13287 15303 0

Revision 9 10 11 12 13 14 15 16

In Order 20476 9341 1831 10534 4850 0 0 0

Alphabetic 20517 15661 8611 16134 10890 0 0 0

Revision 17 18 19 20 21 22 23 24

In Order 6852 8523 0 0 4092 4030 0 0

Alphabetic 12592 13923 0 0 10312 10470 0 0

Revision 25 26 27 28 29 30 31 32

In Order 0 4009 17719 5670 0 3519 0 0

Alphabetic 0 10409 17799 12290 0 10899 0 0

Revision 33 34 35 36 37 38 39 40

In Order 7610 6248 0 0 0 1822 0 0

Alphabetic 14370 12988 0 0 0 9182 0 0

Revision 41 - - - - - - -

In Order 8476 - - - - - - -

Alphabetic 14936 - - - - - - -

Table IX. Total Energy Consumption of RX, TX and FreeRTOS Image Updates by comparing
with other flash-based image layouts in [µJ]

Our Approach Fragmented Layout (Koshy) Feed-back Linking (von Platen)

RX 2290.02 3709.67 3689.84

TX 1769.23 3165.70 3205.35

FreeRTOS 19708.00 28086.20 28285.90

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 21

(a) (b)

Fig. 12. Similarity between revisions: (a) RX images (b) TX images [%].

Fig. 13. Code Similarity between revisions of FreeRTOS Images

(a) (b)
Fig. 14. (a) Difference and (b) Accumulated Difference of FreeRTOS Images in bytes.

(a) (b)

Fig. 15. Energy Consumption by comparing with other flash-based image layouts: (a) RX (b)

TX.

Table X. Total number of pages used by different code update schemes
Test Case Our Approach Fragmented Layout (Koshy) Feed-back Linking (von Platen)

RX 271 471 459

TX 271 311 335

FreeRTOS 153 186 191

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

22 · Kim and Chou

(a) (b)

Fig. 16. Accumulated Energy Consumption of (a) RX Images (b) TX Images by comparing with

other flash-based image.

(a) (b)
Fig. 17. Energy Consumption of FreeRTOS by comparing with other flash-based image: (a) Each

update Energy Consumption (b) Accumulated Energy Consumption .

Table XI. Energy breakdown of updating RX, TX, and FreeRTOS images [%]

Process Code Memory Access RF Execution

Code Code Additional Code Code Additional
Scheme Case relocation difference update relocation difference update

update update

RPFU
RX

36.46 0.46 0.00 0.01 58.86 4.21
Layout1 58.85 0.32 0.00 0.00 41.50 3.33
Layout2 55.26 0.32 0.00 0.01 40.95 3.46

RPFU

TX

32.54 0.52 0.00 0.00 66.94 3.33

Layout1 49.96 0.37 0.00 0.00 46.83 2.69

Layout2 50.11 0.35 0.00 0.00 44.84 3.07

RPFU
FreeRTOS

42.21 0.39 0.00 0.00 50.97 6.43
Layout1 70.27 0.30 0.00 0.00 24.71 4.72

Layout2 67.37 0.30 0.00 0.00 27.75 4.58

shift incidents. The purpose of the comparison is to show the advantages of our
layouts. Table X shows the numbers of pages used by different code update schemes.
The numbers of pages for the first versions are not considered, because each scheme
has different code layout strategies, and code updates are preformed after the first
versions. Our technique saves 41.11% and 41.80% energy for the RX case, 31.4%
and 37.9% for TX, 29.83% and 30.33% for FreeRTOS over both other fragmented
layouts approaches based on the data in Table IX.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 23

7.3 Breakdown of Energy Consumption

The energy consumption for code updates is broken down into two dominant parts:
code memory access and RF execution. Moreover, code updates are performed by
a code memory access and RF execution process, and each process is broken down
to code relocation, code difference update, and additional update process.

Table XI shows the energy consumption of each code update process. According
to Tables I and II, RPFU’s portions of the RF execution process are larger than
those of Layout 1 (Fragmented Layout) and Layout 2 (Feedback Linking). This
means that our RPFU technique effectively reduces much energy for code updates.

7.4 Discussion

One limitation is that our technique does not consider updating (constant) data,
such as strings and scalars. Our cost function uses structural analysis to predict
likely changes, but changes to data do not always follow such patterns. Another
limitation mentioned in the assumption is that each function’s image fits in a page,
and partitioning is currently done manually, although we believe it can be au-
tomated. Our use of cyclomatic complexity falls under the category of product
measure, namely the syntactic aspect of the program, rather than process measure,
namely the change history, because we are predicting the future based on the very
first version of the program. One possible future extension is to incorporate some
process measures so that modification patterns from one project can help better
predict the modification patterns of another new project.

8. CONCLUSION

This paper proposes a compile-time, page-based code-layout technique for remote
firmware update for NOR-flash-based embedded systems. The series of code images
generated by our technique evolve well by minimizing not only the size of the
patching scripts between successive revisions but also the amount of patching. Both
result in low energy consumption. These properties are achieved by Clustering,
which performs grouping of functions in page-size partitions to minimize inter-page
influence, and by Imaging, which orders the functions within a page to minimize
intra-page influence that turns into inter-page ones. We quantify the influence by
not only caller-callee relationship but also cyclomatic complexity to predict the
likelihood of change. Experimental results show our technique to consistently yield
not only significantly lower energy consumption than state-of-the-art ones but also
minimizes wear and tear of the NOR flash memory. The RPFU program and test
cases in this paper have been open-sourced [Kim 2010].

Acknowledgments This work was sponsored in part by National Science Foun-
dation Grants CNS-0712926 and CNS-0448668. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

24 · Kim and Chou

Appendix: Lists of Symbols used in Algorithms and Equations 2 to 8

ClusteringTwoVertices(): clusters the vertex with the parter vertex
CurrentSave: the number of changes to intra-page references
CurrentVertex : the vertex RecursiveClustering() is currently visiting
DFFS : patching script
DSS : stack for the data structure of modified functions

E
(buffer access)
buf (nBytes): input : buffer access such as read or write and size of bytes

output: energy consumption per byte [J/byte] ×nBytes
including access overhead energy consumption

E
(process)
CPU (nBytes): input : process and size of bytes

output : energy consumption per instruction
[J/instruction] ×nBytes for executing a process that is
one of FLASH, BUFFER, and RF process

E
(flash memory access)
flash (nBytes): input : flash memory access such as

read, write, or erase and size of bytes
output: energy consumption per byte [J/byte] ×nBytes
including access overhead energy consumption

ERF(nBytes): energy consumption per byte [J/byte] ×nBytes for RF
including operation overhead energy consumption

EstimatePtrVertex(): works based on FindPartnerVertex to find a partner
vertex by measuring the number of inter-page callers. It
attempts combining with a caller, independent, or callee.

fk : the kth function in DSS
MF : stack for modified functions
NSC : new source code
NSF : new sequence of functions

OPBI : old page-based image denoted by Φ(γ)

OS : old source code

Pagek : the kth page denoted by π(γ+1)

PartnerVertex : partner vertex (caller, independent vertex, or callee)
PBCG: page-based call graph
PBI : page-based image
PreSave: previous number of changes to intra-page references
PreVertex : caller or independent vertex. In Fig. 6, a PreVertex f1 is

a caller to the CurrentVertex , f7

UpdateCostForEnF(): update the energy cost for an enlarged function
UpdateCostForRmF(): update the energy cost for a removed function
UpdateCostForShF(): update the energy cost for a shrunk function
SF : unsorted functions

URPBI : unresolved page-based image denoted by Π(γ+1)

VS : stack for vertices

Subscripts
buf: buffer operation process
erase: flash memory erasure access
flash: flash operation process
read: memory read access
write: memory write access
RF: RF communication operation process

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

Energy-Efficient Progressive Remote Update for Flash-Based Embedded Systems · 25

REFERENCES

Atmel Corporation. 2008. AT29C010A full data sheet :1-megabit 5-volt only flash memory.
http://www.atmel.com/dyn/resources/prod_documents/doc0394.pdf.

Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. 2000. Predicting fault incidence using

software change history. IEEE Transactions on Software Engineering 26, 7 (July), 653–661.

Jeong, J. and Culler, D. 2004. Incremental network programming for wireless sensors. In
Proceedings of the First Annual IEEE Communications Society Conference on Sensor and Ad

Hoc Communications and Networks (IEEE SECON). IEEE Computer Society, Los Alamitos,

CA, USA, 25–33.

Kim, J. 2010. Remote progessive firmware update project. http://rpfu.sourceforge.net/.

Koshy, J. and Pandey, R. 2005. Remote incremental linking for energy-efficient reprogramming
of sensor networks : Wireless sensor networks. In Proceedings of the Second European Workshop.

IEEE Press, Piscataway, NJ, USA, 354–365.

Li, W., Zhang, Y., Yang, J., and Zheng, J. 2007. UCC: update-conscious compilation for energy
efficiency in wireless sensor networks. In Proceedings of the 2007 PLDI conference. Vol. 42.

ACM, New York, NY, USA, 383–393.

Littlefair, T. 2006. CCCC – C and C++ Code Counter. http://cccc.sourceforge.net/.

Marrón, P. J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., and Rothermel, K.

2006. FlexCup: A flexible and efficient code update mechanism for sensor networks. In Wireless
Sensor Networks, K. Römer, H. Karl, and F. Mattern, Eds. Lecture Notes in Computer Science,

vol. 3868. Springer, Berlin / Heidelberg, 212–227.

McCabe, T. J. 1976. A complexity measure. IEEE Transactions on Software Engineering SE-2, 4
(December), 308–320.

Park, C. and Chou, P. H. 2006. Eco: Ultra-wearable and expandable wireless sensor platform.

In Proc. Third International Workshop on Body Sensor Neteworks. IEEE Computer Society,

Los Alamitos, CA, USA, 162–165.

Park, C., Lim, J., Kwon, K., Lee, J., and Min, S. L. 2004. Compiler-assisted demand paging

for embedded systems with flash memory. In Proceedings of the International Conference on

Embedded Software (EMSOFT). ACM, New York, NY, USA, 114–124.

Real Time Engineers, Ltd. 2010. FreeRTOS free, portable, open source, royalty free, mini real
time kernel. http://www.freertos.org/.

Reijers, N. and Langendoen, K. 2003. Efficient code distribution in wireless sensor networks.

In Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA ’03). ACM, New York, NY, USA, 60–67.

SDCC. 2009. Small Device C Compiler. http://sdcc.sourceforge.net/.

Tridgell, A. and Mackerras, P. 1996. The rsync algorithm. Tech. Rep. TR-CS-96-05, Depart-

ment of Computer Science, The Australian National University. June.

von Platen, C. and Eker, J. 2006. Feedback linking: optimizing object code layout for updates.
SIGPLAN Not. 41, 7, 2–11.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, 10 2010.

