
Enix: A Lightweight Dynamic Operating System for Tightly
Constrained Wireless Sensor Platforms

Yu-Ting Chen
Department of Computer Science

National Tsing Hua University

wtg.design@gmail.com

Pai H. Chou
Center for Embedded Computer Systems

University of California, Irvine

phchou@uci.edu

Abstract
In this thesis, we propose Enix, a lightweight dynamic op-

erating system for tightly constrained platform for wireless
sensor networks (WSN). Enix provides cooperative thread-
ing model, which is applicable to event-based WSN appli-
cations with little run-time overhead. Virtual memory is also
supported with the assistance of the compiler, so that the sen-
sor platforms can execute code larger than the physical code
memory they have. To enable firmware update for deployed
sensor nodes, remote reprogramming ability is available in
Enix. The commonly used library and the main logical struc-
ture are separated; each sensor device has a copy of the dy-
namic loading library in the Micro-SD card, and therefore
only the main function and user-defined subroutines should
be updated through RF. A lightweight, efficient file system
named EcoFS is also included in Enix. The code size and
data size of Enix with full-function including EcoFS are 8
KB and 512 bytes, respectively, making Enix the smallest
one compared to other WSN OSs.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous; D.2.8 [Software Engineering]: Metrics—complexity
measures, performance measures

General Terms
Delphi theory

Keywords
ACM proceedings, LATEX, text tagging

1 Introduction
The right runtime support for a resource-constrained em-

bedded systems platform can make a great difference in the
amount of effort required to develop applications for wireless
sensor networks (WSN).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1.1 Motivation
Fig. 1 shows three scenarios that WSN researchers of-

ten encounter. The first issue is the size and cost problem.
Current WSN platforms, for example, Mica2 [22] and Mi-
caZ [2], have a development board with two AA batteries
that may be “small” when compared to a computer but are
actually, big, heavy, and expensive to wear and embed for
many real-life wireless sensing applications. Wearable sens-
ing system, including both human and animal worn ones, im-
pose possibly the most stringent constraints on the size and
weight of the entire system, as shown in Fig. 1(a).

To enable better fitness to wearable applications, some
ultra-compact wireless sensor platforms have been devel-
oped [33, 37]. The Eco node, which uses an 8051/8052-
compatible MCU core, is only 1cm3 in volume and weighs
under 2 grams, making it most competitive in terms of cost
and lightweight metrics. However, it is also highly con-
strained in terms of the amount of memory and computing
ability, which pose new challenges on the operating system
design.

Fig. 1(b) depicts another real-world WSN application.
Most of the outdoor sensing environments have rugged to-
pography and scarce resources. For example, in the Amazon
forest and deep ocean, the sparce deployment, long physical
distance, and harsh environmental condition make it impos-
sible or impractical to transmit wirelessly even across multi-
hop nodes to a base station with continuous power supply.
Instead, the sensor nodes collect data from these severe sens-
ing environments by storing sensed data in nonvolatile mem-
ory for later retrieval. Besides, some applications require
sensing data at a high sampling rate during specified inter-
vals of time. The common sense-and-transmit pattern used
in WSN may not work due to the high sampling rate re-
quirement. Therefore a sensed, logged and transmit (SLT)
pattern has been shown useful [12] to solve the problem.
According to these RF-unavailable environments and SLT
purposes, a reliable and efficient storage system is required.
Some general-purpose file systems such as FAT, EXT, JFFS
and so on have the simplified version that claimed appropri-
ate for embedded systems. However, the limitations of re-
sources in lightweight sensing systems are far more than the
embedded systems mentioned above. Furthermore, the ma-
jority of lightweight sensor devices are MMU-less, and thus
the lack of hardware for supporting memory management is
an issue. To make use of the second storage medium such as

flash memory and EEPROM, software virtual memory can
be achieved by using a compiler-assisted scheme, thereby
overcoming inadequate built-in code memory of MCUs.

To provide effective management of tight constraints on
hardware resources and to enable runtime support of wire-
less sensor nodes, a lightweight system kernel that is de-
signed specifically for WSN has become increasingly im-
portant. Most of people think that an operating system may
cause additional overhead and power consumption especially
for resource-constrained sensing systems. However, an op-
erating system may actually improve efficiency by support-
ing power management, memory management, task manage-
ment, and multi-threading.

Fig. 1(c) shows typical capabilities of runtime operating
systems. In addition to the basic scheduling for event-driven
or multi-threading models, several other types of runtime
support are also becoming important for wireless sening ap-
plications. For example, virtual memory enables the MCU
to execute larger, more sophisticated programs than its phys-
ical memory alone allows. Another important type of sup-
port is remote programming, as it may be nearly impossible
to update firmware of sensor nodes through wired interfaces
after they have been deployed in large numbers. For this rea-
son, a loader that supports dynamic reprogramming becomes
an important issue when designing an operating system for
WSNs. Users expect that firmware update can be done us-
ing a host PC shell environment. Code image will be sent
through RF to remote sensor nodes and loaded by a dynamic
program loader at runtime. Another issue that arises from
remote reprogramming is the size of the code image. In or-
der to reduce the power consumption, sensor nodes should
reduce the RF transmission as more as possible; moreover,
they should also avoid idle-listening, since that consumes
twice the power as the highest RF transmission. A good
run-time system may also provide an efficient mechanism
to reduce the image size in remote reprogramming. Some
common schemes such as patch generation and compression
can achieve the objective, but these also increase the runtime
overhead and consume considerable runtime memory. As a
result, a better solution to the problem must be presented.

1.2 Problem Statement
Our goal is to implement a new operating system for wire-

less sensor platforms. We assume the wireless sensor device
is ultra-compact with a small quantity of GPIOs and inade-
quate code and data memory. It has sensors to collect data
and the ability to exchange data through RF; common inter-
faces such as UART, I2C, and SPI are also available. The
external non-volatile memory such as serial flash and Micro-
SD card can be connected to the sensor device through SPI.
In the following subsections, we list the requirements of a
WSN OS design.

1.2.1 Lightweight and Portability
The operating system is supposed to be appropriate for

the more resource-constrained version of the current wire-
less sensor platforms with different MCU ISAs. Low mem-
ory and power consumption must be achieved by utilizing
only limited resources in order to increasing the life time of
wireless sensor devices A portable interface and the reduc-

(a) Wearable sensor appli-
cations.

(b) Severe sensing environments.

(c) Remote reprogramming and debugging.

Figure 1. Enix reference applications.

tion of assembly code implementation enable the operating
system to be ported to other MCU ISAs.
1.2.2 Appropriate Programming Model

An appropriate programming model not onlyi facilitates
software development but also promotes good programming
practices. Event-driven programming model is widely used
in WSN but has several drawbacks; for example, tedious,
unstructured, and repetitive [4, 8, 20, 36]. Consequently, an
easy-to-use threading structure that is applicable to event-
based WSN applications with little runtime overhead is de-
sired. Context switching and the scheduling policy are the
two main sources of run-time overhead of multi-threaded
programming; the efficiency of the scheduler must be im-
proved by fast algorithms instead of linear searching for the
next running thread; the overhead of context switch can also
be reduced by simply storing the critical registers into stack
and avoiding using the slow external memory.
1.2.3 Virtual Memory

Virtual memory can overcome the shortage of memory re-
sources problem that a resource-constrained wireless sensor
device usually faces. It can be achieved via the assistance
of compiler without hardware MMU support; each function
is compiled into a code segment that is then stored on the
Micro-SD card at a specific virtual address; the segment is
loaded on demand while the user program calls this virtual
address at run-time. Memory compaction and garbage col-
lection must be implemented to solve the external fragmen-
tation problem and to recycle the unused memory for future
allocation. Users should write program without any concern-
ing about what the run-time demand segmentation module

does, and no additional tags and no restriction on function
prototypes would be applied to user programs.
1.2.4 Remote reprogramming

To enable run-time firmware updates for deployed wire-
less sensor devices, wireless reprogramming is required in
WSN OS design. Dynamic loading must be achieved to en-
able partial update instead of the whole image update in or-
der to reduce the time and energy cost while doing remote
reprogramming. Position-independent code (PIC) is a suit-
able approach to achieving dynamic loading; the compiler
can assist the generation of PIC on host PC, thus avoiding
the overhead of relocating addresses at run-time.
1.2.5 File System

A lightweight file system supported by the operating sys-
tem is necessary to assist the access to data storage. The de-
sign of file system is targeting for WSN applications instead
of general purpose file system. Wear leveling and erase-
before-write are handled by the MCU in Micro-SD card in
order to reduce code size. The file system should be used
to store binary code data, preferences of sensor devices and
network data such as routing table and the sensed data. The
API provided to users must be specific designed and opti-
mized according to the different features such as access pat-
tern of each type. The file system must be configurable, and
therefore only the necessary storage types are chose in order
to conserve code memory.

1.3 Objectives
Enix provides a lightweight and dynamic operating sys-

tem with a specialized file system EcoFS for tightly con-
strained wireless sensor platforms. The most important task
for our work is to manage the limited resources of wireless
sensor platforms and to provide a well designed program-
ming model for WSN application developers. Enix provides
cooperative threading model which enables multi-threaded
programming for users with minimized overhead of context
switch and reduced code size via a novel way modified from
setjmp/longjmp system library. A replaceable scheduler is
also provided therefore different schedule policies may be
applied to WSN applications with different requirements.

The next goal of Enix is the compiler-assisted run-time
supports. Run-time functionalities such as virtual memory,
remote reprogramming and memory allocation are useful but
challenging to implement due to the lack of resources. We
take the approch of compiler-assist, which shifts the com-
plexity to the resource-unconstrained part such as the host
PC. Virtual memory can be achieve without hardware sup-
port via code insertion technique at compile stage of devel-
opment process. Dynamic loading is very helpful for run-
time reprogramming; common run-time relocation approach
increases the overhead of sensor nodes; PIC approach can be
used to achieve run-time programming with minimized over-
head. Accordingly, with the help of host PC, the run-time
overhead of wireless sensor nodes is reduced.

In the case of EcoFS, the goals are highly efficient file op-
eration and low power consumption. The separation of four
access types of EcoFS increases the access speed. By use
of Micro-SD card as secondary storage results in additional
energy consumption caused by the operating power required

by the Micro-SD card. The design of EcoFS minimizes the
active time of the Micro-SD card by I/O scheduling and by
limiting the usage of the Micro-SD card via API provided
by EcoFS; therefore, the overall power consumption is min-
imized.

Configurability and small memory consumption are also
achieved. Each components in Enix is configurable, and
therefore only the required components are configured and
compiled before programming the sensor devices. For mem-
ory consumption, the code size and data size are both min-
imized. The code size of our full function implementation
of Enix is 8 KB, and the data size is about 512 bytes. By
excluding the unused components of Enix, the code and data
memory consumption can be further reduced.

The rest of this thesis is organized as follows. Chapter
2 discusses related works on WSN OS design. Chapter 3
presents an overview of our lightweight WSN OS Enix and
its design concepts. Chapter 4 describes the implementa-
tions of run-time components in Enix including the sched-
uler, compiler assistant virtual memory, runtime reprogram-
ming, and runtime loading. Chapter 5 describes the file sys-
tem EcoFS and the storage medium chosen by EcoFS. We
evaluate Enix and EcoFS and present the results in Chapter
6. Finally, Chapter 7 conclues this thesis with a summary of
contributions with Enix and discusses directions for future
research.

2 Related Work
Wireless sensor networks are composed of sensor nodes

and base stations. A sensor node has the following char-
acteristics : small physical size, low cost, small code and
data memory, limited computing capability, and limited bat-
tery power. Together, these factors limit the performance
and complexity of WSN applications. For example, the
ultra-compact Eco [33] wireless sensor platform has only 4
KB of instruction memory and 256 bytes of data memory.
Some tiny real-time operating systems (RTOS) are able to
run on such a resource-constrained platform, such as µC/OS-
II [25] and FreeRTOS [1], both of which support preemptive
multi-threading with round-robin or priority based scheduler.
These RTOSs are indeed lightweight and well designed, but
they are not suitable for wireless sensor networks because of
the lack of functionality such as runtime code update, power
management, and resource control capabilities. In response,
researchers propose some WSN operating systems that pro-
vide support that are specific to WSN applications. Table
1 shows a comparison between existing operating systems
aimed at WSNs.

2.1 Programming Model
TinyOS [27] is a widely used runtime system for wireless

sensor systems. It uses a special language called nesC [18]
to describe the software components that form a sensor sys-
tem with event-driven semantics. The application code and
the runtime library are then compiled into one monolithic
executable. Several event-driven runtime-support systems
have been developed for wireless sensor networks and appli-
cations with similar characteristics, including TinyOS [27],
SOS [21], and Contiki [14]. The processes of these oper-
ating systems are implemented as event handlers that run

to completion without preemption. Therefore, event han-
dlers in event-driven models may share the same stack to re-
serve insufficient memory space. Event-driven programming
is based on cooperative multitasking, which may be good
for tiny, single-processor embedded devices, but users have
to perform stack management manually, and as a result the
code can become difficult to read and maintain. Some oper-
ating systems for WSN provide preemptive multi-threading
[8–10, 14, 16, 19, 34], so that achieving real-time ability and
preventing the critical events from starvation caused by an-
other event with heavy workload. Multi-threaded program-
ming model is easy to learn comparing with event-driven
model and the code is more readable and maintainable. In
severe memory and power constrained environments, how-
ever, a multi-threaded model has several disadvantages. For
example, it occupies a large part of the memory resources,
spends more CPU time and consumes more battery power
derived from context switch overhead.

Dunkels [15] proposes Protothreads to allow users to
write event-driven programs in a threading style, with a
memory overhead of only two bytes per Protothread. The
concept of Protothreads is almost the same as C co-routines
[23, 35] in that they implement “return and continue” by
use of C-switch expansion. Protothreads has limitations in
that auto variables or local states cannot be stored across a
blocking wait, and the C-switch implementation may lead
to a table lookup and jump overhead at runtime, and they
also increase the code size. The runtime complexity is pro-
portional to the number of yield points in a protothread.
Our Enix OS emphasizes cooperative threading, which guar-
antees that no thread will have to yield control unexpect-
edly [20], and Enix threads work similarly to co-routines
but they are implemented in a mix of C and assembly for
smaller code size and better execution efficiency. Swapping
between threads in Enix is a real context-switch operation,
not just a C-switch. It provides automatic stack manage-
ment and incurs little runtime overhead compared to preemp-
tive multi-threading. In addition to cooperative threading,
Enix also supports lightweight preemptive multi-threading
for real-time scheduling. For the power consumed by con-
text switches, MANTIS OS [8] shows that multi-threading
and energy efficiency need not be mutually exclusive when
an effective sleeping mechanism is used to reduce context-
switching overhead.
2.2 Runtime OS support for WSN

In real-world wireless sensor networks, the deployed sen-
sor nodes must have the abilities to manage the tasks and
resources at run-time. Run-time reconfiguration and repro-
gramming also become important issue in WSN OS design.
TinyOS, as mentioned before, produces a single image that
the kernel and applications are statically linked, thus, updat-
ing code image means whole system image replacement. In
order to provide efficient runtime remote reprogramming for
TinyOS, Maté [26], a virtual machine for TinyOS has been
proposed. Using Maté and other virtual machines for WSN
[7, 24, 30], code can be distributed and configured at run
time. The drawbacks when running virtual machine on sen-
sor nodes include the requirement to learn another language
and the runtime overhead of the virtual machine interpreter.

The interpretation overhead may result in more energy con-
sumption and might decrease the life time of sensor nodes.
SOS [21] is another event-driven OS but consists of dynam-
ically loaded modules and a common kernel. The modules
are position independent code (PIC) binaries that implement
specific tasks or functions. This modulized design is quite
flexible, but the interaction between modules may incur high
runtime overhead, and the module must be implemented in
fixed format, which increases the entire code size of SOS. To
support more than one MCU, Contiki [14], RETOS [10] and
LiteOS [9] provide dynamic loading by runtime relocation,
rather than relying on position independence. The applica-
tion binary to be combined with relocation information must
be relocated or dynamic linked [13] at run time before load-
ing to program memory, that is, a considerable data buffer is
required in order to relocate in space. Our Enix OS support
dynamic loading using kernel-supported PIC, which is easy
to port to other platforms. The dynamic library is pre-linked
to the kernel with minor modification. Hence, our runtime
overhead and additional buffer are reduced compared to the
runtime relocation approach.

2.3 Virtual Memory Management
To fully utilize the memory of a tightly constrained wire-

less sensor platform, some researchers propose software vir-
tual memory in MMU-less embedded systems. It can be
achieved by code modification by either using a compiler or
constructing an additional converter. SNACK-pop [32] pro-
vides a framework for compiler-assisted demand code pag-
ing with static call graph analysis and optimization. The
input Executable and Linking Format (ELF) [3] file is ana-
lyzed and translated into an executable image such that every
call/return is modified to call the page manager. Choudhuri
and Givargis [11] indicates that data segment has a greater
need to be paged than code segment, and therefore they pro-
pose a data paging scheme with adjustable page size based
on an application-level virtual memory library and a virtual
memory-aware assembler. t-kernel [19] is the first WSN OS
that provides virtual memory for both code and data seg-
ments with additional memory protection ability. In addi-
tion to software virtual memory approach, MEMMU [6] pro-
poses a new software-based on-line memory expansion tech-
nique [5] that requires no secondary storage. Therefore, it in-
creases the performance and minimizes the power consump-
tion comparing to the above approach. However, MEMMU
introduces about 4 KB of code size overhead and requires at
least 512 bytes of data memory that is not applicable to sen-
sor platforms with tightly constrained code and data mem-
ory [33]. Besides dynamic loading, Enix also supplies soft-
ware segmented virtual memory by code modification, and
uses a Micro Secure Digital (SD) card as secondary storage
due to the convenience of installing virtual code segments
through the host PC. Enix does not provide virtual memory
of data segment because of the high runtime overhead, but it
does support a data memory allocation scheme to fully uti-
lize the slight data memory. Further, Enix consumes only
886 bytes of code and 256 bytes data memory.

2.4 File Systems for WSN
Storage is an essential factor of data-centric sensor net-

work applications. A well-designed file system may help
conserving power and provide convenient non-volatile data
management of wireless sensor nodes. In Table 2, a compar-
ison of WSN file systems is presented. LiteFS is a subsys-
tem of LiteOS [9] that provides a hierarchical, Unix-like file
system that supports both directories and files. This kind of
general-purpose file system along with FAT, Ext2 and other
common file systems are not really suitable for WSNs due to
the relatively large code size and a great deal of data memory
space used to store the hierarchical data structures. Another
issue is that the general file format becomes insufficient to
store WSNs data due to the absence of fast query support.
There are some file systems or databases customized design
for WSNs [12, 17, 28, 29, 31, 38]. ELF [12] uses NOR flash
to implement a log structured file system. It expects to en-
counter three major sources of data: sensor data, configura-
tion data, and binary program images, all of which have dif-
ferent access patterns. However, it is not applicable to stor-
ing a time series of sensor data and maintaining an index of
them to support queries, MicroHash [38], TinyDB [28] and
FlashDB [31] use lightweight index structures or databases
that work on wireless sensor nodes. Due to supporting high-
performance indexing and searching capabilities, in-memory
data structures overhead is inevitable in these systems. Cap-
sule [29] covers the abilities mentioned above. It provides
the abstraction of typed storage objects to applications in-
cluding streams, indexes, stacks, and queues. The composi-
tion of different objects may satisfy varies requirements of
WSNs. However, the high capacity parallel NAND flash
used by Capsule makes use of many general-purpose in-
put/output (GPIO) ports, and therefore it does not work on
small-sized microcontroller units (MCU) with few available
I/O ports. Although the flash abstraction layer in Capsule
supports multiple flash devices, it still focus on flash devices
without random access capability. Enix includes EcoFS, a
lightweight file system using the Micro-SD card as its stor-
age medium, which has high capacity as NAND flash and re-
quires only four I/O lines for the Serial Peripheral Interface
(SPI) compatible protocol. Moreover, due to the replace-
able feature of SD card, we also builds an EcoFS Shell on
the host PC to quickly access an EcoFS-formatted Micro-SD
card. EcoFS provides four storage types inclusive of code
data, preferences, sensed data and network information with
different access patterns in order to improve the performance
and decrease the code and data size. It consumes the small-
est data memory among all existing file systems designed for
WSNs.

3 Enix Overview
This chapter provides an overview of Enix. We first de-

scribe the system architecture and the functionality of each
component. Next, we present the concepts of Enix design.

3.1 System Architecture
Figure 2 shows the block diagram of Enix, which cur-

rently runs on a wireless sensor platform called EcoSpire.
The Enix operating system contains four major components.
The first component is the runtime kernel of Enix that man-

Table 1. Comparison between WSNs operating systems.
OS Enix TinyOS SOS Contiki MANTIS OS t-kernel RETOS LiteOS Nano-RK
Platform Nordic ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L

nRF24LE1 & MSP430 & MSP430
Programming Thread Event Event Event Thread Thread Thread Thread Thread
Model & Thread
Real-time Support 4 1 4 © © © © © ©
Dual Mode Operation © © © © © © ©
Remote Update © 4 © © © © ©
Dynamic Loading © 2 4 © 2 © 3 © 3 © 3

Protection 4 ©
Virtual Memory © 4 4 © 5

File System © 4 ©
Network Abstraction © 4 © ©
Code Size (Bytes) 6 8,138 21,132 20,464 3,874 8 14,000 28,864 20,394 30,822 10,000
Data Size (Bytes) 7 512 597 1536 512 512 512 945 1,633 2,000
1 4 means optional components.
2 Achieved using PIC.
3 Achieved using runtime relocation.
4 Support code virtual memory only.
5 Support both code and data paging.
6 The code size including the basic kernel and the© components, excluded4s.
7 List the smallest data memory required to startup OS, at least one thread in multi-threaded model.
8 The code size without TinyOS which is the base of Contiki.

Table 2. Comparison between WSNs file systems.
File System EcoFS FatFS LiteFS ELF Capsule MicroHash
Platform Nordic Nordic ATmega128L ATmega128L ATmega128L ATmega128L

nRF24LE1 nRF24LE1
OS Enix No LiteOS TinyOS TinyOS TinyOS
Storage Medium SD/MMC SD/MMC EEPROM NOR NOR/NAND MMC

Card Card and Flash Flash Flash Card
Abstraction File System File System Unix-like File System Objects Index/Stream

File System
Usage Model File Storage General Purpose General Purpose WSN Specific Data Storage Stream Storage

& Network Info File Storage File Storage File Storage and Index and Index
& Virtual Memory

Line Counts 1 447 1,757 1,755 3,577 844 5,000
Data size (Bytes) 36 552 104 512 512 3,000
1 The lines of source code is measured by C and C++ Code Counter (CCCC) tool.

ages hardware resources and supports run-time reconfigu-
ration. This component provides memory and power man-
agement capabilities for the wireless sensor node to utilize
the limited memory and energy resource. With a coopera-
tive thread scheduler, developers can write multi-threaded
programs to overcome the insufficient single-threaded pro-
gram. A wireless code image update manager and a dy-
namic loader are also included to enable runtime reprogram-
ming, so that the deployed sensor nodes can be easily up-
dated through RF.

Although the file system is one of the modules in the run-
time kernel, it provides more support for WSN applications.
Consequently, we separate the file system as an individual
component of Enix. EcoFS, the file system of Enix, is a
configurable and lightweight storage system using a Micro-
SD card or an MMC card as the storage medium. EcoFS
is divided into the following parts according to the differ-
ent usage patterns: code data, preferences, network data and
sensed data. The code data block stores the binary code seg-
ments that can be loaded efficiently by the runtime loader
into the code memory on demand. The preferences are the
key-and-value pairs applicable to store the node’s status and
settings. The requirement of preferences is fast searching
with modify enabled. Because of the limited data mem-
ory and the wish of providing a simple network abstraction,
the routing table may be maintained in EcoFS. The network
data such as routing tables or the roles of the adjacent nodes
must be enumerable and may be changeable if dynamic net-
work topology is applied. Last but by no means the least,

yp3ka7
Figure 2. The block diagram of Enix.

the sensed data block is used to collect the valuable sensing
data in harsh environments. This append-only storage type
must be quick and efficient as a result of the requirements of
high-sampling-rate WSN applications.

The third component of Enix is the dynamic loading li-
brary ELIB. ELIB is a special library that is preprocessed by
host PC tools. Most of the commonly used library functions
are collected and transformed into segments which compose
ELIB. Each segment is a position-independent function bi-
nary code with a unique virtual address, that is, an address
where the segment is located in the secondary storage. Due
to the constrained memory resource of compact wireless
sensor devices and the high energy consumption of the RF
transceiver, making use of ELIB enables software virtual
memory and reduces the transmission size of runtime repro-
gramming.

The last part of Enix is the host PC’s utility tools, in-
cluding a wireless reprogramming and debugging shell, a
file system parser shell, complier and linker. By use of the
host PC assistant, the complicated works can be done on the
host PC, thus reducing the run-time overhead of the tightly
constrained devices. For example, rather than processing de-
layed linking at run-time as ELF does, the ELIB building
tool constructs a position-independent library at link-time.
Therefore, the run-time loading burden on the MCU of these
compact sensor nodes is reduced significantly, and no addi-
tional code is required. Another example is the file system
shell, called the EcoFS shell, which provides an interactive
environment for users to manipulate specially formatted data
of EcoFS simply and conveniently. This assistance saves the
user from wasting time on troublesome tasks such as reading,
modifying and writing secondary storage devices directly by
firmware executing on the sensor node using either Serial
Serial Peripheral Interface (SPI) or Inter-Integrated Circuit
(I2C) drivers.
3.2 Design Concepts

The primary objectives of Enix is to design a lightweight
and dynamic operating system. In this section we will ex-
plain the design concepts and novelty of Enix.
3.2.1 Cooperative Threads

To get eliminate the tedious, unstructured, and repetitive
event-driven programming shortcoming, multi-threaded pro-
gramming has been chosen by recent WSN OSs because
of the more maintainable source code and modest learn-
ing curve [4, 8, 20, 36]. A multi-threaded program requires
scheduling support so that the critical threads may be as-
signed sufficient CPU time to ensure their proper execution.
Although multi-threading is often thought of as a technique
for improving performance, the runtime overhead of context

switching cannot be ignored especially for tiny embedded
sensor devices. In fact, most of WSN applications with a
multi-threading model do not require the ability to preempt
other threads. Moreover, they regard these preemptions as
bugs in the program. Cooperative threading is another class
of multi-threading environments that emphasize the expres-
sion of structure using threads and guarantees that no threads
will will be preempted unexpectedly [20]. The programmer
designates well-defined points where a thread yields control
voluntarily, so that the special work of the thread is guar-
anteed to be done before other threads get to execute. As a
result, this model provides an easy-to-use threading structure
that is applicable to event-based WSN applications with little
runtime overhead. Enix chooses the cooperative threading
model instead of event-driven or preemptive multi-threaded
programming model.

Enix also builds a scheduler for the cooperative threads
to select the next running thread among all runnable threads.
The algorithm to choose the next running thread is not hard-
wired; it is replaceable with a variety of policies. Enix cur-
rently supports priority-based and round-robin scheduler that
best suits different WSN applications. Thread control func-
tions such as semaphore, suspend, resume, and sleep are also
included in Enix in order to enable synchronization between
threads. Instead of using a C-style switch statement to im-
plement cooperative threads as protothreads does, the imple-
mentation idea of Enix cooperative threads comes from the
setjmp/longjmp system library for enabling non-local jumps.
The setjmp and longjmp system functions are the common
method to jump between subroutines. setjmp function stores
the program counter and stack pointer into a jump buffer;
while longjmp is called in another subroutine, the data in
the jump buffer will be restored thus return to the setjmp
point. While traditionally each setjmp/longjmp is a pair and
the jump direction is fixed from longjmp to setjmp, the co-
operative thread in Enix allows jumping from any specific
points to another. This can be treated as multi-level setjmp
and longjmp. Although some machine dependent assembly
code is used, the performance is promoted significantly.

3.2.2 Dual-Mode Operation
Instead of executing a monolithic binary image that is

composed of the OS kernel and the user program, ENIX sup-
ports dual-mode operation, where the OS kernel and user
program are separated. The OS kernel consists of critical
modules and hardware drivers and provides a kernel API for
user programs, namely the system calls, such as cooperative
threads control, virtual memory manager, firmware update
module, file system, and RF transceiver drivers; where the
user program does the WSN sensing and transmission tasks
via cooperative programming model. This dual-mode op-
eration helps implementing run-time support that is highly
useful to wireless sensor devices. To reduce the overhead
from runtime system call when user program invokes kernel
functions, a bridge library is applied to relocate the calls to
real addresses at link time. Using this compiler and linker
assistance technique, the separated OS kernel and user ap-
plications are integrated.

3.2.3 ELIB Design Concepts
The design concepts of ELIB is the separation of user

programs and libraries. We discovered that a typical WSN
application is composed of a logical structure of the main
function and several library function calls. A simple sense-
and-transmit application is shown in Figure 3. The program
occupies about 1.4 KB of the code memory. However, the
main function consumes only 224 bytes compared to the
called library functions, which occupy a much larger part
of the application’s code image. Besides, it is worth mention
that these library functions are well designed and modified
rarely. The purpose of ELIB is to utilize the characteristics
mentioned above. It is the collections of commonly used li-
brary functions with special code modification mechanism
in order to construct position-independent segments. This
mechanism replaces all position-dependent instructions to
the kernel functions with fixed address in order to constructs
run-time position independent code. By installing these pre-
processed segments on the Micro-SD card with unique vir-
tual addresses individually, software virtual memory can be
achieved at runtime. Moreover, this design may reduce the
transmission size and energy consumption when doing wire-
less firmware update. Only the main logical structures, that
is, the user-defined functions are demanded to be transmitted
to remote sensor nodes with ELIB installed.
3.2.4 EcoFS Design Concepts

The Enix operating system has a built-in file system called
EcoFS customized for WSN that can support most of the
requirements for a tiny wireless embedded sensor system.
EcoFS is the first WSN file system that uses the Micro-
SD card as its storage medium. The tiny physical size
(1.1cm×1.5cm), large capacity (above 2GB) and simple ac-
cess interface (4-wire SPI) are the reasons for choosing the
Mico-SD cards. Although the MCU in the Micro-SD card
consumes additional energy, our experimental results have
shown that it saves power to retrieve and store data in an SD
card compared with reliable transmission using RF in Chap-
ter 6. Unlike general-purpose file systems that consume a
considerable amount of memory for data structures, EcoFS is
separated to four storage types by the usage pattern of WSN.
With the specific design of each type, EcoFS can modulate
the trade-off between in-memory buffer size and improve the
performance when designing a file system. The storage types
of EcoFS are code data, preferences, sensed data, and net-
work data. In order to reduce the in-memory data structures,
each data item in EcoFS is either fixed length or wrapped by
special tags just like regular TCP/IP packet format and has
a special length field to indicate the size of the item. There-
fore, parsing process can be done without consuming large
data memory by using load-partial-then-parse scheme. A su-
per block is built in the header block of the Micro-SD card
for quickly enumerating or searching. For example, a bitmap
for network data and the address list for code data enumerate
the directly connected node IDs and the addresses of exist
code segments, respectively. For the preference type that re-
quires fast search, the super block preserves a hash table for
constant-time preferences locating.

Due to the replaceable characteristic of the Micro-SD
card, we design an interactive shell EcoFS Shell on host PC

Figure 3. A typical WSN application and the code size of
each component.

OS to provide an easy and simple way to operate EcoFS
formatted data instead of handling everything on sensor
nodes. EcoFS Shell enables full functionality for handling
the EcoFS formatted data including basic read and write op-
erations and advanced sensed data analysis. By putting the
full and complex operations on the host side and implement-
ing the demanded one on the sensor node, the consumption
of code and data memory for running EcoFS is reduced.

4 Runtime Components in Enix
This chapter describes the key runtime components in

Enix: the cooperative threads with the run-time scheduler,
compiler-assisted virtual memory, and dynamic loading.

4.1 Cooperative Threads and Scheduler
The cooperative threading model has the characteris-

tic that a context switch occurs only when current running
thread calls yield or sleep functions; thus, the overhead of
context switching and stack usage are lower than preemp-
tive multi-threading and is more appropriate for tightly con-
strained wireless sensor platforms. In this section, we de-
scribe a novel way to implement cooperative threads with
light context-switching overhead and that consumes little
code and data memory. In addition, two popular schedul-
ing policies, namely priority-based and round-robin, are also
presented to provide the adaptive abilities of Enix for sup-
porting different WSN applications.
4.1.1 Multi-points Setjmp/Longjmp

The cooperative threading model, also known as as corou-
tines, is based on the idea by Donald Knuth. Coroutines al-
low multiple entry points in subroutines for suspending and
resuming execution at certain locations. The purpose of co-
operative threads in Enix is to achieve coroutine-like behav-
ior for resource constrained wireless sensor systems, through
an efficient, low-cost implementation of coroutines.

The setjmp and longjmp are common system functions
for jumping between subroutines. To achieve the inter-
subroutines jump, the setjmp function stores the program
counter and stack pointer into a jump buffer. When longjmp
function is called from another subroutine, the data in the
jump buffer is restored, and then the program returns to the
previous setjmp point. It is worth mentioning that the used
registers are pushed on the stack before the setjmp function
is called, and therefore the local variables can also be re-

stored after setjmp. However, this approach does not support
jumping forward or backward between multiple functions as
required by coroutines. First, it provides a single-direction
jump only from the longjmp point to setjmp point according
the jump buffer; second, stack overwriting happens while the
previous setjmp point calls the cascaded function that may
modify the stack data of later setjmp points.

To achieve cooperative threading, the ideas of setjmp and
longjmp are taken; each never-returned subroutine represents
a cooperative thread, which has its own stack and context
buffer for storing critical data. The cooperative thread may
yield at any specific point to invoke the scheduler and re-
sume another cooperative thread; each yielding call auto-
matically pushes the used local variables on the stack and
records the program counter and stack pointer in the con-
text buffer; the resume process simply restores the saved
data from the context buffer and the stack. As long as the
context-switching point is determinable, only the necessary
data would be stored on the stack. Therefore, the per-thread
stack does not require large capacity and is adaptive accord-
ing to the number of threads. The maximum number of coop-
erative threads is seven in the current version of Enix. This
approach to cooperative threads allows subroutines to sus-
pend and resume execution at specific locations without be-
ing concerned with stack and thread states. Moreover, the
functions such as semaphores, yield, sleep, suspend and re-
sume are also provided to enable thread control abilities.

Figure 4 shows a sample Enix user application that ap-
plies the cooperative threading model. The purpose of this
application is to sense the accelerations of three axes, namely
X-axis, Y-axis and Z-axis, and then wirelessly transmit the
sensed data to a remote sensor node with ID 1234. There
are three cooperative threads in this program: the thread
THREAD0 first initializes the hardware modules and global
variables and then blinks the LED periodically; the thread
THREAD1 senses the data while the sensor is ready and the
previous sensed data is already transmitted; the last thread
THREAD2 transmits the sensed data to the remote sensor
node and then clears the global flag to allow the next sens-
ing task in THREAD1. The main function adds the threads
to Enix kernel and then calls enix kernel start function to
invoke the scheduler.
4.1.2 Priority Based and Round-Robin Scheduler

As mentioned before, the sample code in Figure 4 fi-
nally calls enix kernel start function at the end of the
main function to invoke the scheduler, and the function
enix kernel start never returns to main(). The scheduler
decides the next running thread from the list of runnable
threads and processes context switching.

Enix provides two scheduling policies: priority-based
scheduler and round-robin scheduler to determine the next
running thread by priority or registration sequence, respec-
tively. The scheduler policy in Enix is replaceable to provide
flexibility for development of WSN applications. The list of
runnable threads is represented with a bitmap, which enables
the next runnable thread to be found efficiently The thread
with priority n is runnable only if the nth bit in the bitmap
is set; thus by checking the bitmap, the next running thread
can be found. For the priority-based scheduler, the first set

#include <elib/epl_utils.h>
#include <elib/epl_uart.h>
#include <elib/epl_acc.h>
#include <kernel/enix_kernel.h>

extern xdata char* malloc_ptr_1;
extern unsigned char gb;

//thread 0 control LED and init everything
ENIX_THREAD(thread0) {

EA = RF = 1; //init RF
//init 3 axis
epl_acc_init(ACC_8G_SCALE,

ACC_DATA_RATE_100HZ);
//malloc 3 bytes
malloc_ptr_1 = (xdata signed char *)

eco_kernel_mem_req(3);
gb = 0; //init flag
while(1) {

LED0 ˆ= 1;
LED1 ˆ= 1;
enix_kernel_thread_sleep(10);

}
ENIX_THREAD_END();

}

//thread 1 sensed data from 3 axis
ENIX_THREAD(thread1) {

while(1) {
if(gb || !epl_acc_data_is_ready())

break;

malloc_ptr_1[0] = epl_acc_read_X();
malloc_ptr_1[1] = epl_acc_read_Y();
malloc_ptr_1[2] = epl_acc_read_Z();
gb = 1; //set flag
enix_kernel_thread_sleep(1);

}
ENIX_THREAD_END();

}

//thread 3 transmit sensed data
ENIX_THREAD(thread3) {

pdata unsigned char *packet;
packet = enix_kernel_get_tx_buf();
enix_kernel_rf_start_tx(1234);

while(1){
if(gb){

packet[0] = malloc_ptr_1[0];
packet[1] = malloc_ptr_1[1];
packet[2] = malloc_ptr_1[2];
enix_kernel_rf_send();
gb = 0; //clear flag

}
enix_kernel_thread_sleep(1);

}
ENIX_THREAD_END();

}

int main() {
LED0 = LED1 = OFF;

//add thread
enix_kernel_add_thread(0, ENIX_DEFAULT_INIT,

thread0, LOW_POWER_ON);
enix_kernel_add_thread(1, ENIX_DEFAULT_INIT,

thread1, LOW_POWER_OFF);
enix_kernel_add_thread(3, ENIX_DEFAULT_INIT,

thread3, LOW_POWER_OFF);

//run kernel, never return
enix_kernel_set_timer_period(0);
enix_kernel_start();

return 0;
}

Figure 4. An example Enix WSN application code : Sense
and Transmit.

bit in the bitmap indicates the next running thread. Most of
the powerful architectures such as ARM support a simple in-
struction to find the first set bit in a 32-bit word. The limited
wireless sensor devices with the lightweight MCU like 8051,
8052, AVR, MSP430 and so on do not support such power-
ful instructions; so, a table-lookup implementation to find
the first set bit in a bitmap is applied. Algorithm 1 shows the
pseudo code for finding the highest-priority runnable thread
by table lookup; nextPrioTbl is a byte array with 16 ele-
ments, each of which indicates the number of the first set bit
according the index of the array; rdylst is a bitmap list. Each
bit represents a cooperative thread with a different priority;
by looking up the number of the first set bit, the next running
thread can be found as shown in the algorithm. To imple-
ment a round-robin scheduler, we propose another novel, ef-
ficient table-lookup algorithm, whose pseudo code is shown
in Algorithm 2. By rotating the rdylist to the right for cur-
rentPrio+1 bits and looking up the table, which is the same
as Algorithm 1, the next running thread can be easily found.
These two algorithms consume additional 16 bytes of code
memory for the immutable table but reduce the total code
size and improve the performance significantly, as will be
shown in Chapter 6.

Algorithm 1 Fast algorithm to get the next running thread
(Priority-Based).

if nextPrioT bl[rdylst & 0xFF] 6= 4 then
return nextPrioT bl[rdylst & 0xFF]

else
return 4 + nextPrioT bl[rdylst >> 4]

end if

Algorithm 2 Fast algorithm to get next running thread
(Round-Robin).

if rdylst = 0 then
return 7

end if
t ← rdylst RR (currentPrio + 1)
r← bitmap lookup(t)
x← r + currentPrio + 1
if x > 7 then

return x - 8
else

return x
end if

4.2 Compiler-Assisted Virtual Memory
Virtual memory is widely used in operating systems to

support larger a memory space than provided by the physi-
cal memory. In this section, we describe the implementation
details of software virtual memory in Enix.
4.2.1 Demand Segmentation

Virtual memory is achieved in Enix via demand segmen-
tation without any hardware support. The code memory of
a wireless sensor device is divided into swappable and non-
swappable areas. The Enix kernel and the user-defined logi-
cal structures such as the main() function are non-swappable.

The swappable area utilizes the the rest of code memory
managed by the virtual memory manager of Enix. In order to
reduce the runtime overhead of Enix, a library called ELIB
is proposed. ELIB consists of binary code segments that
are preprocessed on the host PC and is pre-installed on the
Micro-SD card, the secondary storage medium natively sup-
ported in Enix. Each segment in ELIB represents a function
binary code that is runtime position-independent; a unique
virtual address is assigned for each code segment to indicate
the segment location in the Micro-SD card. Calls to ELIB
functions from the user program will be translated at com-
pile time into calls to a special run-time loader routine in
Enix kernel using a technique called source code refinement,
to be described in the next section. Therefore, the demanded
segments would be loaded into code memory and executed
at run-time. The current memory allocation scheme in Enix
is first-fit.

Figure 5 shows the procedure to build ELIB. It takes three
passes to construct ELIB. In the first pass, the common func-
tions are collected into a file named ELIB.LIB, which is
passed to the library parser in order to get the binary code
size of each function; and then a virtual-address allocator
is called to allocate a unique virtual address to each func-
tion. The second pass is code modification: a library function
may call another library function that does not exist in code
memory, and therefore such code must be modified. The
purpose of code modification is to translate ELIB functions
to run-time position-independent code. When the code mod-
ification is done, the ELIB is compiled and linked to create
the file named ELIB.HEX, the hex image that consists of the
HEX representation of ELIB functions. The final pass splits
ELIB.HEX into separated HEX files, each of which is called
a code segment, that is, the HEX representation of a func-
tion. Next, the EcoFS install program is called to install ev-
ery code segment onto the Micro-SD card according to their
virtual addresses. The procedure above can be done automat-
ically by a shell script; after this procedure, the Micro-SD
card is available for loading and executing.
4.2.2 Memory Compaction and Garbage Collection

All virtual-memory systems have the common problem
of fragmentation. External fragmentation occurs in demand
segmentation system when the free memory blocks are not
consecutive. The specialized dynamic loading library ELIB
of Enix is runtime position-independent, therefore, fragmen-
tation can be solved by memory compaction. There is a
garbage collector routine that executes periodically to ob-
serve the memory usage and collects the memory if neces-
sary; it will release the least recently used (LRU) memory
and do the compaction of the frequently used segments.

Another problem arises when the garbage collector re-
claims those segments that will be executed after the return
of current running segment. This is called the cascaded call
problem: it occurs when the code memory is out of use, and
the caller is garbage-collected while the callee is executing,
such that the callee returns to a caller that has been swapped
out, thereby causing the system to crash. There are some
solutions to fix the cascaded call problem. For example, ad-
ditional checking code can be inserted before callee returns,
and thus the absent caller would be reloaded back before it

Figure 5. Procedure of compiler assistant dynamic load-
ing library.

is returned to. Enix solves this problem by restricting the
garbage collector to only non-swappable code.

4.3 Dynamic Loading and Run-time Repro-
gramming

Run-time reprogramming and dynamic loading are im-
portant issues in WSN OS design. The deployed sensor
nodes may provide remote programming ability for the pur-
pose of bug fixing and firmware updating. Enix supports
run-time reprogramming and dynamic loading; the user pro-
gram can be updated through RF. To achieve dynamic load-
ing, Enix uses position-independent code; the binary pro-
gram can be moved anywhere without any relocation. To
update the user program, the source code refinement tech-
nique is applied. We describe these topics in the following
subsections.

4.3.1 Run-time Position-Independent Code
To achieve runtime loading, Enix uses PIC approach. Tra-

ditional PIC is machine dependent, and thus not every ar-
chitecture supports PIC. We propose a novel way to gener-
ate PIC code without hardware support; with the assistance
of run-time kernel via code modification, the code becomes
position-independent at run-time. This modification is also
applied to the function segments in ELIB as mentioned be-
fore. Figure 6 shows the code modification details in Enix.
Three types of code are position dependent in general Enix
user program. First, the kernel calls in the user program:
due to the feature of separated kernel and user programs, the
kernel calls do not have to be modified; the linker redirects
the kernel calls in user program to the right addresses via a
linker script as shown in Figure 7(b). The second position-
dependent type is the library calls; we redirect this kind of
absolute calls to the special kernel function via code modifi-
cation; the kernel function finds the address of target function
at run-time and then jumps there. For the target that does not
exist, the loader is invoked to do the same work as mentioned
in the virtual memory section. The last type is the local abso-
lute jump. In most cases, the local jumps are relative jumps
except for the jump from the begin of a large logical structure
to the end. We modify the long jump instruction to a relative
jump routine by calculating the relative size from source to
the target at compile time, get the current program counter
at run-time, and then sum the program counter and the rel-

Figure 6. Run-time support position independent code.

ative size to get the target address at run-time. In addition,
Figure 6 also shows two key functions in the Enix kernel to
support run-time position-independent code. The function
enix get pc gets the program counter at run-time and stores it
to DPH1 and DPL1 registers since the lcall instruction will
push the return address onto the stack, we can read the pro-
gram counter from the stack and save it into the the registers
mentioned above. enix f ake is another kernel function that
checks the existence of the target function and redirects the
lcall instruction to the target function address at runtime. If
the target function does not exist in the code memory, then
it will be loaded from the Micro-SD card according to the
virtual address passed into enix f ake function.
4.3.2 Source Code Refinement

In order to hide the details of the run-time loader in user
programs development flow and to reduce the amount of
code modifications, the source code refinement technique is
applied. Figure 7(a) shows a simple Enix user application
sending a string of data through UART. For the include files
of Enix user program, the function definitions are removed,
and C macros are applied as shown in the figure 7(a) By use
of C macros and the vararg of C language, each library func-
tion call in the user program is redirected to a special func-
tion enix f ake. This vararg function allows various num-
bers and types of parameters, and therefore every function
prototype can work with this refinement with additional type
casting. Further, the source code refinement technique can be
used to achieve system configuration. For example, a general
library function SendPacket can be called by the user pro-
gram to send a byte buffer through different interfaces, such
as RF, UART, I2C and SPI. It’s very easy to provide a con-
figuration interface for users to choose the transmission in-

(a) Source code refinement. (b) Bridge library.

Figure 7. Bridge library and Enix user programs.

terface of SendPacket library function by use of source code
refinement technique. Hence, different hardware modules of
wireless sensor devices can be easily configured.

5 EcoFS : The File System
An lightweight and efficient storage system is essential

to ultra-compact sensor nodes that must log all sensed data
for later analysis or asynchronous transmission across multi-
hop sensor nodes. Nonvolatile storage is also important
for recording node states and time stamps of events, espe-
cially since power depletion may occur unpredictably on a
deployed sensor node. Although the developer can write
drivers to directly control the nonvolatile storage, doing so
is tedious, error prone, and unstructured. A more structured
approach is to build a simple file system abstraction on top
of the raw storage device. In this Chapter we describe the
file system called EcoFS as a component in Enix. First, we
discuss the storage medium for the file system, and then we
describe the implementation details.
5.1 Storage Medium in WSN

In recent years, flash memory has been widely used in
embedded systems and handheld devices. The characteris-
tics of flash memory include non-volatility, small size, low
cost, low power consumption, and shock resistance. In fact,
flash memories are equipped in popular wireless sensor plat-
forms such as Mica2, MicaZ and Telos. It can also be added
as an expansion module on other wireless sensor platforms.
For example, our experiment platform EcoSpire can have an
external Micro-SD card module connected via SPI.

Table 3 summarizes the features of different flash mem-
ories frequently used in embedded devices. There are two
main categories of flash memory: NAND type and NOR
type, which are classified by the type of the circuit that holds
a single bit. The internal structure of NOR flash is less dense
than NAND because NOR uses more logic per bit, and there-
fore the capacity is limited. For the power consumption,
NAND flash consumes less power than NOR flash; SD card
consumes more power than raw flash components because

Table 3. Comparison between flash memories.
Flash Memory SD/MMC Serial Flash NAND Flash NOR Flash
Memory Cell NAND NOR NAND NOR
Density High Low High Low
Capacity High Low High Low
Power Consumption High High Low High
Intrinsic page-oriented page-oriented page-oriented word-oriented
Interface SPI SPI Parallel Parallel
Switchable © × × ×
Cost 2GB 512KB 2GB 128MB

6.5 USD 1.5 USD 3.5 USD 12.5 USD

a controller inside handles wear leveling, auto-erasing, and
error correcting codes (ECC) recovering. The word-oriented
NOR flash memories are used mainly for code memory, be-
cause it provides fast random access ability like static RAM
except for erasing, that is, it receives an address on address
bus and outputs a data word on data bus. In contract, the
page-oriented flash memory operates a page of data by com-
mands and responses, thus resulting slower access time com-
paring with NOR flash. NOR and NAND flash use paral-
lel interface that requires many GPIOs which is impossible
for tiny embedded device with less than five GPIOs. Se-
rial flash is a type of NOR flash memory with serial inter-
face therefore it is page-oriented It is commonly used in tiny
embedded system due to the reduced GPIO characteristic of
MCU. The drawbacks of serial flash include small capac-
ity which is usually less than 512KB and the non-removable
property. SD/MMC card is another flash memory that can
be controlled through serial interface. Although Micro-SD
card consumes more energy than other flash memories, the
simple interface, small physical size, low cost and high ca-
pacity characteristics make it suitable for wireless embedded
devices. The in-card controller provides NAND flash mem-
ory management thus reducing the complexity and memory
consumption of wireless sensor devices. Furthermore, the
removable characteristic enables the portable SD card to be
removed from deployed sensor nodes for later analysis in-
stead of transmitting the logged data back through UART,
USB, or RF. According to the advantages mentioned above,
SD/MMC card is chosen by EcoFS as storage medium.
5.2 Implementation Details of EcoFS

The implementation of EcoFS consists of two main parts:
node side and host side. The part on the host side is also
called EcoFS Shell. Due to the resource limitations of tiny
wireless sensor devices, the node-side implementation fo-
cuses on how to efficiently access EcoFS data with relatively
small data memory consumption compared to other file sys-
tems for WSNs. On the other hand, the host-side implemen-
tation provides complete functionalities of EcoFS, includ-
ing list, read, write, modify, and binary to HEX translation.
There is no severe restriction on the host PC, and therefore
the EcoFS Shell focuses on the convenient file handling and
user friendly interface.

Figure 8 shows the block diagrams of EcoFS for both the
node side and host side. For the wireless sensor node im-
plementation shown in Figure 8(a), an SD/MMC driver is
built according to the Secure Digital Card specification that
uses SPI protocol to access memory card for basic I/O oper-
ations. An EcoFS library is provided in order to recognize
specialized data types of EcoFS namely code data, prefer-

ences, sensed data, and network data. The EcoFS Library is
configurable; only the demanded ones are configured and in-
stalled on the wireless sensor nodes. By invoking API func-
tions provided by EcoFS Library, the WSN applications can
access the EcoFS-formatted SD/MMC card easily as long as
the specific library is installed on sensor nodes. Some refer-
ence applications commonly used in WSN such as logging
sensed data, booting from SD card, periodically refreshing
node status, and accessing routing table in multi-hop wire-
less networks, can all be achieved easily by using EcoFS.
Unlike the SPI protocol that used in sensor devices, with the
assistance of host PC OS such as Windows, Linux and Mac
OS, a USB card reader can be used to access memory card
as shown in Figure 8(b). In order to extract EcoFS-formatted
data, an EcoFS Parser is required. The raw data read from the
card are processed by the parser that converts them into the
appropriate file format to be accessed by users. The top layer
of EcoFS host-side implementation is EcoFS Shell. The in-
teractive shell environment provides general Unix-like com-
mands such as ls, cd, cp, and cat so that users can list the
files for each type and see the content of files. There are also
special commands, for example, mkfs to format an SD card,
clean to eliminate all files, and install to modify and add
files to EcoFS. Moreover, the command graph can be used
to analyze sensed data and statistical chart.

To demonstrate the convenient shell environment of
EcoFS host side implementation, Figure 9 shows the snap-
shots of EcoFS Shell. The users can easily manipulate the
EcoFS files by plugging the Micro-SD card to a card reader
via the assistance of EcoFS Shell program on the host PC.
The collected data by the sensors can be analyzed easily as
shown in Figure 9(a). In addition, all the EcoFS-formatted
data can be accessed with ease through EcoFS Shell. Figure
9(b) shows the HEX representation of a binary code segment
in a Micro-SD card, where the shell enables users to check
and debug without any extra effort.

As mentioned in Chapter 3, each data item in EcoFS is ei-
ther fixed length or wrapped by special tags as used in a reg-
ular TCP/IP packet format and has a special length field to
indicate the size of the item. Therefore, the parsing process
can be done without consuming large data memory by us-
ing load-partial-then-parse scheme. In the following subsec-
tions, we describe the detailed format of EcoFS data types.
5.2.1 Code Data

The purpose of code data is to provide virtual memory
ability for Enix. By using the EcoFS Shell, the dynamic
loading library ELIB can be pre-installed on the Micro-SD
card for later loading. Each code segment has a unique vir-
tual address, which is the location of code segment on the
Micro-SD card. The segment format starts from a special
BEG(0xAE) tag followed by a two-byte field indicating the
binary segment size; after the size field, the binary data with
a pre-defined size are presented. When a node wants to re-
trieve the segment by its virtual address from the Micro-SD
card, it first checks for the BEG tag; then it reads two bytes
to get the data size and allocate suitable code memory space;
finally, the code segment is loaded from the Micro-SD card
into the code memory. The current design of the code data
block does not allow modification of the code segment by

(a) EcoFS: Node Side (b) EcoFS: Host Side

Figure 8. The block diagrams of EcoFS.

the sensor node itself; a later version of EcoFS will enable
binary segments replacement at run-time.

5.2.2 Preferences
In order to provide a fast query data structure of EcoFS,

preference data type is added. The item format of prefer-
ence is 22 bytes data including 1 byte BEG(0xEA) tag, 1
byte TYPE tag that indicates the type of the value field such
as character, integer and string; following are the 10-byte
key string and the 10-byte value with a specific type shown
before. To prevent high data memory consumption and sup-
port modification of data, each preference is distributed to a
512-bytes SD card sector. The characteristic of preference
is to support fast searching and additional modifying ability.
As a result, a hashing scheme is applied. When the specific
value of a key is required, first the key is passed to a simple
hash function to generates an integer; second, the integer is
added to an offset to get the sector number, the location of
preference item; finally, the value is retrieved. For the keys
with same has value, we allocate five slots to store the col-
lision preferences; the next linked preference is located just
adjacent to the current located sector. There is also a super
block data of preference type, which is the bitmap used to
check whether the target hash value exist or not. Thus the
string-comparison time is reduced for the inexistent prefer-
ence keys.

5.2.3 Sensed Data
The sensed data is appended only when changing the “al-

ready sensed data” is unnecessary and the modification of
flash memory results in great overhead. Some of the WSN
sensing tasks collect sensed data when specific events hap-
pened, such as the earthquake and tornado. For this reason,
the begin and end tags are added to enclose sensed data so
that the sensed data are separated. There is also a timestamps
field in sensed data format, so that the later analysis can cal-
culate the event-trigger time using the data retrieved from
this field. To fill the timestamps field, either Enix system
timer or user application granted time can be used. Besides,

(a) Off-line analysis of
sensed data.

(b) The HEX representation
of binary code segments in
EcoFS.

Figure 9. EcoFS host PC shell environment.

if the Micro-SD card is full, then the decision to overwrite or
stop depends on the preference setting.

5.2.4 Network Data
EcoFS network data are used to store network related in-

formation such as packet routing information, neighbor sen-
sor nodes’ states, and the WSN topology. The fields can be
customized by user applications. Each network data item is
represented by fixed 32-byte data, including 2 bytes of net-
work ID and 30 bytes of a user-defined structure such as the
type, state, and remaining power of sensor node, depending
on the requirements of the WSN applications. A bitmap is
maintained in the super block for the purpose of quickly enu-
merating existing items in the EcoFS network data area. The
current version of EcoFS supports at most 65536 IDs, which
consumes 8192 bytes of a bitmap. Even though a sensor
node reads 8092 bytes of result in about 12ms overhead, this
mechanism consumes only 32 bytes of data memory, which
is more beneficial especially for constrained wireless sensor
platforms. For example, we provide a practical WSN ap-
plication called “receive and forward” which receives a RF
packet, then enumerates all the neighbor nodes’ ID and for-
wards the packet in sequence.

6 Evaluation and Results
This chapter shows the efficiency of the Enix lightweight

dynamic operating system. We first discuss our experimental
setups, including the hardware platforms and software tools.
Second, we present the evaluations of Enix. We compare the
context switch overhead of different multi-threaded sched-
uler implementations as evidence that cooperative thread of
Enix has the least overhead. In addition, the code and data
memory consumptions of different schedulers are also com-
pared. The power consumption of RF and SD card are also
compared to show that it is appropriate to store commonly
used code segments on the SD card. Finally, we compare the
updated application binary image size with and without Enix
during remote reprogramming. The image sizes of the ap-
plications processed by VCDIFF tool are also compared ac-
cordingly to show that Enix reduces the runtime reprogram-
ming size significantly.

6.1 Experimental Setup
This section describes the hardware platform and soft-

ware tools that are required for the Enix environment. First,
the description of hardware platform called EcoSpire and re-
lated modules such as current sensor and battery fuel gauge

are presented. Next, the software tools including the Eclipse
IDE, RF dumper and USB programmer are also described.

6.1.1 Sensor Platform
We use EcoSpire, currently a functional prototyping

board for the ultra-compact Eco node as our experimental
platform. As shown in Figure 10, EcoSpire is a compact
wireless sensor platform including a MCU, RF transceiver,
chip antenna, acceleration sensor, power subsystem, and ex-
pansion interfaces. A Micro-SD slot and a 32-Mbit on-board
flash are also included to provide simple data storage. The
physical dimensions of EcoSpire are 23 × 50 × 8mm3.

EcoSpire uses the Nordic nRF24LE1 MCU. It is a
system-on-chip (SOC) with an 8052-compatible MCU and
the nRF24L01+ transceiver. The MCU has a 16 KB on-
chip flash as program memory, 1 KB on-chip RAM, 256
bytes of “external” (to the 8052 core) on-chip SRAM, 12-
bit ADC, SPI, I2C, and UART. The nRF24L01+ RF uses
the 2.4GHz ISM band and is compatible with the “Low En-
ergy” subset of Bluetooth 3.0 at 2 Mbps on one of 125 (over-
lapping) frequency channels of 2 MHz bandwidth each. It
implements hardware-supported acknowledgement and re-
transmission and contains six data buffers to receive packets
destined for up to six different IDs.

EcoSpire uses the LIS331DL accelerometer with digital
output over SPI. It measures acceleration in ±8g range and
has low power consumption of less than 1 mW. Other sen-
sors with digital or analog output can also be added via the
expansion module interface.

Figure 11 shows the block diagram of EcoSpire. It is
worth mentioning the convenience of the hardware expan-
sion module interface of EcoSpire. Extended functions can
be added by plugging a module board to the expansion mod-
ule interface. Several modules have been developed to work
with EcoSpire such as pushbuttons, microphone, speaker
with amplifier, and LCD. Moreover, more complex modules
such as GPS, gyroscope, and camera have also been proto-
typed.

In order to measure the energy consumption of Enix, the
power measurement modules are developed as shown in Fig-
ure 13. The current sensor module is used to measure the
instantaneous current of another EcoSpire in execution. By
setting a suitable sampling rate of current sensor, the energy
consumption of EcoSpire can be calculated using Equation
1. In this equation, a total of (N + 1) currents are sampled.
First, we sum up the product of current Ct and voltage V ;
and then we divided it by (N+1) thus producing the average
power; the product of average power and total time T results
in the total energy consumed by EcoSpire in time T . Another
power measurement module is the battery fuel gauge, which
allows EcoSpire to measure the power and battery capacity
itself at run-time.

∑
N
t=0 Ct ×V

N +1
×T (1)

6.1.2 Software Tools
The software for EcoSpire includes the IDE and graphi-

cal user interface tools (GUI) on the host computer, system

(a) Front view. (b) Bottom view.

Figure 10. EcoSpire hardware.

Figure 11. EcoSpire block diagram.

Figure 12. EcoSpire development board.

(a) Current sensor. (b) Battery fuel gauge.

Figure 13. Power measurement modules.

Figure 14. Eclipse IDE.

software on the sensor node and the base station, and utility
tools for uploading images and RF debugging.

To build our IDE for EcoSpire, we develop the EcoSpire
plug-in for the Eclipse open-source IDE, as shown in Figure
14. It supports source code editing, compiler invoking, and
firmware programming. Also, the programming interface is
also embedded in Eclipse. By clicking the upload button, the
IDE transmits the application HEX image through the USB
interface to the development board, and the board starts to
program EcoSpire through SPI. The development board is
shown in Figure 12.

RF interfaces are difficult to debug due to not only the
inherent lossy nature of the wireless medium but also the
several levels of abstraction in which errors may occur, in-
cluding physical, media-access, link, network, etc. Instru-
ments such as spectrum analyzers provide the physical-layer
sniffing but are expensive and cannot support higher-level
concepts such as header decoding and CRC calculating. To
easily debug RF interfaces in development stage, we provide
three RF tools: the RF dumper and RF Sender can emulate
the behavior of a sensor node as either sender or receiver;
the RF scanner scans network addresses in a given range and
discovers the available nodes in the network.
6.2 Experimental Results

To evaluate the efficiency of Enix, we develop some test
applications to be executed on EcoSpire for comparisons.
Some may consider the context-switch of multi-threaded
programming models to cause a great deal of overhead and
is not appropriate for lightweight sensor platform. We com-
pare the context-switch overhead and resource requirements
of different scheduler implementations first to show the effi-
ciency of cooperative threading models. Next, we present the
speed and power consumption data of different flash memo-
ries to quantitatively show that an SD card makes an appro-
priate a secondary storage. Finally, we show the reduction of
run-time reprogramming size by using Enix comparing with
other schemes that also claim to reduce the transmission size
of remote reprogramming.
6.2.1 Context Switch Overhead Applied to Different

Scheduler Implementations
To evaluate the context-switch overhead of the coopera-

tive threads in Enix, we implement both round-robin (RR)
and priority based scheduler with different algorithms and
different functionalities that may affect the context-switch

RR Scheduler Priority Based Scheduler0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Ti
m

e
fo

r6
0,

00
0

C
S

(m
s)

Diffrernt Algorithms applied to RR and Prio-Based Scheduler

Linear Check
Table Lookup

Figure 15. Context switch overhead comparison between
different NextRunningThread algorithm.

time. Figure 15 shows the result of using a fast table-lookup
algorithm to find the next running thread from the runnable
queue. We measure the execution time by running context
switch sixty thousand times. It is clear to observe that both
RR and priority-based schedulers are improved while ap-
plying the fast algorithm. The execution time becomes a
quarter of the original linear search implementation. Fig-
ure 16 is the comparison of context-switch overhead between
different multi-threaded models for both RR and priority-
based scheduler. Preemptive multi-threading has the highest
context-switch overhead due to the unpredictable preemp-
tion time, and therefore all of the registers must be saved and
restored during context switch. We implement C-coroutines
using C-Switch statements and add the priority-based and
RR schedulers to it. C-coroutines and cooperative threads
have the feature that context switching occurs only when the
running thread calls yield or sleep functions, and thus they
have lower context-switch overhead. The implementation of
C-coroutines uses C-Switch statements, and this means that
every context switch results in several comparisons of vari-
ables and an absolute jump. Consequently, a context switch
of cooperative threads is simply a replacement of the pro-
gram counter, stack pointer, and some global variables, and
thus it has the lowest overhead. To compare Enix with a
real-world OS, µC/OS-II is ported to EcoSpire. Figure 17
compares the context-switch overhead of µC/OS-II and our
work. The reason why µC/OS-II has high context-switch
overhead is that µC/OS-II uses external memory to store both
the per-thread stack and registers, thus producing great over-
head from many external memory movements. In addition to
the context-switch overhead, the code and data memory sizes
are also compared. Figure 18 shows a comparison of the
code and data memory between different scheduler imple-
mentations. The preemptive one consumes the most memory
because of the same reason mentioned before. Other sched-
uler implementations require about 1KB of code memory,
which is frugal compared to other regular RTOSs such as
µC/OS-II and FreeRTOS, as shown in Figure 19.

6.2.2 Efficiency of EcoFS
This section shows the speed and power consumption

of SD cards and other serial flash memories embedded on
EcoSpire. The results confirm the reason that the Micro-SD
card has been chosen to be the main secondary storage, as

RR Scheduler Priority Based Scheduler0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Ti
m

e
fo

r6
0,

00
0

C
S

(m
s)

Diffrernt Programming Model applied to RR and Prio-Based Scheduler

C-Coroutines
Cooperative
Preemptive

Figure 16. Context switch overhead comparison between
different scheduler implementation.

Enix (Cooperative-threading) Enix (Multi-threading) µC/OS-II0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

Ti
m

e
fo

r6
0,

00
0

C
S

(m
s)

Overhead of Enix and µC/OS-II

Figure 17. Context switch overhead comparison between
Enix and µC/OS-II.

Code Size Data Size
0

200

400

600

800

1000

1200

1400

1600

1800

2000

C
od

e
/D

at
a

S
iz

e
(B

yt
es

)

Code/Data Size of Different Programming Model

C-Coroutines RR
C-Coroutines PRIO
Cooperative RR
Cooperative PRIO
Preemptive RR
Preemptive PRIO

Figure 18. Code and data size comparison between dif-
ferent scheduler implementation.

Code Size Data Size
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

C
od

e
/D

at
a

S
iz

e
(B

yt
es

)

Code/Data Size of Some RTOSs’ Scheduler (Using SDCC Compiler)

Enix (Scheduler)
FreeRTOS
µC/OS-II

Figure 19. Code and data size comparison between Enix,
FreeRTOS and µC/OS-II.

Sequential Read Sequential Write Random Read Random Write
0

20

40

60

80

100

120

140

160

180

200

220

240

260

S
pe

ed
(K

B
yt

es
/s

)

Flash Chip I/O Speed (Excluded Erase Time)

SST25VF512A
SST25VF032B
Pm25LV020
SanDisk MicroSD

Figure 20. The I/O speed comparison between different
flash chips.

already discussed in Chapter 5.
Figures 20 and 21 compare the speed and power con-

sumption of a Micro-SD card with three other different on-
board serial flash memories. These flash memories and the
Micro-SD card are connected to EcoSpire through a common
SPI bus. The SD card has the fast sequential read and se-
quential write properties but poor random access speed due
to the characteristics of NAND flash memory used by the
SD card. Most of the functionalities of EcoFS use sequen-
tial reads and sequential writes such as code data and sensed
data. For the other preferences types and network data, their
access unit is a sector, and therefore the access time is equiv-
alent to sequential access. Thus, the slow random access
speed does not affect EcoFS. For the power consumption, the
on-card MCU of the SD card causes the highest power con-
sumption among all flash memories. In fact, the data shown
in Figure 21 is the active power consumption of the SD card,
that is, when the chip-select signal is asserted. When the
chip-select signal is deasserted, the power consumption of
the SD card is low. Accordingly, the appropriate usage of
the SD card may reduce the total energy cost of the sen-
sor nodes. EcoFS is designed according to this requirement:
once the SD card is selected by the chip select signal, the I/O
operations should be finished as soon as possible.

In addition to the comparison data for speed and power
consumption, some other SD card-specific experiments are
also presented. Figure 22 shows the time and energy cost
of the sensor node performing 1MB of sequential read with
different block sizes. Due to the requirement of a start com-
mand before each sequential read and sequential write opera-
tion, the highest performance and lowest energy cost happen
while the maximum block size, 512 bytes is applied. The de-
sign of EcoFS tries to use the largest possible block size and
reduce the requirement of random-access operation in order
to overcome the power and speed bottleneck of the SD card.
Owing to the different approaches by SD card manufactur-
ers, we have tried seven 2GB SD cards made by different
manufacturers. We measure the speed and power consump-
tion of sequential read and sequential write operations shown
in Figure 23. It is very clear to see that the manufacturer
SanDisk performs the best in every speed and power conser-
vation. Accordingly, the SanDisk Micro-SD card is chosen
for Enix.

Sequential Read Sequential Write0

10

20

30

40

50

60

70

80

90

100

110

120

Po
w

er
(m
W

)

Flash Chip I/O Power Consumption

SST25VF512A
SST25VF032B
Pm25LV020
SanDisk MicroSD

Figure 21. The power consumption comparison between
different flash chips.

0 100 200 300 400 500 600
Number of Bytes Read for Each Read Command

0

10

20

30

40

50

60

70

Ti
m

e
of

S
eq

ue
nc

ia
lR

ea
d

1
M

B
B

yt
es

(s
)

Differenct Access Size While Reading Micro SD Card (Speed)

(a) Speed

0 100 200 300 400 500 600
Number of Bytes Read for Each Read Command

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

E
ne

rg
y

of
S

eq
ue

nc
ia

lR
ea

d
1

M
B

B
yt

es
(m
J

)

Differenct Access Size While Reading Micro SD Card (Energy)

(b) Power Consumption

Figure 22. Read SD card data using different block
length.

Sequential Read Sequential Write0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

S
pe

ed
(K

B
yt

es
/s

)

Micro SD Manufature Speed

Toshiba
Kingston
SanDisk
TOPRAM
Team
Slicon Power
Transcend

(a) Speed

Sequential Read Sequential Write0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

Po
w

er
(m
W

)

Micro SD Manufature Power Consumption

Toshiba
Kingston
SanDisk
TOPRAM
Team
Slicon Power
Transcend

(b) Power Consumption

Figure 23. SD card comparison between different manu-
facture.

6.2.3 Efficiency of Enix Code Update Scheme

The key concept of Enix is the separation of user-defined
logical structures and commonly used library functions. By
storing the dynamic loading library ELIB into the Micro-SD
card, only the user-defined logical structures should be re-
motely programmed through the RF. Hence, the number of
RF packets for run-time reprogramming is reduced.

In this section, we develop five WSN applications com-
piled with and without Enix. The first three applications are
general WSN tasks: (1) sense data and then transmit back
to base station through RF, (2) sense data and then log the
data onto the Micro-SD card, (3) receive the RF packets and
then forward to other sensor nodes through RF. The other
two applications are EcoNet applications. EcoNet is a simple
multi-hop network composed with several EcoSpire sensor
nodes; the unique ID and the adjacent nodes are all recorded
on the Micro-SD card of each sensor node; every sensor node
can invoke the EcoFS API to enumerate its adjacent sensor
nodes. The fourth application, EcoNet Transmit, will col-
lect the sensor data with a random number and transmit to
the neighboring sensor nodes by enumerating the network
data block of EcoFS. The last application EcoNet Receive
receives the sensed data from neighboring sensor nodes and
checks the duplication of random numbers of sequential RF
packets; the valid packets will be forwarded to base station.

Table 4 compares the uploaded image sizes of the above
five WSN applications with and without Enix. It is clear that
the WSN applications without any OS support have binary
image size larger than 6KB on average. Due to the large
code size of the RF library, only the second application has
a code size of less than 3KB. By comparing the same ap-
plications that use Enix as operating system, the size of the
program images that required to transmit through RF are re-
duced significantly. These applications produce 500 bytes
of binary image on average except for the fourth application
EcoNet Transmit, which generates random numbers without
calling any kernel or ELIB functions, and therefore it pro-
duces about 1KB program image. Most of the run-time re-
programming schemes use the VCDIFF tool to generate the
patch between two binary code images, and the patch will be
decompressed by the sensor node. Table 5 shows the results
from running VCDIFF for each of the two different WSN
applications mentioned above. Although the average binary
images size is reduced to 4KB, it is still larger than the ap-
plications with Enix.

Figure 24 compares the energy cost by 1MB data transfer
with SD card and RF as transmission medium. As the figure
shows, the reliable RF transmission and reception consumes
the highest energy while doing 1 MB data transfer. Thus it is
more power saving to store the reliable binary code on an SD
card and then load on demand instead of transmitting through
RF. In short, by applying Enix as the operating system, sen-
sor nodes preserve energy and time while becoming capable
of efficient remote reprogramming due to the reduced binary
image size.

Table 4. Run-time reprogramming code size with/with-
out Enix.

application Sensing & Sensing RF Transmit EcoNet EcoNet
RF Transmit & Log & RF Receive Transmit Receive

Binary Size without Kernel 4825 2903 7646 8233 7770
Binary Size with Kernel 474 673 514 1027 442

unit : bytes

Table 5. Update code size using VCDIFF delta compres-
sion.

Xdelta -9 Sensing & Sensing & RF Transmit EcoNet EcoNet
RF Transmit Log & RF Receive Transmit Receive

Sensing & X 3148 2834 2663 2810
RF Transmit
Sensing & 2920 X 1937 1921 1936

Log
RF Transmit 4509 4730 X 3168 3226

& RF Receive
EcoNet 4927 5201 3760 X 3847

Transmit
EcoNet 4523 4753 3246 3291 X
Receive

unit : bytes

Read/Rx 1M Bytes (full speed) Write/Tx 1M Bytes (full speed)0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

E
ne

rg
y

C
os

t(
m
J

)

Energy Cost Between RF and SD Card

Reliable RF
RF
SD Card

Figure 24. The power consumption comparison between
SD card and RF.

7 Conclusions and Future Work
7.1 Conclusions

We propose Enix, a lightweight dynamic operating sys-
tem for tightly constrained wireless sensor platforms. Enix
supports the cooperative threads programming model, dual
mode operations, run-time loading, demand segmentation,
remote reprogramming, and a lightweight file system EcoFS.

Enix makes five contributions in the WSN OS area. First,
the cooperative threads programming model enhances the
performance of multi-threaded programming by decreas-
ing the context-switch overhead with multi-points setjmp/-
longjmp implementation; it is two times faster than the tradi-
tional preemptive multi-threaded programming model. This
cooperative threading model is easy to learn compared to
the event-driven model and, moreover the local states can
be saved and restored automatically while the event-driven
model and protothreads cannot. Second, Enix provides code
virtual memory to overcome the shortage of the on-chip code
memory via host-assisted demand segmentation, which most
of the WSN OSs do not support. To achieve virtual memory,
the ELIB is built on the host PC composed of PIC segments
with a unique virtual address for each PIC segment and is
loaded to code memory on-demand by the run-time loader of
Enix. This PIC approach can reduce the run-time overhead
of wireless sensor devices. Third, remote reprogramming is
also available in Enix. According to the observation, a WSN
application is separated to user-defined logical structures and
commonly used library functions. Due to the pre-stored
ELIB on the Micro-SD card, the binary image size required
to be wireless updated is reduced significantly during the re-
mote reprogramming stage. Fourth, Enix provides a special-
ized file system called EcoFS that is customized for WSN
applications. By using the Micro-SD card as the storage
medium, EcoFS is divided into four configurable parts in-
cluding code data, preferences, network data and sensed data
according to the different usage patterns. The efficiency and
memory saving features make EcoFS appropriate for tightly
constrained wireless sensor platforms. Besides, a shell for
the host PC is also provided to control EcoFS-formatted SD
cards, including listing, reading, writing, and modification,
thus reducing the difficulty and complexity to access EcoFS
formatted data. Finally, the code size and data size of Enix
with full-function including EcoFS are at most 8KB and 512
bytes, respectively, which are the smallest compared to other
WSN OSs. Only ten percent of code is machine-dependent,
while the rest is written in C language, and thus it is easy to
port to other wireless sensor platforms.

7.2 Future Work
Enix can be extended and improved in several directions,

including more complete network management architecture,
more efficient dynamic memory allocation mechanisms, and
the flexibility to apply EcoFS to different storage media.
7.2.1 Network Architecture

With a well-designed network architecture API, users can
easily write a WSN application without the knowledge of
the RF chip configuration and the MAC protocol that the
network applies. Currently, Enix provides a simple network
abstraction via EcoFS network data API; routing tables and

network topology can be stored on a Micro-SD card and enu-
merated if necessary. To enhance the network capability of
Enix, a layered architecture of Enix network stack should be
implemented. From the bottom up, a MAC protocol provides
reliable transmission through RF and must have the ability to
identify each sensor node in WSN; a dynamic network layer
is used to route RF packet to the target sensor node, and
therefore implementations of routing algorithms and rout-
ing table maintenance are required; finally, a complete set of
network API functions provides full control of the network
stack in Enix for WSN developers. In addition to the func-
tionalities mentioned above, the network architecture should
also care about the low energy cost and light memory con-
sumption requirement of tightly constrained wireless sensor
platforms.

7.2.2 Dynamic Memory Allocator
An efficient dynamic memory allocator is required to

utilize the inadequate data memory of tiny sensor devices.
Through API functions, user threads can request the mem-
ory resource dynamically and release it as long as the mem-
ory is no longer used. The simple sequential memory al-
location scheme is applied to the current Enix version, but
it is not efficient. To support fast memory allocation and
memory management, some techniques such as slab alloca-
tion or buddy system may be implemented. Both code and
data memories required for the memory allocator are the key
considerations; using a table-lookup method with bitmaps
and bit operations may decrease the code and data memory
requirement. Furthermore, the data virtual memory should
also be implemented in the later version of Enix in order to
overcome the shortage of data memory.

7.2.3 Portable EcoFS
Current EcoFS simply supports SD card as the secondary

storage medium. Because of the numerous types of flash
memories, SD card is not the only choice for the sensor de-
vices; serial NOR flash and parallel NAND flash are com-
monly used in wireless sensor platforms such as Mica2 and
MicaZ. To achieve portable EcoFS, the implementation can
be separated into hardware-dependent module and file sys-
tem module: the file system module uses the API to achieve
the functionalities of EcoFS; the hardware-dependent mod-
ule should be implemented according to the different flash
memories in order to provide the formulated API that the file
system module requires. As mentioned before, SD card has
an MCU inside that handles the wear-leveling, ECC calcu-
lation, and auto erasing while the general raw flash mem-
ories do not; hence, these functionalities should be imple-
mented for parallel NAND flash memory. For the serial
NOR flash, it is relatively simple: the most important issue
is the erase-before-write characteristic, which may consume
a large buffer to store the temporary data.

8 References
[1] FreeRTOS. http://www.freertos.org/.

[2] MicaZ. http://www.xbow.com/Products/
productdetails.aspx?sid=164.

[3] Portable Formats Specification, Version 1.1.

http://www.freertos.org/
http://www.xbow.com/Products/productdetails.aspx?sid=164
http://www.xbow.com/Products/productdetails.aspx?sid=164

[4] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY,
W. J., AND DOUCEUR, J. R. Cooperative task man-
agement without manual stack management. In ATEC
’02: Proceedings of the General Track of the annual
conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2002), USENIX Association,
pp. 289–302.

[5] BAI, L. S., YANG, L., AND DICK, R. P. Automated
compile-time and run-time techniques to increase us-
able memory in MMU-less embedded systems. In
CASES ’06: Proceedings of the 2006 international con-
ference on Compilers, architecture and synthesis for
embedded systems (New York, NY, USA, 2006), ACM,
pp. 125–135.

[6] BAI, L. S., YANG, L., AND DICK, R. P. MEMMU:
Memory expansion for MMU-less embedded systems.
ACM Trans. Embed. Comput. Syst. 8, 3 (2009), 1–33.

[7] BARR, R., BICKET, J. C., DANTAS, D. S., DU, B.,
KIM, T. W. D., ZHOU, B., AND SIRER, E. G. On
the need for system-level support for ad hoc and sensor
networks. SIGOPS Oper. Syst. Rev. 36, 2 (2002), 1–5.

[8] BHATTI, S., CARLSON, J., DAI, H., DENG, J., ROSE,
J., SHETH, A., SHUCKER, B., GRUENWALD, C.,
TORGERSON, A., AND HAN, R. MANTIS OS: an
embedded multithreaded operating system for wireless
micro sensor platforms. Mob. Netw. Appl. 10, 4 (2005),
563–579.

[9] CAO, Q., ABDELZAHER, T., STANKOVIC, J., AND
HE, T. The LiteOS operating system: Towards Unix-
Like abstractions for wireless sensor networks. In
IPSN ’08: Proceedings of the 7th international con-
ference on Information processing in sensor networks
(Washington, DC, USA, 2008), IEEE Computer Soci-
ety, pp. 233–244.

[10] CHA, H., CHOI, S., JUNG, I., KIM, H., SHIN, H.,
YOO, J., AND YOON, C. RETOS: resilient, expand-
able, and threaded operating system for wireless sensor
networks. In IPSN ’07: Proceedings of the 6th interna-
tional conference on Information processing in sensor
networks (New York, NY, USA, 2007), ACM, pp. 148–
157.

[11] CHOUDHURI, S., AND GIVARGIS, T. Software
virtual memory management for MMU-less embedded
systems. Tech. rep., Center for Embedded Computer
Systems, University of California, Irvine, NOV 2005.

[12] DAI, H., NEUFELD, M., AND HAN, R. ELF: an ef-
ficient log-structured flash file system for micro sensor
nodes. In SenSys ’04: Proceedings of the 2nd interna-
tional conference on Embedded networked sensor sys-
tems (New York, NY, USA, 2004), ACM, pp. 176–187.

[13] DUNKELS, A., FINNE, N., ERIKSSON, J., AND
VOIGT, T. Run-time dynamic linking for reprogram-
ming wireless sensor networks. In SenSys ’06: Pro-
ceedings of the 4th international conference on Embed-
ded networked sensor systems (New York, NY, USA,

2006), ACM, pp. 15–28.

[14] DUNKELS, A., GRONVALL, B., AND VOIGT, T. Con-
tiki - a lightweight and flexible operating system for
tiny networked sensors. In LCN ’04: Proceedings of the
29th Annual IEEE International Conference on Local
Computer Networks (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 455–462.

[15] DUNKELS, A., SCHMIDT, O., VOIGT, T., AND ALI,
M. Protothreads: simplifying event-driven program-
ming of memory-constrained embedded systems. In
SenSys ’06: Proceedings of the 4th international con-
ference on Embedded networked sensor systems (New
York, NY, USA, 2006), ACM, pp. 29–42.

[16] ESWARAN, A., ROWE, A., AND RAJKUMAR, R.
Nano-RK: An energy-aware resource-centric RTOS for
sensor networks. In RTSS ’05: Proceedings of the
26th IEEE International Real-Time Systems Sympo-
sium (Washington, DC, USA, 2005), IEEE Computer
Society, pp. 256–265.

[17] GAY, D. Design of Matchbox, the simple filing system
for motes. www.tinyos.net.

[18] GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M.,
BREWER, E., AND CULLER, D. The nesC language:
A holistic approach to networked embedded systems.
SIGPLAN Not. 38, 5 (2003), 1–11.

[19] GU, L., AND STANKOVIC, J. A. t-kernel: provid-
ing reliable os support to wireless sensor networks. In
SenSys ’06: Proceedings of the 4th international con-
ference on Embedded networked sensor systems (New
York, NY, USA, 2006), ACM, pp. 1–14.

[20] GUSTAFSSON, A. Threads without the pain. Queue 3,
9 (2005), 34–41.

[21] HAN, C.-C., KUMAR, R., SHEA, R., KOHLER, E.,
AND SRIVASTAVA, M. A dynamic operating system
for sensor nodes. In MobiSys ’05: Proceedings of the
3rd international conference on Mobile systems, ap-
plications, and services (New York, NY, USA, 2005),
ACM, pp. 163–176.

[22] HILL, J., AND CULLER, D. Mica: a wireless platform
for deeply embedded networks. vol. 22, pp. 12–24.

[23] KNUTH, D. Fundamental Algorithms, Third Edition.
Addison-Wesley, 1997, ch. Section 1.4.2: Coroutines,
pp. 193–200.

[24] KOSHY, J., AND PANDEY, R. VMSTAR: synthesizing
scalable runtime environments for sensor networks. In
SenSys ’05: Proceedings of the 3rd international con-
ference on Embedded networked sensor systems (New
York, NY, USA, 2005), ACM, pp. 243–254.

[25] LABROSSE, J. J. MicroC/OS-II, The Real-Time Kernel
2ND EDITION. CMP Books, 2002.

[26] LEVIS, P., AND CULLER, D. Maté: a tiny virtual ma-
chine for sensor networks. In ASPLOS-X: Proceedings
of the 10th international conference on Architectural

support for programming languages and operating sys-
tems (New York, NY, USA, 2002), ACM, pp. 85–95.

[27] LEVIS, P., MADDEN, S., POLASTRE, J., SZEWCZYK,
R., WHITEHOUSE, K., WOO, A., GAY, D., HILL,
J., WELSH, M., BREWER, E., AND CULLER, D.
TinyOS: An operating system for sensor networks. Am-
bient Intelligence (2005), 115–148.

[28] MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN,
J. M., AND HONG, W. TinyDB: an acquisitional query
processing system for sensor networks. ACM Trans.
Database Syst. 30, 1 (2005), 122–173.

[29] MATHUR, G., DESNOYERS, P., GANESAN, D., AND
SHENOY, P. Capsule: an energy-optimized object stor-
age system for memory-constrained sensor devices. In
SenSys ’06: Proceedings of the 4th international con-
ference on Embedded networked sensor systems (New
York, NY, USA, 2006), ACM, pp. 195–208.

[30] MÜLLER, R., ALONSO, G., AND KOSSMANN, D. A
virtual machine for sensor networks. In EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems 2007 (New
York, NY, USA, 2007), ACM, pp. 145–158.

[31] NATH, S., AND KANSAL, A. FlashDB: dynamic self-
tuning database for NAND flash. In IPSN ’07: Pro-
ceedings of the 6th international conference on Infor-
mation processing in sensor networks (New York, NY,
USA, 2007), ACM, pp. 410–419.

[32] PARK, C., LIM, J., KWON, K., LEE, J., AND MIN,
S. L. Compiler-assisted demand paging for embedded
systems with flash memory. In EMSOFT ’04: Proceed-
ings of the 4th ACM international conference on Em-
bedded software (New York, NY, USA, 2004), ACM,
pp. 114–124.

[33] PARK, C., LIU, J., AND CHOU, P. H. Eco: an ultra-
compact low-power wireless sensor node for real-time
motion monitoring. In IPSN ’05: Proceedings of the
4th international symposium on Information process-
ing in sensor networks (Piscataway, NJ, USA, 2005),
IEEE Press, p. 54.

[34] PARK, S., KIM, J. W., SHIN, K., AND KIM, D. A
nano operating system for wireless sensor networks.
In Advanced Communication Technology, 2006. ICACT
2006. The 8th International Conference (2006), vol. 1,
pp. 4 pp.–348.

[35] TATHAM, S. Coroutines in c. http://www.chiark.
greenend.org.uk/˜sgtatham/coroutines.html.

[36] VON BEHREN, R., CONDIT, J., AND BREWER, E.
Why events are a bad idea (for high-concurrency
servers). In HOTOS’03: Proceedings of the 9th con-
ference on Hot Topics in Operating Systems (Berkeley,
CA, USA, 2003), USENIX Association, pp. 4–4.

[37] YAMASHITA, S., SHIMURA, T., AIKI, K., ARA,
K., OGATA, Y., SHIMOKAWA, I., TANAKA, T.,
KURIYAMA, H., SHIMADA, K., AND YANO, K. A

15 × 15 mm, 1 µA, reliable sensor-net module: en-
abling application-specific nodes. In IPSN ’06: Pro-
ceedings of the 5th international conference on Infor-
mation processing in sensor networks (New York, NY,
USA, 2006), ACM, pp. 383–390.

[38] ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI,
V., GUNOPULOS, D., AND NAJJAR, W. A. Micro-
hash: an efficient index structure for fash-based sensor
devices. In FAST’05: Proceedings of the 4th confer-
ence on USENIX Conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2005), USENIX Asso-
ciation, pp. 3–3.

http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html

	Introduction
	Motivation
	Problem Statement
	Lightweight and Portability
	Appropriate Programming Model
	Virtual Memory
	Remote reprogramming
	File System

	Objectives

	Related Work
	Programming Model
	Runtime OS support for WSN
	Virtual Memory Management
	File Systems for WSN

	Enix Overview
	System Architecture
	Design Concepts
	Cooperative Threads
	Dual-Mode Operation
	ELIB Design Concepts
	EcoFS Design Concepts

	Runtime Components in Enix
	Cooperative Threads and Scheduler
	Multi-points Setjmp/Longjmp
	Priority Based and Round-Robin Scheduler

	Compiler-Assisted Virtual Memory
	Demand Segmentation
	Memory Compaction and Garbage Collection

	Dynamic Loading and Run-time Reprogramming
	Run-time Position-Independent Code
	Source Code Refinement

	EcoFS : The File System
	Storage Medium in WSN
	Implementation Details of EcoFS
	Code Data
	Preferences
	Sensed Data
	Network Data

	Evaluation and Results
	Experimental Setup
	Sensor Platform
	Software Tools

	Experimental Results
	Context Switch Overhead Applied to Different Scheduler Implementations
	Efficiency of EcoFS
	Efficiency of Enix Code Update Scheme

	Conclusions and Future Work
	Conclusions
	Future Work
	Network Architecture
	Dynamic Memory Allocator
	Portable EcoFS

	References

