
EMBEDDED SYSTEM CO-DESIGN
TOWARDS PORTABILITY AND RAPID INTEGRATION

G. BORRIELLO, P. CHOU AND R. ORTEGA
Department of Computer Science & Engineering
University of Washington, Seattle, WA [USA]

1. Introduction

Embedded system designers, in varied industry segments that include consumer
electronics, automotive control, and medical equipment, are facing increased pres-
sure to create products quickly and inexpensively. Moreover, they must create
product families that offer customers a wide-range of cost, function, and perfor-
mance tradeoffs. Another trend is the increasing level of integration, performance,
and programmability achievable in off-the-shelf integrated circuits including mi-
croprocessors, programmable logic, and devices such as LCDs, network interface
controllers, and speech generators. Designers find using these devices to be ad-
vantageous because of their low cost and the way they facilitate rapid realization
of designs not only for prototyping but for production as well. In fact, with embed-
ded controllers now found in everything from automobiles to smart credit cards,
many products have declining lifetimes that make custom integrated circuits a
less economically viable option. Thus, the coupling of these two trends is lead-
ing to new dominant issues in embedded system design: rapid integration of new
components and portability of design specifications to more than one realization.
Rapid integration is needed to take advantage of emerging devices (processors,
sensors, actuators), re-design of portions of existing designs, and to support rapid
prototyping. Portability is needed to keep up with continually shifting technology
as well as the development of product families. Ideally, a single description of de-
sign functionality should have a long lifetime and be realized in a myriad different
ways.

The job of embedded system designers has also changed. The traditional sep-
aration of hardware and software responsibilities is no longer workable. The pres-
sures of the market make it impossible to separate tasks among different groups
and expect adequate communication to take place. In addition, due to the design
trends mentioned above, designers not only must worry about the correctness and



2 G. BORRIELLO ET AL.

cost effectiveness of their implementation but also have a need to explore a large
design space of potential solutions. Yet, no integrated computer-aided design tools
are available to help designers with this task in an effective and efficient manner.
The design needs to be quickly defined and simulated and then mapped onto the
cheapest combination of components. Unlike general-purpose computers, embed-
ded systems are designed and optimized to provide specific functionality. Thus,
some of the most time consuming and error-prone tasks in embedded system de-
sign are precisely the detailed mapping of the abstract functional specification
onto the target components. In fact, the process is so time-consuming that many
designers fix the target architecture and system components well before a com-
plete evaluation of the final system and perform only one mapping. This often
leads designers toover-designtheir systems with faster processors or larger ca-
pacity logic devices than really needed, thereby increasing the cost. If the target
architecture were to prove inadequate due to performance or capacity constraints,
designers would face a costly re-mapping process. Over-design is currently a nec-
essary evil as it helps to avoid delays late in the product design cycle.

It is clear that design exploration tools are sorely needed to automate the map-
ping process and thus provide faster feedback on design decisions. Many design
automation tools and frameworks have been proposed to address a few of these
problems [1]. These tools either look at high-level specifications but do not as-
sist with the actual implementation, or they help with individual parts of the im-
plementation but do not provide a system view. Examples of the former include
behavioral simulators and formal specification languages while examples of the
latter include compilers, board layout tools, and logic synthesis systems. Recently,
tools for dealing with the hardware and software portions of the system have been
proposed, but these have not addressed the system integration issues that dom-
inate the design cycle. Nor have they addressed issues of portability of the de-
sign, namely the reuse of specifications of all or part of a design so that it can be
remapped to new target components. For all practical purposes, designers still use
tools almost identical in style to those used twenty years ago.

There are many domains in which embedded systems are applied. Tools clearly
can be specialized for a particular domain to take advantage of its specification
methods, design styles, and dominant technology. Examples of these include dig-
ital signal processing systems implemented on a single chip using core DSP pro-
cessors. The focus of this work is on control-dominated systems operating un-
der hard-real-time constraints that may be quite fine grained (as in communica-
tion protocol implementations). We assume they are constructed from commer-
cial off-the-shelf components and can thus more easily benefit from rapid pro-
totyping and emulation. The embedded systems of interest are centered around
one or more processing elements that execute software, with hardware accelera-
tors for time-critical functions. These processors control a collection of peripheral
devices and/or communication interfaces, and the whole system is connected to-



CO-DESIGN: PORTABILITY AND INTEGRATION 3

gether by glue logic, which is typically implemented in field-programmable gate
arrays. This class of systems includes embedded systems for consumer, robotic,
communication, and medical applications.

An example to illustrate many of the points brought out in this introduction
can be taken from our work in designing a collection of low-cost ubiquitous com-
puting devices based on and omni-directional IR signaling mechanism developed
at Xerox PARC [16]. The objective is to connect an entire collection of devices to
a wireless infrared local area network. These devices include transceivers connect-
ing workstations, laptops, and palmtops; identification tags for people and objects;
receivers that can be used to remotely control objects in the office environment;
and wearable devices. Each device must implement the same (or a subset of the
same) communication protocol but within very different cost and performance
constraints. For example, the cost of identification tags must be very low if they
are to be used for objects as small and inexpensive as books, while the cost of a
PC-Card-based transceiver for a laptop can use more expensive components that
support more robust and efficient communication. The essential elements of this
example are that we require the ability to implement similar functionality (data
transfer protocol) onto very different target architectures and be able to explore
connecting a varied collection of peripheral devices (the objects to be sensed or
controlled) to our transceivers.

The remainder of this chapter first turns to the issues of portability and inte-
gration in more detail to set the state for a discussion of the new generation of
computer-aided design tools that are needed. It concludes with a description of
Chinook, a first tool in this new class, and some examples of the types of systems
that Chinook can currently handle.

2. Portability

Making a design specification portable has many advantages, ranging from im-
proved documentation and maintainability to more rapid re-targeting of the im-
plementation. With the tools available today for embedded system design, many
design decisions are thoroughly embedded in the specifications. These include
decisions about how device drivers are constructed, the software architecture of
interrupts, threads, and processes, and the real-time constraints that must be satis-
fied by the design. When a design is to be re-mapped to a new set of components,
be it a new processor or new devices, it is difficult to extract the design tradeoffs
that were made and re-evaluate them. More likely, designers of the new system
will either reuse as much as possible of the old design, thereby ignoring new opti-
mization opportunities, or redo the entire design from scratch while attempting to
reconstruct the constraints used to derive the original specification.

In the first case, not having an implementation-neutral specification method-
ology inhibits the designer from documenting design decisions. Many of these



4 G. BORRIELLO ET AL.

decisions are made in the rush to implementation or even in a debugging phase.
The expectation that adequate documentation can be written during this process
is unrealistic. Designers may even be unaware that the fix they are implementing
is actually motivated by a design constraint. In the second case, re-implementing
the design from atabula rasarequires the new designers to relearn many details
already acquired by the previous design team. These can be high-level partitioning
tradeoffs or low-level device driver implementations. With ever shortening design
cycles, re-investing in such a potentially large learning curve is usually not an
option.

A methodology must be developed to enhance the portability of designs. A
design specification must begin with an unbiased functional description. Mixing
design constraints into the functional description is what leads to buried design
decisions as the description is refined in a particular implementation context. De-
sign constraints must be separate and be of a declarative nature. Design constraints
may include cost and power budgets and timing constraints. Our primary concern
is with timing constraints as these have the biggest impact on the implementation
details of the design once the major components and their architecture have been
selected.

At the lowest levels are the signaling conventions that must be used to connect
the system to its peripheral devices and communication interfaces. There are many
fine-grained timing constraints at this level, ranging from setup and hold times to
data transfer rates and reaction times. These constraints determine how the device
or interface is going to be connected to a controlling processor or processors. It
may be directly controlled, with a processor generating and sensing the signaling
events, or the processor may be too slow or too busy with other functions such
that a hardware controller or a dedicated processor may be more appropriate. An
example of this occurred in the design of a data acquisition instrument’s front
panel designed at a local electronic instrumentation equipment manufacturer. The
many devices there (e.g., buttons, probes, displays) had to be connected modularly
to the data collection and display processing system. It turned out that it was
cheaper to insert another processor to control these devices, and implement a serial
connection to the data collection unit, than it would have been to include a very
wide connector with more bandwidth. These decisions should not make their way
into the specification of the design.

At higher levels, performance or reaction time constraintsdetermine the schedul-
ing of processes and the overall software architecture, including inter-processor
communication schemes. The trend today is to use real-time kernels and multi-
thread packages to deal with concurrency and deadlines. However, these systems
have a very coarse-grained model of timing and impose a notable overhead in the
scheduling of processes. Moreover, they impose a particular model of scheduling
that may not match the application at hand. For example, most systems support
periodic processes but do not directly support the fact that most constraints need



CO-DESIGN: PORTABILITY AND INTEGRATION 5

only be respected when the system is operating in certain modes and can be ig-
nored at other times, thereby freeing up processor cycles. Frequently, designers
account for the overhead of context switching by the operating system and its
scheduling model directly in the code that is generated. For example, they may dy-
namically create and destroy processes or alter the constraints to compensate for
overhead. These fixes greatly diminish the portability of the specification. Timing
constraints should not be embedded in the specification but explicitly stated in a
declarative manner so that they are clear to both future users of the specification
and a synthesis system that will determine how best to schedule the processor’s
activities.

3. Integration

System integration is an area that can benefit greatly from CAD support. It entails
determining the hardware and software required to interconnect system compo-
nents and enabling them to communicate. Furthermore, the communication chan-
nels may impose their own constraints due to the protocol that must be respected
(e.g., a bus or local area network) and the communication may have to be com-
pleted under timing constraints derived from performance requirements. In gen-
eral, it is a very time consuming task given the many details that must be worked
out precisely right before anything can be made to work.

The problems of system integration are intimately tied to those of portability.
What benefits portability concerns will most likely also help in system integra-
tion. The situation today is that design specifications are fragmented into many
different forms: software (often in C) for each of the processors in the system;
low-level software (often in assembly) for device drivers; schematics or hardware
description language files for the hardware elements and glue logic; and a netlist
that details how all the pieces fit together. Unfortunately, the collection of tools
that deal with these separate parts are unaware of each other.

A designer must put together a design in a piece-meal and incremental fash-
ion. First, some glue logic is designed to connect a processor to a device. Second,
the software for the processor is completed to the point that it can perform some
basic communication with that device. Incrementally, the software is expanded
to communicate with another processor or device. Some software can then be
developed for that other processor and the two can communicate. Now, the de-
signer can return to the first processor and add more functionality or an interface
to another device. Unfortunately, these changes may interact in unexpected ways
with the software that was previously working, and may even render it no longer
functional. For example, a timing constraint may no longer be satisfied due to a
processor doing too many other things in parallel, or a previously existing com-
munication path to a peripheral device is no longer available. These are precisely
the types of bugs that cause headaches in the integration and debugging phase of



6 G. BORRIELLO ET AL.

a project.
Handling these situations is quite difficult with today’s tools. The separateness

of the tools means that simple things such as the naming of signals is not central-
ized. A signal generated by a processor may have one name in software, another
name in the device driver, yet another in the glue logic that connects it to another
processor, where it has yet another set of names there. Larger problems exist when
a situation as the one above arises. It is important for a designer to be able to de-
bug software on multiple heterogeneous processors simultaneously and have the
respective debuggers be aware of synchronization points, intervening glue logic,
and shared memory between the processors. It is clear that designers need a single
environment in which they can describe their design and in which consistency can
be maintained automatically.

Designers need a tool that facilitates migrating functionality easily between
processors or even into dedicated hardware. The designer should be able to specify
how components should communicate (e.g., point-to-point, common bus, shared
memory) and have the tools generate the necessary glue logic and modified soft-
ware drivers to appropriately forward parameters and data. This type of facility
would remove one of the highest barriers to design space exploration, namely, the
cost of simulating, prototyping, and evaluating a new partition or mapping for a
design.

4. A New Generation of Tools

Given the problems in portability and integration outlined above, there is currently
an excellent opportunity for a new generation of embedded systems design tools
that address these bottlenecks. These tools will enable designers to specify a sys-
tem’s functionality and then map that same specification to a wide variety of target
architectures. From the feedback available from a detailed realization, designers
will then be able to make more informed design tradeoffs. In this section, we will
outline the suite of tools that will be required. Development of these tools will
entail the adoption of a new design methodology, a necessary step before the ben-
efits of automation can be gained. Specifically, currently fragmented design teams
must be made to work together in producing a single unified specification of the
entire design.

First and foremost, it must be possible to specify an entire embedded system
in a single specification language. This is an excellent goal but probably unreal-
istic given the wide range of devices. For the purposes of this chapter, we restrict
our discussion to the digital portions of the design and assume that any analog
components can be packaged intodeviceswith a digital interface. It is critical that
a language be chosen that does not bias the implementation. For example, some
synchronous programming languages (with their zero delay semantics) require a
user to already schedule much of the code. The specification should include only



CO-DESIGN: PORTABILITY AND INTEGRATION 7

high-level calls to peripheral devices and interfaces through a procedural abstrac-
tion. Ideally, the designer will use procedure calls (from an API made available
from a device library discussed below) for each of the device’s functions. Timing
constraints will be specified between labeled I/O operations, as these are the only
observable events of the system. Support should be available for rate, latency, and
response time constraints.

The debugging of this specification can proceed in two directions that go hand-
in-hand: simulation and verification. Simulation is essential for validating that the
behavior specified is what was desired. Timing will necessarily have to be ignored
at this stage as simulating timing precisely will involve almost as much effort as
synthesis (therefore, timing properties are best checked at that point). For now,
correctness will be defined by I/O behavior. The device library permits a mock-up
of the design by aliasing the procedural I/O to device models such that during
simulation it will instantiate the appropriate user interfaces in windows on the
screen. Library models for interfaces should also include a way of specifying files
for input and output. For example, a local area network interface will include
a means of reading a file that contains a packet and save a packet sent by the
system to a file. Verification offers opportunities for complete checking of the
design independent of a particular scenario. The specification language must be
made translatable into the appropriate formalism for a verification system (e.g.,
finite-state machines).

The target architecture can be specified declaratively in the system specifi-
cation. It should instantiate all the major components in the system: peripheral
devices, communication interfaces to the environment, processors, and their ba-
sic interconnections, such as a common bus between some of the components
or serial point-to-point connection between others. The specification should also
include an assignment of functionality to these major components as well as a
specification of which portions of the system should be implemented in custom
hardware.

The device library will include a wide variety of standard components and
should have facilities for easily adding new elements. The models foreach device
consist of the physical interface (i.e., pins and form factor), the logical interface
(i.e., the signaling events required to implement each transaction supported by
the device), behavioral simulation model for each transaction (including a visual
representation), and a structural, pin-accurate simulation model to be used after
synthesis. The structural model can be built on top of the behavioral model by the
addition of an FSM foreach transaction. The FSM is essentially a watchdog that
looks at the device pins to determine if a particular transaction is being performed
and then calls the corresponding behavioral simulation routine.

Once the target architecture is specified, tools should be available to transform
the specification automatically so that it makes use of the communication paths
specified and communicates the necessary data over them. Communication paths



8 G. BORRIELLO ET AL.

between components will be turned into device I/O calls. This is important in glob-
ally optimizing the generation of glue logic and providing a similar abstraction to
device I/O as a first step in synthesis. Data that must be communicated between
partitions will serve as parameters for these communication I/O calls. Parameter
passing mechanisms will need to be inserted into the specification and these could
include hardware registers, shared memory, interrupts,etc. This is a critical step to
automate as it permits enhanced design space exploration by freeing the designer
from specifying all the details of interconnections and communication in detail
thus permitting experimentation with many different partitions easily.

Interfaces must be synthesized between the components of the system. Device
protocol specifications from the library will be customized automatically to the
capabilities of the processors to which they will be connected. For example, a slow
processor may require external hardware to implement a fast transaction with a
device while a faster processor may be able to handle it directly. In essence, device
drivers will be automatically synthesized and customized. This is one of the keys
to portability. Designers will not need to write the detailed code of these software
routines that change with every change in target architecture or interconnection
scheme. Treating communication paths in the same way as devices permits their
customization to be done similarly.

What remains is the synthesis of the hardware and software components that
implement the functionality of the system. The hardware blocks will be synthe-
sized using behavioral synthesis tools that can handle a rich set of timing con-
straints. Although these are certainly not available today in general enough form,
they should be in the near future. The software blocks will be generated by a
compiler specific to the processor at hand. The preparation of the source file to
be compiled involves not only the translation of the specification but includes
scheduling of time critical and concurrent functions. Code scheduling techniques
(including serialization, multi-threading, and interrupts) will be applied to ensure
that all timing constraints are met. In essence, these will derive a customized op-
erating system kernel for each processor.

Once synthesis is complete, the design can then be simulated at the structural
level (accurate to the cycle level) with the software running on models of the pro-
cessors. At this point, debuggers and profilers can be used to help evaluate the
design. Debuggers must make a larger leap to the original source code as it not
only has been transformed by a compiler but it was also modified by the interface
and glue logic synthesis process. Debugging a collection of processors and custom
hardware can now be done within a unified name space. This will prove invaluable
in identifying interactions between processing elements. Profilers will be needed
to measure processor and bus utilization, precise timing of I/O events to check
timing constraints, and to check on execution times of sections of code. The infor-
mation gathered can serve to guide the designer towards a different partitioning or
different communication scheme.



CO-DESIGN: PORTABILITY AND INTEGRATION 9

Some obvious tools are not mentioned above. Most important of these are au-
tomated partitioners and software estimators. We believe that architectural-level
partitioning will continue to be done by designers. For the class of systems we are
focusing on, the problem is much too ill-structured and includes so many varia-
tions that it will be some time before partitioning and communication synthesis
can be automated completely without sacrificing many design opportunities. Our
approach is to make partitioning easy for the designer by eliminating the need to
specify all the interconnection logic and software.

Software estimators and retargetable compilers are another class of tools that
will be very important, but we are relying on other research groups to generate
these tools. For software scheduling and architecture synthesis it will be critical to
have tight bounds on the execution time of code fragments and understand the re-
lationship between code that may be running in parallel. The effects of instruction
buffers and caches make this problem very difficult and we are currently ignoring
these features of embedded processors. Retargetable compilers are also a require-
ment as designers may want to explore customized processors. Compilers must
also permit more controllability of their optimization process and be able to of-
fer guarantees regarding the execution time of code fragments, possibly foregoing
some optimization opportunities.

The above has described a set of tools that support a new design scenario for
embedded systems. The focus of both the research and industrial communities has
been on solutions to point problems. These range from better debugging environ-
ments to formal verification techniques. However, they ignore the need for tools
with a total system view and that can help with the time consuming tasks of port-
ing a design to a new target, modifying a partitioning, and integrating disparate
components so that they communicate properly.

5. Chinook

At the University of Washington, we are taking a first step towards the tool suite
described in the previous section. Our approach to the co-synthesis of real-time re-
active embedded systems is embodied inChinook, a tool that generates complete
design specifications given a single high-level specification of the desired system
functionality. Several features distinguish Chinook from other work in this vol-
ume. Each is motivated by the observations and concerns outlined in the previous
sections. Thus, Chinook is intended for control-dominated designs constructed
from off-the-shelf components and addresses portability and integration concerns
that will permit more design space exploration by automating tasks that are error-
prone or cumbersome.

The following elements of the Chinook system are where the principal inno-
vations lie. It is important to note that what makes Chinook unique is the combi-
nation of these elements rather than any single one as each is certainly addressed



10 G. BORRIELLO ET AL.

Verilog
Specification

parser

Processor &
Device Libraries

driver
synthesizer

scheduler

comm.
synthesizer

interface
synthesizer

code
generator

netlist

program

Behavioral
Simulation

Structural
Simulation

Mixed
Simulation

Figure 1. The Chinook Co-Synthesis System

by many other researchers.

� Single specification.A designer writes one specification in a single spec-
ification language with explicit timing/performance constraints rather than
separate netlist, hardware description, and software languages all with im-
plicit constraints. This is key to the retargetability and maintainability of the
design.

� One simulation environment.The high-level specification of the design can
be simulated directly to help debug the designer’s intent as well as opera-
tional aspects of the design. The final synthesized result, and any interme-
diate steps, can be simulated in the same environment and augmented with
additional tools (e.g., debuggers and profilers for software).

� Comprehensive software scheduling.Chinook synthesizes the appropriate
software architecture for the timing requirements of the system: low-level
partitioning to ensure signaling constraints are satisfied (possibly by syn-
thesized hardware modules), static fine-grained scheduling to tailor device
drivers, and customized dynamic schedulers and interrupt handlers.

� Interface synthesis.Interface hardware and software between system com-
ponents (including peripheral devices as well as multiple processors) is au-
tomatically synthesized with appropriate changes reflected in interprocessor
communication and device drivers.

� Complete information for physical prototyping. Chinook generates a com-
plete netlist for assembling the system and complete code for its processors
to run. After co-synthesis, the system is ready to be assembled and evaluated
in its intended environment.

The Chinook co-synthesis system consists of the parser, the processor/device
library, the device-driver synthesizer, the interface synthesizer, the communication



CO-DESIGN: PORTABILITY AND INTEGRATION 11

synthesizer, the scheduler, and the simulator (see Figure 1). The parser accepts a
system description in annotated Verilog. In addition to a behavioral specification,
it also contains a structural specification that instantiates the principal components
of the system, including processors, peripheral devices, and standard interfaces.
The device library contains detailed generic specification of device interfaces (in
the form of timing diagrams and Verilog code) and models for their simulation (in
C and Tcl/Tk). For processors it contains specifications of their interfaces as well
as timing schemas for software run-time estimation [13]. The device-driver syn-
thesizer compiles the timing diagrams and Verilog device drivers into customized
code for the given processor and makes low-level partitioning decisions to meet
signaling constraints. The interface synthesizer allocates I/O resources to connect
a processor to the peripheral devices it will control, and customizes the access
routines to reflect these assignments. The communication synthesizer generates
the hardware and software needed for interprocessor communication. With all re-
sources allocated, the scheduler generates code to meet real-time constraints in
software. Chinook also outputs the netlist, including the necessary glue logic, to
construct the desired system.

Chinook does not attempt several tasks. It does no high-level partitioning of
functionality between hardware or software or between processors. Instead, it as-
sumes that designers involved in design exploration are in a better position to make
these assignments at the module and/or task level. Instead, Chinook provides a
mechanism for designers to easily partition and repartition the specification. In
its focus on real-time reactive systems, and due to lack of mature and complete
software performance analysis tools, it assumes that caches are not employed.

5.1. SPECIFICATION

The single Verilog file provided as input to Chinook contains both behavioral
and structural constructs. The behavioral style imposed by Chinook enables the
expression of real-time reactive behavior as well as facilitating partitioning. The
structural component merely lists the processors, peripheral devices, and com-
munication interfaces that will be used. That is, the principal components of the
system to which the designer would like to evaluate a mapping of the desired
functionality. Chinook expects the designer totagtasks and modules with the pro-
cessor that is preferred for their implementation. The implementation of untagged
modules/tasks is assumed to be in software. This separation of functionality from
components allows the designer to quickly explore the design space by instantiat-
ing different processors and alternative peripheral devices without modifying the
behavioral specification. All interactions with the devices and interfaces are spec-
ified using a procedural abstraction layer. As long as two interfaces (e.g., SCSI
and PC-Card) support the same access routines (e.g., read andwrite ) they can
be easily interchanged.



12 G. BORRIELLO ET AL.

To model the reactive behavior of control-dominatedapplications, we organize
the control states of the system as a set ofmodes. Each mode defines a behavioral
regime, that is, how the system should respond to its inputs. A mode also defines
a scope for a set of timing constraints that must be satisfied while the system is
within that mode but not necessarily when it is operating outside of it. Inter-modal
constraints are used to describe response times when the system transitions from
one mode to another. Modes are very similar and are inspired by the hierarchical
states of [10] in that they can capture both sequential and concurrent behavior.

Chinook allows the specification of real-time requirements in terms of mini-
mum and maximum separation between I/O events, namely events between sys-
tem components or between the system and the environment. At the low level,
the constraints may correspond to setup and hold times, or simply the sequencing
constraints between successive I/Os. At the high level, min/max separation can
also be used to expressresponse timesto system inputs andrate constraints on
performance [7].

In a given mode, the system’s responses are defined by a set ofhandlers.
Conceptually, they are event-triggered routines, but their activation conditions are
checked by a time-triggered loop. Handlers respond by causing a mode transition
to generate I/O events. A handler consists of a trigger condition and a body. The
trigger condition is an event expression consisting of inputs from the environment
and other handlers. When the trigger condition evaluates to true, the handler body
is executed. For example, a network interface chip may signal that a message is
pending and this triggers a handler to read that message. Note that the handler
body can be in software, hardware, or a combination of the two, depending on its
tag and the ability of the processor to meet the timing constraints in the handler.
From a specification point of view, a handler is executed atomically, but may be
interleaved by the scheduler.

5.2. SCHEDULING

Embedded systems have timing constraints at different levels. Their interaction
with the devices and the environment must respect not only low-level signaling
constraints but also performance requirements such as rate and response time
constraints. To satisfy these high-level constraints, designers have usedprocess-
basedscheduling techniques based on operating systems concepts [12, 2]. These
techniques are coarse-grained, priority-driven, and dynamically preemptive. They
assume that the processor does not perform I/O directly (i.e., does not manipu-
late I/O pins and does not have to deal with details of device timing as these are
handled by device interface units) and the processes are only loosely dependent
on each other if at all. Since all timing constraints are coarse-grained, overhead
incurred by the executive during preemption can be dismissed. However, many
embedded systems must perform direct I/O and meet fine-grained timing con-



CO-DESIGN: PORTABILITY AND INTEGRATION 13

straints. These constraints are much more difficult to meet because the scheduler
cannot afford to incur much, if any, run-time overhead, and at the same time must
handle uncertainties in the execution delays. Instead, Chinook statically schedules
all low-level I/O and high-level operations as grouped in modes. A customized dy-
namic scheduler may be generated for the larger modes (i.e., those at the top of
the mode hierarchy).

Chinook uses a static, nonpreemptive scheduling algorithm to meet min/max
timing constraints on fine-grained operations with delay ranges [4]. It determines
a serial ordering for the operations, and inserts delays to meet minimum con-
straints, if necessary. Because the complexity of the problem is NP-hard, we em-
ploy heuristic ordering functions to help the exact algorithm quickly find a valid
and short schedule. Experimental results show that our approach consistently out-
performs and can handle a wider range of scheduling problems than the algorithm
of [9].

At the high level, rate constraints are specified on a reference event between
successive iterations, and response times are constraints on the time it takes to do a
mode transition. In statically scheduling the software, Chinook first converts han-
dlers within a mode into a single handler containing their bodies, possibly using
unrolling, and then schedules this single partially-ordered handler by interleaving
[7]. Note that a mode transition may be triggered by one of the handlers before
other handlers run to completion, and the scheduler must maintain the integrity of
all handler states. We use the dual of critical regions, what we callsafe points, to
specify explicitly when it is safe to effect a mode transition safely (rather than the
implicit method of critical regions which requires the user to specify when transi-
tions are not safe) [3]. All parallel handlers must reach their safe points before a
mode transition is allowed to take effect thus guaranteeing that the system will be
left in a consistent state.

5.3. INTERFACE SYNTHESIS

Interface synthesis is the realization of communication between components via
both hardware and software elements. Chinook handles a wide range of interface
synthesis problems [5, 6]. At the lowest level, Chinook synthesizes device drivers
directly from timing diagrams. It generates customized code for the particular pro-
cessor used, and separates out the portions that cannot be implemented in software
by synthesizing the required external hardware. For processors with general pur-
pose I/O ports, Chinook employs an efficient heuristic for connecting devices and
processors using minimal interface hardware. For processors without I/O ports,
Chinook automatically implements the interface using memory-mapped I/O, by
allocating address spaces and generating the required bus logic and instructions.

These synthesis solutions require knowledge about the interfaces of the pro-
cessors and the devices, which are captured in the libraries. A processor is de-



14 G. BORRIELLO ET AL.

fined by its I/O resources, built-in functionality (e.g., serial-line controller, timer,
etc.), and detailed architecture templates (e.g., down to the specific resistors and
capacitors required for power-up reset). A device description contains interface
information including ports and skeletal access routines that encapsulate timing
diagrams. After successful interface synthesis, Chinook updates the access rou-
tines by binding the device ports to the processor’s I/O ports or memory bus,
and taking into account any intervening glue logic that it may have synthesized.
By managing these connectivity details and generating the interface across the
hardware/software boundary, the interface synthesizer completes the design and
enables simulation and evaluation at the final implementation level.

5.3.1. Driver Synthesis from Timing Diagrams

At the most detailed level, device interfaces are described in data sheets in the
form of timing diagrams. They show the sequences of signaling events that make
up I/O transactions across the interface. These timing diagrams are usually anno-
tated with timing requirements, timing delays, and timing guarantees. The first of
these three are requirements imposed on the user of the interface, while the second
two are timing promises made by the device as long as the user conforms to the
requirements. When new devices are added to the device library, these constraints
and their corresponding timing diagrams are entered via an interactive editor [8].
Chinook parses these timing diagrams and synthesizes the device driver code by
choosing a linear schedule of controller events, and inserting additional interface
glue logic where necessary [15].

5.3.2. I/O Port Allocation

Many processors used in embedded systems include I/O ports that can be used to
directly sense and manipulate the processor’s environment. These ports can be ac-
cessed from software like registers, thus providing a low-cost and straightforward
interfacing mechanism. Chinook provides a port allocation scheme that uses min-
imal amount of glue logic. Furthermore, device access routines are customized to
reflect the assignments of pins [5]. The key idea is that an I/O port may be able
to service multiple devices without glue logic and without performance penalties.
These devices have interfaces that are able to isolate themselves from the shared
bus, and become active only when the appropriate control signals, orguards, en-
able them. Thus, a guarded interface of a device can share the same I/O port with
other devices because their interfaces cannot be active at the same time. If neces-
sary, the port allocator inserts glue logic to add guards to previously unguarded
interfaces, so that they can share busses. Chinook can also synthesize ports to
create a new interfacing point for additional devices. Hardware is synthesized to
create a new port on the processor’s memory bus. This module decodes addresses
and translates them into control signals to read and write the new I/O pins.



CO-DESIGN: PORTABILITY AND INTEGRATION 15

5.3.3. Memory-Mapped I/O
When I/O ports are too inefficient (due to multiple instructions to manipulate their
values or too much additional hardware) or are unavailable (as is the case for
higher-performance processors), Chinook synthesizes the interface using memory-
mapped I/O [6]. Many parts, processors as well as peripheral devices, are designed
with memory-mapped I/O in mind. They contain built-in address matching logic
and can be connected to the memory bus with little or no glue logic. Other com-
ponents without built-in address comparators can still be connected with little or
no glue logic, depending on the available address space the user reserves for I/O.
Devices are allocated portions of the address space of the processor controlling
them. If the allocation is done intelligently (i.e., using one-hot, binary, or Huff-
man encodings when possible) the amount of address matching logic required can
be minimized.

Memory-mapped I/O is also a preferred method of interprocessor communica-
tion and can be used to support both point-to-point and shared memory schemes.
If we are to allow a designer to explore mapping of functions to multiple pro-
cessors, then the mapping tools must automatically synthesize the interprocessor
communication hardware and software. Essentially, the view from one processor
is that the other processors are just more peripheral devices requiring their own
device drivers.

5.4. COMMUNICATION SYNTHESIS

Requirements for faster response times and increased modularity frequently guide
embedded system designers to employ multiple processors. These processors are
often heterogeneous as cost and modularity concerns drive designers to tailor pro-
cessors to specific functions. CAD support is non-existent for these types of sys-
tems. There are not even debuggers to support concurrent development of pro-
grams on two identical processors. Designers find heterogeneous multiple proces-
sor systems the most difficult to debug and thus constrain designs unnecessarily
just to make debugging tasks tractable.

Chinook provides support for interprocessor communication by synthesizing
the hardware and software needed to transfer data between processors. A designer
tags the procedures and modules with the processor that should be used to im-
plement them. Chinook then determines the data that must be transferred and the
mechanism to use for those transfers, including the interconnections between the
processors, glue logic, and buffers and memory.

In meeting timing constraints, Chinook will adjust the interface between the
software running on the processors. Consider the case of a fast processor commu-
nicating with a slow one. Handshaking with the slow processor may cause the fast
one to violate its constraints. Buffers can reduce the load on the fast processor by
eliminating direct handshaking. The communication becomes non-blocking and



16 G. BORRIELLO ET AL.

data may be processed in bursts.

5.4.1. Interprocessor Communication Synthesis
When considering communication in multiple processor systems, many new is-
sues arise including predictability, interconnect topology,access to peripheral
devices, and communication protocols. The interconnect topology could be bus-
based, point-to-point, or a hybrid scheme. A peripheral device may only be acces-
sible via a designated processor or many processors may have shared access. The
communication protocol may be contention based or statically scheduled, block-
ing or non-blocking, and master-slave or peers. Each choice has impacts on per-
formance, predictability, and the complexity of scheduling and hardware required.
Chinook supports most of these choices, but by default uses a model suitable for
real-time control-dominated applications. It is based on non-blocking communi-
cation among peers with designated peripheral processors. The interconnect may
be either point-to-point or bus-based.

A handler communicates with the environment through device driver calls
and with other handlers via messages. A message is an event that triggers another
handler with an optional data value. Intraprocessor messages are implemented
with shared variables. Interprocessor messages are transmitted via communica-
tion channels synthesized with elements from a communication library that con-
tains buffers, FIFOs, arbiters, and interconnect templates. Given a partitioning of
handlers provided by the user, Chinook will synthesize communication channels
to satisfy timing and resource constraints. Once the communication components
are chosen, they are connected to the respective processors using the interfacing
techniques in section 5.3. If there are multiple communication channels between
processors, each channel may be mapped to its own physical connection or they
may share connections.

5.4.2. Migration between Processors
Keeping in mind Chinook’s focus on aiding the designer’s exploration of the de-
sign space, it is important that the designer be free to easily allocate functionality
to different processors. Through assignment tags in the high-level specification,
a designer can rapidly change the partitioning of functionality – between two
processors, or between a processor and a direct hardware implementation. Be-
cause Chinook synthesizes interprocessor communication channels and optimizes
their use, this task is greatly simplified for the designer. No longer does the de-
signer need to radically alter code running on one processor and then propagate
the changes to the others while keeping track of all the potential implications on
timing requirements and resource access. These adjustments are made automati-
cally by Chinook.

Migrating functionality is divided into three parts: input parameter sending,
control sequencing, and output parameter receiving. Input and output parameters



CO-DESIGN: PORTABILITY AND INTEGRATION 17

are mapped to latches or memory locations which are connected to the processor
using the interfacing techniques discussed earlier. The control sequencing may
simply be moved to another processor or be moved to hardware where it will be
instantiated as a finite-state-machine and data-path. The general solution to this
requires behavioral synthesis but is quite straightforward in most cases involving
I/O. The original software is replaced with routines that pass the inputs, kick-start
the hardware or the software handler on the other processor, and then read back
the outputs [6].

5.5. SIMULATION

The design can be simulated at different levels of detail. The initial specifica-
tion is compatible with behavioral Verilog and is simulated without exact timing
or detailed I/O. As the synthesis steps refine abstract communications and op-
erations into more concrete signals and components, outputs from intermediate
design steps and the final implementation can also be simulated with cycle-level
accuracy.

The simulator uses the Verilog-XL Programming Language Interface [14] to
communicate with peripheral device models. The device models may be writ-
ten in Verilog, C, or Tcl/Tk and make X-window calls to visually represent the
simulated device. Each device model exports the same API (application program
interface) for simulation and synthesis. To simulate the specification during the
early stages of the design, the API is bound to a behavioral simulation model.
For example, a SCSI device exports asend routine. During simulation, the user
may pop-up a window containing the various fields of a SCSI packet. After cre-
ating a new packet, the designer selects the send option which calls thesend
routine. This enables the user to simulate the environment of the system being
designed in a consistent manner. During structural simulation of the system, the
device’s pin interface is modeled by running multiple FSMs to recognize all pos-
sible I/O sequencings in parallel. The FSM that matches the given I/O invokes
the corresponding behavioral routine to simulate the device’s reaction to the given
waveform.

Chinook uses RTL-level processor models for simulating the final system im-
plementation. The processor model, written in C, interprets the same machine
code that runs on the actual processor. At this stage, it is possible to execute the
software with a debugger (although this is the synthesized code and not the orig-
inal Verilog source). The binary code is disassembled and the registers, program
counter, stack, internal memory, and built-in devices are visible in the processor
status window. The processor model faithfully reproduces, within cycle-level ac-
curacy, the appropriate waveforms on the processor’s pins. We are currently inves-
tigating more efficient simulation techniques that will permit cycle-level accuracy
for I/O operations but will run compiled code for the computationally intensive



18 G. BORRIELLO ET AL.

portions of the software. This is an important problem as the slow speed of de-
tailed simulations is currently a major bottleneck in design-space exploration.

6. Examples

Several embedded systems have been designed using the Chinook tools. The fol-
lowing examples show the type of complexity that the current version supports.
They are a portable electronic phonebook, a PC-Card-based logic analyzer, a node
controller for a distributed system, and a mobile defibrillator.

6.1. PORTABLE ELECTRONIC PHONEBOOK

The Portable Electronic Phonebook was originally designed by senior undergrad-
uate students. Taking their implementation, we reverse-engineered a high-level
specification, which was run through the Chinook tools. The generated solution
required less hardware than the original implementation due to the interface syn-
thesis algorithm. We were able to simulate the entire system at the behavioral and
structural levels to validate the design. After building this application in hardware
according to the generated netlist, the system operated correctly upon applying
power.

6.2. PC-CARD-BASED LOGIC ANALYZER

The Logic Analyzer Card is a data acquisition card that can be inserted into a
laptop or palmtop (we use an Apple Newton). It can be configured to look for
a particular trigger condition on its 15 sampling wires and capture up to 8192
samples of data into internal memory. The memory contents are then forwarded
to the Newton for display. The device can also be configured from the Newton.
The card employs a microcontroller to handle communication with the PC-Card
interface and an FPGA to perform the data sampling. There are two paths to mem-
ory: writes of samples controlled by the FPGA and reads from the microcontroller
through the FPGA which also implements the required address latches. The solu-
tion generated by Chinook includes a small amount of external hardware to handle
handshaking on the PC-Card interface (the processor is not fast enough to respond
with a WAIT signal to a data request) and a module synthesized as external hard-
ware (implemented in the FPGA) to handle the sampling of data. We were able
to simulate the entire system at the behavioral and structural levels to validate the
design.

6.3. MAGIC

The MAGIC (Memory and General Interconnect Controller) is a custom node
controller for the FLASH architecture [11]. It communicates with a processor,



CO-DESIGN: PORTABILITY AND INTEGRATION 19

network, I/O devices, and DRAM. We modeled this architecture with three han-
dlers, one for the processor requests, one for the network requests and one for
the I/O requests. Since the DRAM does not initiate activity, it does not require its
own handler. All communication with the DRAM occurs via device driver calls.
We used the MAGIC application to experiment with using a common API for dif-
ferent peripherals. The specification was written so that it is easy to select a SCSI
or Ethernet network interface chip. This demonstrates that designers can easily
explore different high level options and observe their ramifications on other parts
of the system. Now that we have both SCSI and Ethernet chips and drivers in
the device library, it is straightforward to implement other systems that require
these protocol chips. Using the results synthesized by Chinook, we performed our
experiments with the simulator.

6.4. A MOBILE DEFIBRILLATOR

The purpose of the mobile defibrillator is to revive heart-attack victims with a
powerful electrical shock. We consider the digital control subsystem containing
an extensive interface including display of ECG waveforms, voice synthesis, dig-
ital audio recording, and PC-Card non-volatile storage. Because of the difficulty
of guaranteeing that all timing constraints would be respected, the commercial
version of this application was designed with a microcontroller and an ASIC. We
are currently exploring solutions using reprogrammable components.

7. Conclusion

With the increasing availability of inexpensive and powerful microprocessors and
FPGAs, designers of embedded systems are faced with more implementation
choices than ever and given less time to realize their designs. Unfortunately, com-
puter aided design tools are not tracking these trends. The Chinook co-synthesis
system facilitates design space exploration and automates many aspects of system
integration. These are often the most time-consuming and error-prone tasks in the
embedded system design process.

Design space exploration is enabled by the use of a single system specifica-
tion that captures the reactive real-time behavior of the system and appropriately
abstracts interactions with the environment to enhance retargetability. Since tim-
ing requirements are critical for many embedded applications, Chinook uses static
scheduling to guarantee their satisfaction by construction. Several interface syn-
thesis techniques are employed to interconnect system components. The necessary
interface hardware and software is generated automatically and minimal glue logic
is introduced. At a higher level, Chinook facilitates easy migration of function-
ality among processing elements and manages the communication requirements
between processors. This enables designers to rapidly evaluate different architec-
tural templates and partitionings. Simulation is supported throughout the design



20 G. BORRIELLO ET AL.

cycle from the initial behavioral specification through the final structural imple-
mentation. Chinook’s output consists of a netlist, logic specification, and code
for each processor – all the elements needed for the construction of the complete
system.

We have used to Chinook to synthesize several embedded systems including
an electronic phonebook, SCSI interface to a VLSI chip tester, hand-held logic an-
alyzer, and an infrared network transceiver. We are currently experimenting with
its use in evaluating the design spaces for an automatic defibrillator and a multi-
processor I/O subsystem. Future work includes developing synthesis methods for
more efficient communication using higher level knowledge about the dataflow
and control dependencies of the handlers. For instance, routing data around a pro-
cessor may reduce processor load and yield higher performance at the cost of ad-
ditional hardware. Ongoing work includes making Chinook more robust and more
integrated, especially between the scheduler and compiler/estimator. In addition,
we are investigating techniques to permit partitioning between software running
on a workstation/PC and functionality in a peripheral device, which is an embed-
ded system on a board attached to the system bus or other standard interface such
as serial-line or PC-Card slot.

This chapter has attempted to motivate the need for a new generation of tools
that directly attack the problems of portabilityand integration of embedded system
designs. The Chinook project is making the first steps in this direction.

References

1. W. P. Birmingham, A. P. Gupta, D. P. Siewiorek. Automating the Design of Computer
Systems.IEEE Transactions on CAD of Integrated Circuits and Systems, Vol. 9, No. 5,
May 1993.

2. D. Cathey. All Things Considered... Important Factors in Choosing a Real-Time Devel-
opment System.Real-Time Magazine, 2nd quarter 1993.

3. P. Chou and G. Borriello. Software Scheduling in the Co-Synthesis of Reactive Real-
Time systems. InProceedings of the Design Automation Conference, June 1994.

4. P. Chou and G. Borriello. Interval Scheduling: Fine-Grained Software Scheduling for
Embedded Systems. InProceedings of the Design Automation Conference, June 1995.

5. P. Chou, R. Ortega, and G. Borriello. Synthesis of the Hardware/Software Interface
in Microcontroller-based Systems. InProceedings of the International Conference on
Computer Aided Design, November 1992.

6. P. Chou, R. Ortega, and G. Borriello. Interface Co-Synthesis Techniques for Embedded
Systems. InProceedings of the International Conference on Computer Aided Design,
November 1995.

7. P. Chou, E. A. Walkup, and G. Borriello. Scheduling for Reactive Real-Time Systems.
IEEE Micro, Vol. 14, No. 4, August 1994.

8. B. Gladstone. Specification of Timing in a Digital System.ASIC and EDA, August
1993.

9. R. K. Gupta and G. De Micheli. Constrained Software Generation for Hardware-
Software Systems. InProceedings of the Third International Workshop on Hard-
ware/Software Co-design, September 1994.

10. D. Harel. StateCharts: a Visual Formalism for Complex Systems.Science of Program-
ming, 8, 1987.



CO-DESIGN: PORTABILITY AND INTEGRATION 21

11. J. Kuskin et al. The Stanford FLASH Multiprocessor. In21st Annual Internation Sym-
posium on Computer Architecture, 1994.

12. A. K. Mok. The Design of Real-Time Programming Systems Based on Process Models.
In Real Time Systems Symposium, 1984.

13. C. Y. Park.Predicting Deterministic Execution Times of Real-Time Programs. PhD the-
sis, University of Washington, 1992. Technical Report 92-08-02, Department of Com-
puter Science & Engineering.

14. Programming Language Interface Reference Manual. CADENCE Design Systems,
Inc., 1992.

15. E. Walkup, G. Borriello. Automatic Synthesis of Device Drivers for Hardware/Software
Co-design. International Workshop on Hardware-Software Co-design, October 1993
and as University of Washington, Department of Computer Science and Engineering,
Technical Report 94-06-04, June 1994.

16. M. Weiser. Some Computer Science Issues in Ubiquitous Computing.Communications
of the ACM, Vol. 36, No. 7, July 1993.


