
Pushing the Throughput Limit of Low-Complexity
Wireless Embedded Sensing Systems

Vahid Salmani and Pai H. Chou
Center for Embedded Computer Systems

University of California, Irvine

Abstract—To maximize the communication throughput for
wireless sensing systems, designers have attempted various
combinations of protocol design and manual code optimization.
Although the theoretical bandwidth limit is easy to determine
loosely, there have been no systematic ways to arrive at
a tight upper-bound. One contribution of this paper is a
formula for deriving a tight upper-bound on the throughput
of low-complexity wireless interfaces transmitting packets
of a fixed size. It takes into account not only the software
execution times on the nodes but also other communication
protocols that must be bridged by the base station. The
proposed upper-bound, which we believe is the tightest,
represents the maximum amount of bandwidth utilization
that can be achieved in practice. It can also serve as a means
of comparing protocols built on different platforms. Another
contribution is a streamlined schedule-based protocol, called
RIPE-MAC, which achieves at least 83% of the upper-bound,
significantly higher than previously achieved throughput.
The proposed protocol needs no clock synchronization and
incurs no further complexity on sensor nodes. In the proposed
protocol, synchronization and schedule updates are reduced
to a single pull message.

Keywords—wireless sensor networks, medium access control
protocols, communication scheduling, high-data-rate monitoring,
analytical upper-bound on throughput, time division multiple
access

I. INTRODUCTION

A class of sensor network applications to which more
attention has been recently paid is high-data-rate monitoring.
It involves relatively high data rates and precise timing of the
captured signals. High-data-rate applications continuously
require turn-wise and periodic transmission of data from
sensors in real-time. They also demand large data size and
a relatively high duty cycle. In this class of applications,
what matters is high fidelity of data, aggressive sampling
and collection, and short latency; low power consumption,
while interesting, is of secondary concern.

Some high-data-rate applications may reach sensing rate
of 102 to 105 Hz and consume up to 10 or 100 Mbps band-
width. Therefore, they require five to ten times improvement
on the channel utilization of existing sensor networks [1].
In some applications, the system is capable of acquiring
more data than can be delivered to the base station, so they
focus on reliable collection of high-resolution signals and

maximizing the value of the collected data, subject to re-
source constraints [2]. However, it should not prevent system
designers from maximizing the bandwidth utilization.

On the other hand, sensor networks are exposed to several
technical limitations including memory and energy con-
straints, available processing power, transmission rate, syn-
chronization difficulties and robustness in operation. Many
of these technical limitations can be overcome by an opti-
mized design of sensor network protocols and operations.

In order to design efficient protocols for wireless sensor
networks, it is important to recognize the parameters that
are relevant to the applications [3] because the design of a
given protocol or algorithm has a deep dependence on the
nature of the application [4]. Continuous sensing, periodic
data transmission, scalability, fault tolerance and reliability,
and energy efficiency are some design considerations that
are common among typical high-data-rate applications.

Before designing or optimizing a communication proto-
col, it is important to measure the throughput limit of the
system because it can be helpful in tuning the protocol as the
amount of possible improvement is known. The throughput
upper-bound can also serve as a means of comparing proto-
cols built on different platforms.

This paper presents a tight upper-bound on throughput
of single-hop star-topology wireless embedded sensing plat-
forms and a MAC protocol for approaching it. The idea is to
keep the base station always busy by thoroughly eliminating
idle listening. In addition, control packets are reduced to a
single pull message thereby devoting most of the bandwidth
to upstream data packets from sensor nodes.

To make the ideas more concrete, we studied a real-
world wireless sensing platform called Eco [5] whose details
are presented in Section V. To evaluate our work, the
proposed approach as well as some other protocols are
implemented on the Eco platform and compared. The reason
for choosing Eco is its simplicity and low cost compared to
the platforms using ZigBee, Z-Wave or Bluetooth. Moreover,
the application-centric work has shown that simple protocols
have worked and sufficed in practice [4].

We concentrate on single-hop star-topology networks be-
cause they achieve much higher throughputs compared to
multi-hop networks. For instance, Flush [6] and Straw [7]
achieve only 8 Kbps and 3.5 Kbps for a reliable transfer



over multiple hops, respectively. These gains are less than
1% of the available bandwidth of the state-of-the-art 1 Mbps
transceivers. Moreover, multi-hop protocols do not guarantee
real-time operation and their delay may prove unacceptable
for some applications.

The rest of the paper is organized as follows. In Section
II, we review some MAC protocols designed for high-data-
rate applications. Section III is dedicated to the proposed
upper-bound and a parameterized system configuration for
approaching it. The implementation of the RIPE-MAC pro-
tocol on Eco is discussed in Section IV. In Section V,
we study the performance of our proposed protocol and
compare it with that of the protocols reviewed in related
works. Finally, the last Section concludes the paper.

II. RELATED WORK

A communication protocol must be designed in such a
way that all nodes utilize the available bandwidth effectively.
Existing solutions are often divided into schedule-based
(contention-free), contention-based, and hybrid schemes.

Contention-based schemes resort to some type of random
access (unscheduled) mechanism. As assumed by the popu-
lar IEEE 802.15.4, Carrier Sense Multiple Access (CSMA)
is the most widely used contention-based protocol, which
is popular due to its simplicity, flexibility and lack of
the need for clock synchronization and global topology
information. Nodes can dynamically join or leave without
extra operations. However, the chief disadvantage of CSMA
is collision, which causes energy waste. The CSMA protocol
is efficient when the utilization is low, but the probability
of collision increases rapidly as utilization increases [8].
Therefore, CSMA might not be a good option for high-data-
rate applications. In general, contention-based MACs behave
quite poorly under high query rate conditions and are not
acceptable in real-time or time-sensitive applications.

On the other hand, schedule-based approaches synchro-
nize nodes in order to align their active or sleeping periods.
Time-Division Multiple Access (TDMA) divides time into
slots. Each sensor node only transmits during its own time-
slots. This approach greatly reduces idle-listening time, but
the required time synchronization introduces extra overhead
and complexity. TDMA is a better alternative for high data
rates than CSMA.

Hybrid schemes attempt to combine the best features of
both approaches while offsetting their weaknesses. They try
to adapt to different bandwidth conditions depending on
demand. A category of hybrid protocols such as GMAC [9]
divides nodes into subsets and assigns to each subset its own
contention period. The scheduled contention scheme is no
longer collision-free and thus it is not suited for high data
rates as the probability of collision is high. Because node
belonging to the same have to contend for the medium in
their common slot as in CSMA.

On the other hand, some hybrid schemes such as R-MAC
[10] alternate between a contention period and a scheduled
period. They perform control operations such as time-slot
assignment during the contention period, and the schedule-
based period is used for collision-free data transmission.
This hybrid scheme is more energy efficient under high rates
than the scheduled contention scheme and thus it is a better
option for high-data-rate monitoring applications.

The User Configured TDMA (UC-TDMA) [11] is a
hybrid MAC protocol of a WSN designed for machinery
condition-based maintenance in small machinery spaces. It
combines scheduling and contention with deterministic slot
allocation to overcome clock inaccuracies. Its modified RTS-
CTS scheme uses a virtual-RTS signal generated by the base
station on behalf of the node that is scheduled to transmit
data.

The above work, however, has the following drawbacks
that prevent it from being a general approach. First, the
transmission times are ignored in UC-TDMA, possibly be-
cause they are negligible compared to the frame length. Sec-
ondly, UC-TDMA has to periodically update the schedule
for all nodes one-by-one to avoid the clock drift between
nodes. The essence of control packets, together with the
RTS-CTS mechanism, could incur considerable overhead
on the protocol. Although UC-TDMA is designed for a
star-topology WSN, it seems to incur high overhead in
terms of control packets. Instead, low-complexity wireless
sensor networks such as Eco require much simpler and more
efficient solutions.

Based on the above discussion, we believe that TDMA
plays an important role in designing high-data-rate wire-
less sensing applications. Therefore, an optimized TDMA
scheme, as an integral part of MAC protocols, can signifi-
cantly improve performance of such systems. Nevertheless,
schedule-based schemes require synchronization, which may
impose high overhead on the protocol. Moreover, since
sensor nodes do not usually have very accurate clocks,
precise time synchronization is hard to achieve. For instance,
a coordinator must broadcast SYNC packets frequently to
minimize clock drifts and maintain tight synchronization,
which may result in unacceptable overhead.

Another downside with tight clock synchronization is the
added complexity to the protocol stack, which results in
larger firmware footprint of nodes. Reference [12] reports
that a pure TDMA protocol designed for a single-hop star-
topology network requires 18-21 KB of code. This is five
times the size of Eco’s total EEPROM capacity. In the
following, we review two lightweight schedule-based proto-
cols designed for low-complexity WSN platforms to address
high-data-rate applications and state essential characteristics
and drawbacks of each.

Starting with the simplest, EcoDAQ [13] is a collision-
free protocol which follows the pulling style. The following
four steps are performed in this protocol as illustrated in Fig.



  

 
 

             PC Host          Base Station                 Eco Nodes 

4 3

21

Figure 1. Steps of the EcoDAQ Protocol

TX 

FWDidle 

2.9 ms 

1 ms 1.7 ms 

Base Station RX TX 

Eco Node RX 

Figure 2. Communication timing cycle of the EcoDAQ protocol. Through-
out the paper, the hatched areas in the timing diagrams represent the actual
transmission times.

1. The PC host issues a command packet to the base station,
containing the ID of the node whose data is desired. The base
station broadcasts the command packet to all sensor nodes.
The sensor node whose ID is equal to the ID field of the
command packet will respond to the packet by transmitting
its sensing data back to the base station. Finally, the base
station forwards the response packet it receives from the
sensor node to the host. Based on the collected data from
sensors, the host can decide which nodes must be assigned
more time-slots.

The pulling or receiver-initiated style has the following
advantages: simplicity on the node side, eliminating the
need for time synchronization, and achieving the equivalent
of NACK messages by re-pulling lost packets. However, it
suffers from some disadvantages. Fig. 2 depicts the commu-
nication timing cycle of EcoDAQ in which the base station
spends about 50% of the cycle on idle listening prior to
receiving a reply from a sensor node. This is an important
disadvantage because it tends to waste the wireless band-
width, thereby hindering the throughput. Another downside
with EcoDAQ is the overhead of the pulling message, which
considerably holds back the throughput. This overhead may
be amortized by increasing the number of reply messages
in response to each pull [13]. As shown in Fig. 3, upon
receipt of the command packet, the corresponding sensor
node transmits a predefined number of sensing data packets
back to the base station one after another. Although this
modification considerably increases the throughput due to
the reduced idle-listening, it has its own disadvantages.
Sending multiple replies incurs a significant latency, which
may prove unacceptable for some applications. Besides, it
does not thoroughly eliminate the idle-listening on the base
station side.

Sensemble [14] is designed for processing multi-point

TX 

FWDidle 

1.7 ms 

TX TX 

idle 

0.7 ms 

FWD Base Station RX RX RX TX idle FWD

Eco Node RX 

Figure 3. Timing diagram of EcoDAQ with 3 reply packets

TX 

TX 

2 ms TX 

FWD FWD FWD  Base Station 

Eco Node #1 

Eco Node #2 

Eco Node #3 

idle

 1 ms 

1.7 ms 

TX RX RX RX 

RX 

RX 

RX 

Figure 4. Timing diagram of Sensemble implemented on the Eco platform

human motion with low latency and high resolution. The
communication protocol of the Sensemble platform works
in a TDMA style as depicted in Fig. 4. For brevity, we use
Sensemble to refer to the MAC protocol of the Sensemble
platform throughout the paper. Synchronization and schedule
updates are reduced to a single pull message in Sensem-
ble, considerably reducing overhead. Upon receiving the
broadcast message, the sensors are sampled, and after a
preprogrammed time interval determined by each node’s ID
transmit data back to the base station. By imposing a strict
synchronization, the operations of the nodes are overlapped
to pack received messages at the base station as tightly as
possible. However, the latency of the operation of the first
Sensemble node delays the operation of the whole nodes in
the cycle. Moreover, Sensemble entails idle-listening prior
to the arrival of the first node’s packet, holding back the
throughput.

III. ANALYTICAL UPPER-BOUND ON THROUGHPUT

In this section, we define a tight upper-bound on through-
put for star-topology wireless sensor networks and propose
a schedule-based mechanism for approaching the upper-
bound. The proposed mechanism is general and parameter-
ized so that it can be applied to any WSN with star topology.

A. Upper-bound Formula

In an embedded wireless sensing platform, there are two
types of communication packets, namely control packets and
data packets. Control packets are used for management pur-
poses including signaling, scheduling, synchronization, rout-
ing updates and collision avoidance, and their transmission
will consume extra energy. Since the network bandwidth in
WSNs is limited and the data packet size is small, control
packets cannot be ignored as small overhead.

While control packets may be sent in both directions
between the base station and sensor nodes, data packets are
sent only in the upstream direction, i.e., from sensor nodes



to the sink. To maximize the bandwidth utilization for high-
data-rate applications we should maximize the number of
data packets and minimize the number of control packets. In
other words, the system’s goodput (data throughput) should
be maximized while the overal throughput might remain
unchanged. In this scenario, the base station spends most
of its time receiving packets and the sensor nodes spend
their time mostly on sampling and sending data packets.

In an ideal case where sensor nodes work in perfect
synchrony, the base station works only in the receive mode
and never transmits. Therefore, we define a tight upper-
bound for goodput as follows:

Upper-bound =
B

PPT
(1)

where B is the number of bits of data payload per packet
and PPT represents the packet processing time at the base
station in RX mode. The above formula holds when nodes
transmit packets of the fixed size B.

We believe the above formula gives the tightest upper-
bound as long as data packets are processed individually.
However, if multiple packets are bundled in sensor nodes and
sent to the base station, higher throughputs can be achieved.

B. Parameterized System Configuration

In the following, we propose a receiver-initiated mech-
anism to approach the proposed upper-bound. The idea is
based on the TDMA style in Fig. 4 but in such a way that
completely eliminates the idle listening at the base station.
For that reason, some nodes must be pulled in advance (i.e.,
pre-pulled) so that they are ready to transmit their sensing
data right after the next pull message is sent by the base
station. The implementation details are presented in Section
IV.

The following is a semi-automatic method for configuring
a system to which the proposed mechanism is applied.
Suppose an embedded wireless sensing system with a com-
munication timing cycle as depicted in Fig. 2. The durations
of the system operations are represented as parameters. On
the base station side, we have:

TXBS : pull message transmission time of the base station
idleBS : idle listening time of the base station
PPTBS : data packet processing time of the base station

(including data packet receive time (RX) and data
packet forward time to the host (FWD))

Note that some details are not shown for brevity. For
example, TXBS might include the switching time between
send and receive modes, SPI communication time and the
actual RF transmission time, which is depicted as a hatched
area in Fig. 2. Having known the timing of system operations
in the pulling style with a single reply as parameterized
above, the minimum number of the nodes to be pulled in

each frame (i.e., n) can be determined:

n =
⌈

idleBS

PPTBS

⌉
+ 1 (2)

where didleBS/PPTBSe represents the number of pre-
pulled nodes per pull message. We want to emphasize that
the above formula gives the minimum number of nodes
per frame. However, this number can be larger to further
amortize the overhead of the pulling message.

The base station must perform n PPT operations one after
another. Having known this number, we can determine the
frame length, which is the duration between two consecutive
pull messages. This interval, which we call RTI, can be
emulated as the duration between two successive real-time
interrupts. It can also be achieved using a real-time scheduler
if the base station runs an RTOS.

RTI = TXBS +n · PPTBS (3)

Similarly, the operations of a sensor node are parameter-
ized as follows:
RXNode : pull message receive time of a node
TXNode : sensed data transmission time of a node

For simplicity, the sampling time is also included in
TXNode . Now we can determine the pre-transmission wait-
ing time for each sensor node i (i.e., wait i). A sensor node
may be pre-pulled to deliver its data after the next pull is
sent (i.e. during the next frame), or it is not to be pre-pulled
and is supposed to respond before the next pull message (i.e.
during the same frame in which it is pulled). The waiting
time is determined as follows: for 1 ≤ i ≤ n:

wait i =TXBS +i · PPTBS −RXNode −TXNode

+

{
RTI pre-pulled
0 not pre-pulled

(4)

Note that the waiting times must be positive. However, if
wait i can be determined using both formulas, the minimum
non-negative value should be chosen to minimize latency
and response time. If the minimum value for n, as presented
in (2), is considered, only the last (i.e. nth) node is not pre-
pulled, and the first n−1 nodes must be pre-pulled. However,
if a larger number is chosen for n to further amortize the
overhead of the pulling message, only didleBS/PPTBSe
nodes should be pre-pulled to minimize latency, and the
remaining n−didleBS/PPTBSe nodes should deliver their
data within the same frame in which they are queried.

Based on the number of the pulled nodes in each frame
the throughput can be measured using the following formula:

Throughput =
n ·B

TXBS +n · PPTBS
(5)

where B represents the number of bytes of data payload
per packet in each transmission. As mentioned before,
the number of pulled nodes per frame can be larger to



w TX 

TX 

 waiting TX 

FWD FWDFWD

TX 

TX RX RX FWD FWDRX 

w TX 

FWD FWDFWD

w TX 

RX RX 

TX 

 waiting TX 

Final Frame Initial Frame Intermediary (Regular) Frames 

 waiting 

TX FWDRX RX FWD FWDRX FWD

 waiting 

Interrupt Interval (Frame Length) 

RX 

RX 

RX 

TX RX RX 

RX 

RX 

RX 

TX 

RX 

RX 

RX 

 waiting (1.9 ms) 

Base Station RX RX 

Eco Node #1 

Eco Node #2 

Eco Node #3 

Eco Node #4 

Eco Node #5 

Eco Node #6 

TX 

 waiting (2.9 ms) 

waiting (0.3 ms) 

3.6 ms 

Figure 5. Timing diagram of the RIPE-MAC protocol with 3 time-slots per frame

further amortize the pulling overhead. Based on this fact,
we can measure an upper-bound for the maximum practical
throughput using the above formula.

Upper-bound = lim
n→∞

[
n ·B

TXBS +n · PPTBS

]
=

B

PPTBS

(6)

The above formula is the same as (1), showing that
the proposed mechanism is able to approach the maximum
practical throughput.

IV. RIPE-MAC PROTOCOL

In this section, we describe our proposed Receiver Ini-
tiated, Pre-pull Enabled Medium Access Control (RIPE-
MAC) protocol based on the mechanism proposed in Section
III, targeting the upper-bound defined in (1). As mentioned
before, RIPE-MAC is built on top of the Eco platform. In
the following we present a detailed implementation of the
proposed protocol.

In order to send pull messages on a regular basis, it is
essential that they are initiated from the base station rather
than the PC host. Therefore, in our implementation the
base station works independently from the host in the sense
that it initiates the pull command. In this way, the host
takes over only the high-level and supervisory tasks such
as starting/stopping the system operation or determining the
number and order of the nodes to be inquired. Since the
RIPE-MAC protocol requires a predictable behavior, the
base station sends the pull command based on a real-time
interrupt which operates from an internal oscillator. This
provides the base station operation with predictability which
is a key factor in scheduling.

As shown in Fig. 2, with EcoDAQ, the base station spends
around 1.7 ms on idle listening. This time is nearly twice
as much time as needed for receiving a node’s data, having
known that PPT is about 1 ms for each packet. Therefore, at
least two nodes must be pre-pulled. This means, according
to (2), the base station must process data packets from at
least three nodes between consecutive interrupts. In other
words, each frame must consist of at least three time-slots.

Algorithm 1 Pseudo-code of the RIPE-MAC protocol for
the base station
PULL(n)

1: pullMessage[0]← n
2: for i = 1 to n do
3: pullMessage[i]← Dequeue()
4: Enqueue(pullMessage[i])
5: end for
6: Broadcast(pullMessage)
7: Listen()
8: for i = 1 to n do
9: packet← ReceiveReply()

10: ForwardToHost(packet)
11: end for

Fig. 5 depicts the RIPE-MAC’s timing diagram in the
simplest form, i.e., pulling data from three nodes in each
frame. Transmission times are scheduled in such a way
that the base station does three pairs of receive (RX) and
forward-to-host (FWD) operations one after another. The
pull message contains three node IDs, two of which are
actually pre-pulled for the next frame and the last one is
pulled for the same frame. Upon receipt of the pull command
and based on its order, each node has to wait for a certain
amount of time as in (4) and then transmit its sensed data.
Note that sensor nodes do sampling while waiting and
transmit the most recent samples.

Algorithm 1 shows the pseudo-code of the RIPE-MAC
protocol running on the base station. The PULL procedure
is called at each real-time interrupt. The pull message is
filled with the number of nodes (n) and the first n node
IDs in the queue. Having added to the pull message, each
ID is enqueued to form a circular queue. The base station
broadcasts the pull message and immediately switches to
RX mode. It then performs n pairs of RX/FWD prior to the
next interrupt.

RIPE-MAC incurs no further complexity on nodes. Algo-
rithm 2 depicts the pseudo-code of the RIPE-MAC protocol



running on Eco nodes. Upon receiving a pull message, a
node checks if it is being pulled. If so, the node determines
its waiting time based on its order and the total number of
the queried nodes in each pull message as in (4). Having
spent the waiting time, the node transmits the sensed data
to the base station. If a node is not pulled, it goes to the
sleep mode and wakes up just before the next pull message
is sent.

Algorithm 2 Pseudo-code of the RIPE-MAC protocol for
Eco nodes

1: loop
2: Listen()
3: pullMessage← ReceivePacket()
4: pulled← false
5: n← pullMessage[0]
6: for i = 1 to n do
7: if pullMessage[i] is MyID then
8: waitT ime← GetWaitingTime(i, n)
9: pulled← true

10: break
11: end if
12: end for
13: if pulled then
14: Wait(waitT ime)
15: TransmitSensedData()
16: else
17: Sleep()
18: pullT ime← GetNextPullTime(n)
19: WakeUpAt(pullT ime)
20: end if
21: end loop

If a node fails to send data or its packet is somehow lost,
the operation of other nodes will not be affected; however,
the node does not try to retransmit data, because it would
breach the periodic data collection, but the equivalent of
NACK messages can be easily achieved by re-pulling lost
packets. Owing to the timely and predictable behavior of
RIPE-MAC, the best periodic sleep time for each node can
be easily measured in order to minimize idle-listening and
save power by turning off the transceiver.

It is worth mentioning that RIPE-MAC does not need
to perform time synchronization because the nodes respond
relatively to the pull messages with different time offsets. In
fact, synchronization and schedule propagation are reduced
to a single pull message. The number of involved nodes in
each frame can be more than three, and this approach is
quite scalable. However, we have considered a small gap
between successive pairs of RX/FWD to avoid probable
time inaccuracies caused by interrupt jitter, hardware jitter
or clock drift.

Similar to any other protocol, RIPE-MAC has its own
limitations. For the most part, it assumes all nodes have

the same bandwidth demand that is determined statically.
As mentioned in Section II, our aim is to design an op-
timized TDMA-style MAC protocol capable of achieving
the maximum practical throughput with minimum latency.
To handle variable demands the RIPE-MAC protocol can
be used in the scheduled-based period of existing hybrid
protocols. As an alternative and based on the received data,
the host can decide to assign more time-slots to the nodes
with high-resolution data and less to those with no data or
less meaningful data.

Finally, the upper-bound might be pushed even further
by having RX and FWD performed in parallel at the base
station. In that case, PPTBS would be max(RX , FWD)
because the FWD operation of the current packet could
be overlapped with the next RX operation. However, the
resulting upper-bound would still follows (1).

V. PERFORMANCE EVALUATION

In this section, we study the performance of the RIPE-
MAC protocol and compare it with that of CSMA/CA
and the lightweight protocols reviewed in Section II. The
performance metrics used for comparison are throughput and
latency. In the presented experiments, n is equal to 3, unless
mentioned otherwise.

A. Experimental Setup

In order to compare the performance of the protocols
being investigated, we use Eco [5], [15], an ultra-compact,
self-contained, expandable sensor node. It contains 4 KB
RAM and 4 KB EEPROM and comes with a triaxial
accelerometer with a temperature sensor, and an IR light
sensor. Eco uses the Nordic nRF24E1, which includes an
8052 MCU core and an nRF2401 radio transceiver capable
of 1 Mbps wireless speed in the 2.4 GHz band.

We performed the experiments using a Fast Ethernet
base station, which was built by connecting a Freescale
DEMO9SNE64 evaluation board [16] to a Nordic nRF24L01
[17] transceiver module via SPI bus. The Nordic nRF24L01
transceiver is compatible with Eco at 1Mbps speed mode.
The base station is connected to the host computer over Fast
Ethernet.

As shown in Fig. 1, the wireless network topology is
single-hop, consisting of a number of Eco nodes in a
star topology. The base station and all nodes communicate
wirelessly over the same frequency channel. Each sensor
node transmits packets with data payload of 27 bytes to the
base station.

B. Experimental Results

Since B is 27 bytes and PPTBS is around 1 ms, accord-
ing to (1), the upper-bound of our system is 211 Kbps, which
is about 21% of the total wireless bandwidth. As shown in
Fig. 6, RIPE-MAC achieves about 83% of the upper-bound,
while EcoDAQ achieves about 30% of the upper-bound.



211

175.8

119.2

63.9 60.2

0

50

100

150

200

250

     Eco's     
upper-bound

RIPE-MAC
(n=3)

Sensemble
(n=3)

EcoDAQ CSMA/CA

Th
ro

ug
hp

ut
 (K

bp
s)

Figure 6. Comparison of throughput

0

50

100

150

200

250

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of time-slots per frame (n)

Th
ro

ug
hp

ut
 (K

bp
s)

Upper-bound

RIPE-MAC

Sensemble

EcoDAQ with multiple replies

Figure 7. Comparison of throughput based on the number of time-slots
per frame

In order to show the competency of RIPE-MAC, we also
compare it with Sensemble. Fig. 4 shows the timing of
Sensemble with three time-slots per frame, where the length
of each frame is 5.3 ms. Sensemble does not hide the idle-
listening time before the first reply arrives at the base station,
resulting in an aggregate throughput of 119.2 Kbps (56% of
the upper-bound).

We have also implemented the binary exponential backoff
based CSMA/CA and measured its performance. It failed to
scale to a comparable number of nodes while attempting
to saturate the bandwidth, resulting in a throughput of 60.2
Kbps (about 29% of Eco’s upper-bound). We observed in
our experiments that with CSMA/CA more than half of the
transmissions were unsuccessful mostly due to collisions.

For a better assessment, we compare RIPE-MAC with
Sensemble and EcoDAQ with multiple replies based on
the number of time-slots per frame (n). In other words, n
denotes the number of reply packets received by the base
station between successive pull messages. In the case of
EcoDAQ with multiple replies, n represents the number of
reply packets. Fig. 7 shows the achieved throughput with
negligible packet loss and clock drift. RIPE-MAC shows a

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of time-slots per frame (n)

La
te

nc
y 

(m
s)

EcoDAQ with multiple replies

Sensemble

RIPE-MAC

Figure 8. Comparison of latency based on the number of time-slots per
frame

better performance and is able to approach the upper-bound
much faster than the other protocols. In the case that n is 20,
RIPE-MAC achieves the throughput of 204.8 Kbps, which
is about 97% of the upper-bound. In that case, Sensemble
and EcoDAQ achieve 189.2 Kbps (90%) and 150.7 Kpbs
(71%), respectively.

Another important performance metric is latency. Fig. 8
depicts the latency of the protocols being compared based
on the number of time-slots per frame. The latency of RIPE-
MAC is a little more than Sensemble due to the fact that
the pre-pulled nodes must wait longer than the average
latency. The diagram shows that our approach achieves a
high throughput without considerably increasing latency.

The significance of RIPE-MAC is that it quickly ap-
proaches the upper-bound even with a few number of
time-slots per frame. As a result, it is less prone to time
inaccuracies than the other protocols. Our proposed protocol
achieves higher throughputs with shorter latency compared
to Sensemble and EcoDAQ.

C. Comparison Based on Upper-bounds

The Sensemble platform has achieved 320 Kbps using 25
nodes in each cycle [14]. This higher gain, compared to our
approach, is due to using faster hardware. The base station,
which is connected via USB to the host computer, spends
around 330 µs to process each data packet while in our case
it is around 1 ms. Sensemble use a dedicated MCU on their
nodes and it takes about 1.5 ms for each node to respond;
however, it takes 2.9 ms in the case of Eco.

As mentioned before, the upper-bound presented in (1)
can serve as a means of comparing protocols built on
different platforms. Therefore, to do a better assessment
we have estimated the upper-bound for the Sensemble’s
platform based on the information provided in [14] and [18].
Since PPTBS is 330 µs and B is 0.128 Kb per packet,



according to (1) the Sensemble’s upper-bound is around
387.9 Kbps. This means Sensemble achieves about 82% of
its upper-bound pulling from 25 nodes in each cycle. In
comparison, RIPE-MAC achieves 97.6% of the upper-bound
pulling from 25 nodes per frame.

Finally, to show the superacy of RIPE-MAC we conjecture
its projected performance if implemented on the Sensemble
platform. In order to implement the RIPE-MAC protocol on
the Sensemble platform, according to (2), at least 5 nodes
must be pre-pulled because the base station spends 1480
µs on idle-listening prior to the first node’s reply arrives. If
RIPE-MAC is implemented on the Sensemble platform with
six time-slots per frame, it will achieve about 384.6 Kbps
which is 99% of Sensemble’s upper-bound.

VI. CONCLUSIONS

High-bandwidth, multiple-access communication is a
challenge to designers of wireless sensing applications. This
is because for resource-constrained platforms, one cannot
afford to rely on localized abstractions provided by protocol
stacks or operating systems. Instead, one must consider
the timing globally. We present a formula for deriving the
practical upper-bound on throughput. It shows the maximum
possible throughput achievement regardless of the MAC
protocol being used. We show how this upper-bound can be
used to compare performance of protocols built on different
platforms. We also propose a streamlined protocol that
achieves over 98% of this upper-bound. It is able to approach
the presented upper-bound very fast even with limited num-
ber of nodes per frame. Our approach is general and can
be applied to various combinations of microcontrollers and
radio transceivers. To apply the proposed protocol to similar
WSNs, a parameterized system configuration is presented.

ACKNOWLEDGMENT

The authors would like to thank Chulsung Park for design
and implementation of the Eco platform, Chong-Jing Chen
for development of the EcoDAQ protocol, and Sehwan
Kim for his assistance in conducting the experiments. This
work was supported in part by the U.S. National Science
Foundation CAREER grant CNS-0448668.

REFERENCES

[1] H. Balakrishnan, “Opportunities in high-rate wireless sensor
networking,” in NSF Networking of Sensor Systems (NOSS)
Principal Investigator and Informational Meetings, October
2004.

[2] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh,
“Lance: optimizing high-resolution signal collection in wire-
less sensor networks,” in Proceedings of the 6th ACM Con-
ference on Embedded Networked Sensor Systems (SenSys).
Raleigh, NC: ACM, November 2008, pp. 169–182.

[3] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
“An application-specific protocol architecture for wireless
microsensor networks,” IEEE Transactions on Wireless Com-
munications, vol. 1, no. 4, pp. 660–669, October 2002.

[4] B. Raman and K. Chebrolu, “Censor networks: a critique
of “sensor networks” from a systems perspective,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3,
pp. 75–78, July 2008.

[5] C. Park and P. H. Chou, “Eco: Ultra-wearable and expandable
wireless sensor platform,” in Proceedings of the International
Workshop on Wearable and Implantable Body Sensor Net-
works (BSN). IEEE Computer Society, April 2006, pp. 162–
165.

[6] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica, “Flush: a reliable bulk transport
protocol for multihop wireless networks,” in Proceedings of
the 5th ACM International Conference on Embedded Net-
worked Sensor Systems (SenSys). Sydney, Australia: ACM,
November 2007, pp. 351–365.

[7] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves,
S. Glaser, and M. Turon, “Health monitoring of civil infras-
tructures using wireless sensor networks,” in Proceedings of
the 6th International Conference on Information Processing
in Sensor Networks (IPSN). Cambridge, MA: ACM, April
2007, pp. 254–263.

[8] J. V. Misic, S. Shafi, and V. B. Misic, “The impact of MAC
parameters on the performance of 802.15.4 PAN,” Ad Hoc
Networks, vol. 3, no. 5, pp. 509–528, January 2005.

[9] C.-W. Chen, C.-C. Weng, and C.-J. Ku, “Design of a low
power and low latency MAC protocol with node grouping
and transmission pipelining in wireless sensor networks,”
Computer Communications, vol. 31, no. 15, pp. 3725–3738,
September 2008.

[10] S. Yessad, F. Nait-Abdesselam, T. Taleb, and B. Bensaou,
“R-MAC: Reservation medium access control protocol for
wireless sensor networks,” in Proceedings of the 32nd IEEE
Conference on Local Computer Networks (LCN). Dublin,
Ireland: IEEE Computer Society, October 2007, pp. 719–724.

[11] A. Tiwari, P. Ballal, and F. L. Lewis, “Energy-efficient wire-
less sensor network design and implementation for condition-
based maintenance,” ACM Transactions on Sensor Networks
(TOSN), vol. 3, no. 1, pp. 1–23, March 2007.

[12] K. Klues, G. Hackmann, O. Chipara, and C. Lu, “A
component-based architecture for power-efficient media ac-
cess control in wireless sensor networks,” in Proceedings of
the 5th ACM International Conference on Embedded Net-
worked Sensor Systems (SenSys). Sydney, Australia: ACM,
November 2007, pp. 59–72.

[13] C.-J. Chen and P. H. Chou, “EcoDAQ: A case study of
a densely distributed real-time system for high data rate
wireless data acquisition,” in Proceedings of the 14th IEEE
International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), August 2008, pp.
427–432.

[14] R. Aylward and J. A. Paradiso, “A compact, high-speed, wear-
able sensor network for biomotion capture and interactive
media,” in Proceedings of the 6th International Conference
on Information Processing in Sensor Networks (IPSN). Cam-
bridge, MA: ACM, April 2007, pp. 380–389.

[15] “Ecomote,” http://www.ecomote.net/.
[16] “Freescale Semiconductor,” http://www.freescale.com/.
[17] “Nordic Semiconductor Inc.” http://www.nordicsemi.no/.
[18] R. Aylward, “Sensemble: A wireless inertial sensor system

for interactive dance and collective motion analysis,” Master’s
thesis, MIT Media Laboratory, Cambridge, MA, August 2006.


