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Abstract

Design and analysis of algorithms are a fundamental topic in computer science and engineering education.
Many algorithms courses include programming assignments to help students better understand the algorithms.
Unfortunately, the use of traditional programming languages forces students to deal with details of data structures
and supporting routines, rather than algorithm design. Python represents analgorithm-orientedlanguage that has
been sorely needed in education. The advantages of Python include its textbook-like syntax and interactivity that
encourages experimentation. More importantly, we report our novel use of Python for representing aggregate data
structures such as graphs and flow networks in a concise textual form, which not only encourages students to ex-
periment with the algorithms but also dramatically cuts development time. These features have been implemented
in a graduate level algorithms course with successful results.

1 Introduction

Algorithms are the single most important toolbox for anyone who must solve problems by writing computer pro-
grams. Algorithms are used not only by computer scientists and computer engineers, but also by many in other
engineering and science disciplines. As a result, algorithm courses are taken by not only computer majors as a
requirement, but also by students from other majors.

While it is possible to study algorithms just by reading textbooks and doing problem sets, students often do not
really learn the algorithms until they actually try implementing them. As a result, it is not uncommon for algorithm
courses to include programming assignments. Textbooks that include programming as an integral part of algorithm
education have also been authored to meet this demand [4]. Virtually all courses and textbooks so far have asked
students to program in a traditional language such as C or C++, and recently Java has gained popularity [5]. The
argument for using these languages is mainly a practical one: students are probably already proficient in these
languages; even if they are not, learning these languages would give them a practical skill.

1.1 Programming vs. Algorithm Design

Unfortunately, experiences have shown that programming assignments in algorithm classes may not always be ped-
agogically beneficial. Even though most algorithms are a few lines to half a page long in the textbook, their imple-
mentation often requires hundreds of lines in C or Java. One reason is that these languages require declaration of
global variables, local variables, and parameters before they can be used. Another reason, more importantly, is that
many data structures such as lists, linked data structures, and specialized arrays must be designed and implemented
to support the algorithm, and the complexity of these exercises grows rapidly when aggregate data structures such
as graphs or flow networks are involved. In fact, most object-oriented programmers spend the majority of their
effort in designing the classes and interfaces, and spend relatively little time filling in the code for the methods. As
a result, these programming assignments will force students to spend much of their time practicingprogramming
issues, rather thanalgorithm issues. Students who are not computer majors tend to be put at a severe disadvantage.

∗This is a reformatted version of the paper that appeared in theProceedings of the Python 10 Conference, Alexandria, VA, February 2002.



Some instructors attempted to alleviate this burden by giving students library routines for the data structures.
However, there are still many problems that are inherent to these traditional languages, including input/output and
reuse. For example, a library might provide an API for building a tree or a graph before invoking the algorithm with
the data structure. Students must either hardwire their test case, which makes successive calls to add one node at a
time to a graph, or read a description of the graph from a file. The former approach can be awkward, because the
source code does not resemble the data structure, but the meaning is tied to the API. The latter approach, which uses
a custom language to represent a graph, may be more concise, but it requires parsing routines, which can diminish
reuse and expandability. For example, consider the case where we initially defined an unweighted graph but later
want a weighted graph. It may be easy to create a subclass for the weighted extension, but we also need to change
the parser to handle the weighted or unweighted case. But suppose we want to extend the weights again to a tuple, a
string, or an arbitrary set: the parser must be changed each time.

1.2 The Python Edge

Python addresses these problems and makes a compelling language for algorithms education. First, its indentation-
based syntax is so similar to most textbooks that even students without much programming background have no
trouble coding up algorithms just by following the book. Therefore, the popularity argument with other languages is
moot, especially given the fact that its interactive mode encourages students to experiment with it without the long
compilation cycle. Second, Python provides the fundamental data structures such as lists, tuples, and dictionaries
that can be used directly by the algorithms. Even the more complex data structures such as trees and graphs can
also be expressed in Python in a concise, human-readable form, without having to reinvent those data structures.
For example, Section 5 will show a novel way of representing a weighted graph as a dictionary of vertices whose
adjacency lists are represented by dictionaries of edge weights. There are several advantages: the test cases for the
algorithms can be written directly in Python without having to call any data-structure-building API, and without
having to rely on any custom parser. Moreover, it is infinitely extensible to arbitrary data types, as Python simply
passes them along and does not interpret the data type until needed. At any time, the data structure can also be
displayed in textual form that is readable to humans and by Python.

The rest of this paper reports our successful experience with deploying Python in a graduate level algorithms
class. Our students have been not only receptive but also acquired a valuable tool to help them solve problems in
their own field of study. The following sections illustrate how we teach algorithms in Python, in the same sequence
as presented in class. We start with sorting algorithms and heapsort with priority queues to highlight memory
management issues. Then, we use them to build binary trees and implement the Huffman compression algorithm.
Finally, we show how Python can be used effectively for graph algorithms.

2 Introductory Lesson: Sorting

Most textbooks start with sorting as a way to introduce algorithms and complexity analysis. We use sorting algo-
rithms to also introduce Python from the very first lesson. Our strategy is to display the algorithm side-by-side with
Python code to show their similarity. We start with INSERTIONSORT, which grows the sorted array one element at
a time from the beginning of the array. Initially,A[1] (in text; A[0] in Python) is the only element in this subarray
and is trivially sorted. Each iteration of the for-loop inserts the next new element into the sorted subarray so that
the elements are sortedrelative to each other; this is in contrast to BUBBLESORT, which puts a new element in its
absolutesorted position per iteration.



Algorithm from book (p.24) Python code (fileisort.py )

INSERTION-SORT(A) def InsertionSort(A) :
1 for j ← 2 to length[A] for j in range(1, len(A)) :
2 do key← A[ j] key = A[j]
3 i← j−1 i = j − 1
4 while i > 0 andA[i] > key while (i >= 0) and (A[i] >key) :
5 do A[i +1]← A[i] A[i+1] = A[i]
6 i← i−1 i = i − 1
7 A[i +1]← key A[i+1] = key

Once students see the similarity, most of their fear of programming simply disappears. It also helps to demonstrate
the interactive nature of Python. We use a computer projector and actually type in the program, which is only 8 lines
long. The best part is, we can test out the algorithm by simply typing in the test case in the form of a list:

>>> x = [2,7,3,8,1] # create test case
>>> InsertionSort(x) # call routine
>>> x # look at result
[1, 2, 3, 7, 8]

In a sense, Python gives the textbook relevance because the algorithms presented in the textbook are no longer
just pseudocode or steps of theoretical interest only; they can see how easy it is to actually execute the algorithms
using data that they generate. In fact, we also show that the same code, without alteration, works just fine with other
data types, including strings, tuples, etc. Sorting is a good starting example because not only do the constructs map
directly without the complication with memory management (to be discussed later), but the parameter semantics
also matches: scalars are passed by value, whereas arrays are passed by reference.

3 Heap Sort and Priority Queues

Our introduction continues with heap sort and priority queues. A heap is a data structure that represents a nearly
balanced binary tree using an arrayA[1..n], where the left and right children of an elementA[i] are located at
A[2i],A[2i +1], respectively, andA[i]≥ A[2i],A[2i +1]. HEAPSORT builds the sorted subarray from the back of the
array towards the front one element at a time by extracting the largest element from the front of the heap. Initially
the sorted portion is empty, and a call to BUILD HEAP turnsA[1..n] into a heap. Since the heap part puts the largest
element atA[1], in the first iteration we extract it and put it inA[n], which is its correct sorted position. The next
iteration extracts the second largest element (fromA[1] again) and puts it inA[n−1], etc, and it continues until all of
A is sorted. Note that HEAPIFY is called as part of each extraction step. This is because if we swapA[1] andA[h],
thenA[1..h−1] no longer satisfies the heap property, but since it is still “almost” a heap – that is, all except the root
position are still subheaps – it can be fixed efficiently inO(lgh) time by calling HEAPIFY without having to rebuild
the heap inO(h) time.

One difference is that the algorithm in the textbook assumes 1-based array indices, whereas Python assumes 0-
based arrays. To avoid errors due to index adjustment, we ask the students to simply pad theirA[0] with NONE and
use an array of sizen+1 instead. The Python code is

def Parent(i): return i/2
def Left(i): return 2*i
def Right(i): return 2*i+1

def Heapify(A, i, n): # A is “almost a heap” (except root); fix it so all of A is a heap
l = Left(i)
r = Right(i)
if l <= n and A[l] > A[i]: largest = l



else : largest = i
if r <= n and A[r] > A[largest]:

largest = r
if largest != i:

A[i], A[largest] = A[largest], A[i]
Heapify(A, largest, n)

def HeapLength(A): return len(A)-1
def BuildHeap(A): # build a heap A from an unsorted array

n = HeapLength(A)
for i in range(n/2,0,-1):

Heapify(A,i,n)

def HeapSort(A): # use a heap to build sorted array from the end
BuildHeap(A)
HeapSize=HeapLength(A)
for i in range(HeapSize,1,-1):

A[1],A[i]=A[i],A[1] # largest element is a root of heap, put it at the end of array
HeapSize=HeapSize-1 # shrink heap size by 1 to get next largest element
Heapify(A,1,HeapSize)

Heaps and priority queues are closely related, since heaps can implement priority queues efficiently withO(lgn)-
time insertion and extraction. One difference, though, is dynamic memory management: in heap sort, the size of the
array remains the same, whereas in priority queues, the size of the queue grows and shrinks. We use this opportunity
to introduce two constructs. First, we show thatA.append() andA.pop() can be used to grow and shrink the
list A, while len(A) returns the current length of the list. Second, in case of underflow (and overflow if desired),
we show the students how to raise and catch an exception. These constructs might not be unique to Python, but
Python makes it easy to experiment.

4 Binary Trees and Huffman Encoding

Once we have the priority queue, we enable students to quickly implement interesting algorithms, including Dijk-
stra’s single-source shortest paths and Prim’s min-spanning tree. Our next topic is greedy algorithms, and we ask
the students to implement Huffman encoding in Python. To recall, the Huffman algorithm produces prefix-free,
variable-length code words based on the frequency of each character. A frequently used letter will be encoded using
a shorter bit string, whereas a less frequently used letter will be encoded using a longer bit string. The greedy algo-
rithm uses a priority queue to extract two nodes (leaf or internal) with the lowest frequencies, allocates a new node
whose weight is the sum of the two, and inserts the new node back into the priority queue. The algorithm terminates
when the priority queue removes the last node, which becomes the root of the Huffman tree. The bit string for each
letter can be produced by traversing the Huffman binary tree, where taking a left branch results in a ‘0’, and a right
branch results in a ‘1’.

For example, suppose our input character set with the associated frequencies is
’a’ : 45% ’b’ : 13% ’c’ : 12% ’d’ : 16% ’e’ : 9% ’f’ : 5%

The Huffman algorithm constructs a tree by repeatedly dequeuing two elements with the least frequencies, creating
a new internal node whose frequency is equal to their sum, and enqueuing it in the priority queue. The result is a tree
(Fig. 1) that defines the variable-length code for each character. The left branches are labeled 0, and right branches
are labeled 1, and the Huffman code for a character is simply the string of path labels from the root to the leaf. For
example, the encoding is
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Figure 1: Example of Huffman tree

’a’: 0 ’b’: 1 0 0 ’c’: 1 0 1 ’d’: 1 1 0 ’e’: 1 1 1 0 ’f’: 1 1 1 1
Since we already have the priority queue, what we are missing is a specialized binary tree. The requirements are

• A leaf node must be able to represent the letter being encoded and its frequency.

• An internal node must contain both of its children, and it must also have a weight that is equal to the sum of
its children.

• The priority queue must be able to enqueue and dequeue both leaves and internal nodes and compare them
based on the weight

Since we already have the priority queue, what we are missing is a specialized binary tree. The requirements are

• A leaf node must be able to represent the letter being encoded and its frequency.

• An internal node must have two children, and it must also have a weight that is equal to the sum of its children.

• The priority queue must be able to enqueue and dequeue both leaves and internal nodes and compare them
based on the weight

If we were to implement this with a traditional language like C or Java, we would have to teach students how to
define a structure or a class with a field namedweight ; leaf nodes need acharacter field, while internal nodes
requireleftchild andrightchild fields. Because the priority queue must be able to compare them, it will
be necessary to modify the priority queue to call the appropriate comparison method instead of using the built-in
comparison operators, and both the leaves and internal nodes must either be in the same class or be subclasses of the
same base class that implements the comparison method. Once defined, the student will want to able to check if they
construct the Huffman tree correctly. However, no existing debugger has the knowledge to be able to automatically
print the nodes together as a tree, and therefore the student has the burden of having to write the print routine, which
may actually be rather tricky and be another major source of bugs. Similarly, for the students to specify the different
test cases, they will either have to modify the hardwired data and recompile each time, or they will need to write
additional parsing routines, which will be yet another source of errors.

A Python implementation can be done elegantly without having to write extra routines or defining a new class or
a structure for the tree nodes. We ask students to represent binary trees using tuples in Python, in a spirit similar to
Lisp:
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Figure 2: Example of directed graph

• Leaf nodes are represented as (frequency, character) tuples:
[(45, ’a’), (13, ’b’), (12, ’c’), (16, ’d’), (9, ’e’), (5, ’f’)] .

• Internal nodes are represented as in-order 3-tuples: (frequency, left, right): For example, the lower-right
subtree in Fig. 1 can be represented as
(14, (5, ’f’), (9, ’e’)) which represents an internal node whose weight is 14%, whose left child
is (5, ’f’) , and whose right child is(9, ’e’) .

The tree is constructed functionally with tuple creation, without having to use any tree node data structure, and
there is no need to manipulate the left/right child pointers. Moreover, it is readily usable with the existing priority
queue data structure, without any modification! This is because tuples can be compared in lexicographical order
using the same comparison operators. This way, internal nodes and leaves can be compared, even though they
encode different information. The difference between them is that thelen() = 2 for a leaf, and= 3 for an
internal node.

To recap, with a slightly creative way to use Python, we achieve the ultimate reuse of algorithms and data struc-
tures. It also enables the students to textually describe a tree in Python syntax that is as concise and extensible as
possible, without having to use a specialized parser.

5 Graph Algorithms

A graph isG(V,E), whereV is a set of vertices, andE⊆V×V is a set of edges. A graph has multiple representations,
and most algorithms assume either anadjacency listor anadjacency matrixrepresentation. The former is good for
sparse graphs where|E| is much closer to|V|, whereas the latter is good for dense graphs whose|E| is closer to|V|2.

To implement a graph in a traditional system programming language such as C or Java, one would first have to
define data structures for the vertices, for the edges, and for the graph, which serves as a front-end to the creation and
deletion of its vertices and edges. The design of such data structures can easily dominate the coding time and is not
easily reusable, mainly because these data types must be designed ascontainers. Even though packages like LEDA
[3] attempt to enhance reuse of object-oriented source code with C++ templates, they still require that the students
adopt the entire package before they can start doing anything useful. Containers are often designed to circumvent
the problems with strong, static typing, but doing so requires the reimplementation of dynamic type checking in
end-user code. An even worse drawback is that the use of C-pointers or Java-references makes it awkward to view
these objects. Even though a debugger can display these objects in some textual form, it either displays too much
information or is not directly usable in the program.

Python offers many advantages as highlighted by the graph data structure. We use a very compact, dictionary-of-
dictionaries (DD) implementation of the adjacency list representation of the graph. Basically a graph is represented
as a Python dictionary, whose keys are the string names of the vertices, and each vertex name is mapped to its
adjacency list. For example, consider the graph shown in Fig. 2:

It can be represented with the following Python code

H = {’A’: [’C’, ’D’],
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Figure 3: Example of weighted graph

’B’: [’D’, ’A’],
’C’: [’D’, ’E’],
’D’: [’E’],
’E’: [] }

The above represents a simple, directed, unweighted graph. If a weighted graph such as Fig. 3 is required, then
we can simply replace the lists of adjacency vertices with dictionaries that map the adjacent vertices to their weights:

G = {’A’: {’C’:2, ’D’:6},
’B’: {’D’:8, ’A’:3},
’C’: {’D’:7, ’E’:5},
’D’: {’E’:-2},
’E’: {}}

The list of verticesV is simplyH.keys() or L.keys() . The adjacency list isH[v] for unweighted graphs,
andL[v].keys() for weighted graphs. The edge weightw(u,v) is L[u][v] . To facilitate programming, we can
wrap the

class G:
def init (self, g):

self.g = g
def V(self): return g.keys()
def Adj(self,v):

return self.g[v].keys()

We can create a graph object withG = Graph(L) . The advantages with this approach include the compact
textual format and extensibility. First, there is really no data structure to design. The textual representation of the
graph is Python executable. The student can type in this structure interactively or in a text file without using any
special graph editor. The data structure can be examined just by typing its name. It can then be cut/pasted to another
Python interpreter window or to another Python program, without any syntactic modification.

More importantly, this representation is extremely extensible. Different algorithms make use of additional at-
tributes, but they can be added as needed. For example, single-source shortest path algorithms or breadth-first/depth-
first traversals require additional attributes such as the predecessor pointers. In Python, the algorithm can simply
add the predecessor attribute to the graph object (asG.pred[v] ), without having to define a subclass for each
algorithm. These newly added attributes can also be examined and modified directly without requiring new routines.

6 Student Evaluation

As of this writing, we have offered the algorithm class twice with Python. Overall, the results have been very
positive, although there is still room for improvement. This section discusses both aspects with anecdotes.



On the successful side of the story, most students appeared receptive to Python, and most of the 35-40 students
from each class were able to successfully complete the programming assignments without much difficulty. At least
one student became a Python fan and switched from C++ to Python for his own research work after this course.
Currently he not only uses Jython and TkInter to script user interface widgets but also uses Python for sockets
programming, multithreading, and scripting native C code. What was more encouraging was that several students
who were not experienced programmers became quite good at Python by the end of the quarter. They successfully
implemented the Edmonds-Karp’s max-flow algorithm, which was not fully given in the textbook, and tested it
with several examples in as little as one hour. Another student, also without much prior programming background,
spent a greater part of his weekend on the same assignment, but was eventually successful after some hints from
the instructor. He remarked that part of the difficulty was with the copy and parameter passing semantics in Python,
but the main problem was that he had not really understood the E-K algorithm. Once he really understood it, then
coding it up was actually very simple. The most encouraging part was that more than a few students wanted to
implement the algorithms that were not assigned as homework problems. The students said they wanted to see the
algorithms run and test their own understanding. These anecdotes all served to validate our prediction and confirmed
the reasons we incorporated Python in the course in the first place.

Not all students had a smooth experience with Python, though. One common complaint was the lack of a good
debugger. The author responded to the students by asking them to write small routines and to test them thoroughly
before writing more code, instead of writing a large program and expecting it to work on the first try. However, not
all students were convinced. The copy semantics of composite data structures such as lists, dictionaries, and objects
also caused some confusion, though we plan to correct this issue by including their explanation as part of the reading
assignment. In some cases, it turned out that some of the students with more experience with C++ or Java had more
trouble adjusting to Python. Some felt uneasy with the idea of loose typing, while others had trouble thinking about
vertices as just a string that could be used as a hash key to different attribute dictionaries; instead, they wanted to
think about vertices as objects. A few students did not follow the instructions for the graph or the Huffman tree
data structures as presented above, and they effectively wrote Java or C++ style code in Python syntax by defining
many classes and subclasses. One such program listing for Huffman was over 12 pages long, even though most other
students did it in about one page. As predicted, most of the 12 pages of code dealt with manipulating data structures
and printing the pointer-connected data structures in a textually meaningful way. This was not really a problem with
Python, and in fact it is motivating us to introduce Python earlier in the curriculum.

7 Conclusions and Future Educational Plans

This paper reports our use of Python in an algorithms course in the past two years. As an algorithm-oriented lan-
guage, Python enables our students to learn key concepts in algorithm design, instead of struggling with low-level,
idiosyncratic features of conventional programming languages. The way Python handles data types represents a per-
fect match with the way textbooks present algorithms, and its interpretive nature encourages students to experiment
with the language. Equally important is our novel use of data structures for trees and graphs, which are as compact
as possible and yet human readable and is readily accepted by the Python interpreter. Graduate students who had
little or no programming experience have been able to experiment with the algorithms at the level intended by the
textbook, without being bogged down by many low-level programming issues.

We have adopted Python in not only our classrooms but also research projects as well, since research can benefit
just as well from the same advantages. We are also encouraged by feedback from our former students who have
adopted Python in their current work. We are currently revamping our undergraduate introductory programming
series to include Python in a major way. As of this writing, this department just received the University’s approval
to replace C with Python in the first introductory programming class (ECE 12), starting Fall quarter 2002. We had
to overcome some strong opposition from some non-computer engineering faculty members who had never heard
of Python and were doubtful about our approach. We were criticized for trying to make programming ”too soft”
for engineering students, and we were asked “if C ain’t broke, why fix it?” Our response was that we want to teach



problem solving skills, not just programming, and we are confident that Python will be a much more effective way to
introduce the fundamental concepts than C. The availability of CGI and graphics packages in Python through Jython
and TkInter will also provide more compelling ideas for student projects than C or Java.
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