
Scheduling Issues in the

Co-Synthesis of Reactive Real-Time Systems

Pai Chou, Elizabeth A. Walkup, Gaetano Borriello

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

April 20, 1994

Abstract

Many embedded control applications must respect intricate timing requirements on their
interactions with the external environment. These constraints are derived from response time,
rate of execution, and low-level signaling requirements. Currently, most of these systems are
being designed in an ad hoc manner. Many tools assume the designer has already �nalized
the scheduling, while most schedulers make simplifying assumptions and often cannot handle
general timing constraints.

In this paper, we discuss the scheduling issues that must be addressed by co-synthesis tools for
embedded systems and outline possible approaches to the problems. Our perspective is based on
experience with Chinook, a hardware-software co-synthesis system for reactive real-time systems,
currently under development at the University of Washington. Chinook is initially targeting
embedded applications without operating system support. From a high-level speci�cation and
a device library, Chinook synthesizes both interface hardware and a software program to realize
the design.

1 Introduction

Embedded computers that are characterized by their continuous interaction with the environment

are called reactive systems. Examples of reactive systems range from personal electronics such as

digital watches to automotive and jet engine control. When the correctness of such a system is

de�ned by both its logical and timing behavior, it is classi�ed as a reactive real-time system.

To enable rapid exploration of the design space, designers of reactive systems often use o�-the-

shelf, reprogrammable components and various peripheral devices. Such an architecture consists

of one or more microprocessors running software programs to control a number of devices which

interact with the environment. (See Figure 1.) Examples of devices include temperature and

1



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 2

reactive system

CPU

device 1

device 2

device 3

--�
�

-

--

environment

� -

--
�

-�

Figure 1: Reactive System Architecture

motion sensors, liquid crystal displays (LCDs), keypads, buzzers, motors that control robot arms

or wheels, and bus controllers.

Reactive real-time systems must respect intricate timing requirements at di�erent levels. First,

for the microprocessor to communicate with a device in the system, it must generate a sequence

of low-level control signals and read or write I/O pins within appropriate time intervals. This

information is usually found in the databook for the device. Secondly, there may be more timing

constraints de�ned at a higher level. For example, the speci�cation may require that a button

device be sampled once every 20 ms; or it may require that we \stop the motor between 50 and

100 ms after the button is pressed." These are referred to as rate and response time constraints,

respectively.

Scheduling is an error-prone process that requires computer assistance to consider the many

interactions between constraints. Unfortunately, current design practices for reactive real-time

systems are ad hoc and not very retargetable. Programmers meet timing constraints by tuning

their code to a speci�c processor with a particular I/O con�guration. Such practices result in poor

modularity and limited retargetability, thus severely discourage exploration of the design space.

This is the case even if the program is written in a high-level language.

Designers have used real-time kernels to solve some of these scheduling problems. Most schedul-

ing work in real-time systems assumes a process-basedmodel, where a set of coarse-grained processes

are scheduled by a real-time operating system. Timing constraints are speci�ed in terms of the

release time (earliest allowed start time), the deadline, and the period of the process. However, the



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 3

fundamental problem with this model is that it schedules processes, while timing constraints are

more naturally speci�ed between observable events.

In the process-based model, each process may generate a number of observable events during

its execution. The scheduler is responsible only for dispatching the processes at the right times,

and has no direct control over when the observable events are actually generated by the processes.

In practice, designers often must tune their programs manually even when a real-time kernel is

used. A few recent techniques such as that of Gerber and Hong [1] attempt to gain better control

over observable events by applying compiler analysis. However, they do not handle all important

classes of deterministic timing constraints.

Process-based real-time models often make assumptions that may not be reasonable for reactive

systems. First, many schedulers rely on preemption and context switching at arbitrary points. Since

reactive systems are I/O intensive by de�nition, this assumption is not reasonable, because an I/O

protocol should not be left in an inconsistent state (in the middle of a bus write, for example) by

preemption. On the other hand, it is not practical to enclose all I/O protocols in critical regions.

Critical regions achieve atomicity by preventing interleaving, and are designed for short accesses to

shared data structures, but they are not suitable for those protocols with long separations between

consecutive events. Interleaving concurrent I/O transactions is often necessary for reactive systems.

Reactive systems require a di�erent programming model from the process-based real-time

model. Among the most widely known speci�cation languages for reactive systems are Esterel

[2] and StateCharts [3]. Both provide constructs for concurrency and watchdog-style preemption.

Both also de�ne simulation semantics for real-time behavior on an idealized machine, (i.e., one

that is \much faster" than the speed of its environment) but of course there is no guarantee that

this will be the case. Neither model allows timing constraints to be speci�ed, and both assume

real-time scheduling is done in advance by the designer.

In Chinook, we extend the reactive programming model by de�ning a taxonomy of timing

constraints, and develop scheduling algorithms to satisfy these constraints while maintaining the

integrity of the I/O protocols. We divide the scheduling problems into two levels: system behavior

at the high level (Section 4) and device drivers at the low level (Section 5).



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 4

2 The Chinook Co-Synthesis System

Input to Chinook consists of a high-level description of the system and a library of processor and

device speci�cations. Chinook synthesizes the software for the microprocessors and any required

glue logic. The synthesis steps include software-hardware partitioning, device driver synthesis and

low-level scheduling, I/O port allocation and interface synthesis, system-level scheduling, and code

generation. An overview of the Chinook system is given in Figure 2. In addition, simulation can be

performed on the results from various synthesis stages. In this paper, we focus on only two parts

that address scheduling issues: system-level scheduling and device-driver synthesis.

Partitioner

Scheduler

Section 4

Port Allocation and

Interface Generator

ICCAD ’92

Device Driver

Generator

Section 5Verilog Specification,

Timing Constraints

Processor & Device

Library

Code Generator and

Performance Estimator

(C, Assembly)

Netlist Generator

and

Interface Hardware

Generator (Verilog)

feedback

input output

Figure 2: Chinook System Overview.

2.1 High-Level Speci�cation

The input supplied by the user is a high-level description of the system. Currently, we support the

Verilog hardware description language [4]. It contains a structural section and a behavioral section.

The structural description instantiates the processor(s) and the devices used in the system.

Chinook automatically connects the pins of the devices to the processor, by synthesizing appropriate

glue logic as necessary. The designer may also choose to bypass the automatic allocation mechanism



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 5

by explicitly specifying interconnections.

The behavioral section describes the functionality of the system, using high-level language

constructs such as conditionals, loops, procedure and function calls, and arithmetic and logical

operators. For reactive modeling, it supports parallelism, disable-style preemption (forcing a

block of statements to terminate), real-time delays, and communication through named events.

High-level timing constraints can be speci�ed as annotations on the behavioral description. These

are described in more detail in Section 3.

2.2 Processor and Device Libraries

The libraries for processors and devices contain information needed to connect them to each other,

both physically and logically. For a processor, we de�ne the collections of pins that form parallel

I/O ports, serial ports, address/data ports, and their relations when they share the same pins. In

addition, we also list the processor's I/O instructions with their timing. For a device, we de�ne

its ports, the protocols for accessing the device, the functionality of the device in case it should

need to be synthesized from scratch, and a procedural interface. The designer uses this interface

in the behavioral speci�cation, thus being shielded from the details of the interactions with the

device. An example procedure would be a bus-write for a bus interface, taking address and data

as arguments. The procedure encapsulates the details of bus arbitration and signaling on the bus.

The low-level timing constraints are speci�ed as part of these procedures.

2.3 Partitioning and Device Driver Synthesis

The �rst synthesis step partitions functionality between hardware and software implementation,

and among the processors. The default partitioning is to implement all of the structural device

instantiations in hardware and turn all the behavioral statements into software. However, based

on the processor selected and both the system-level and device-level timing requirements, we can

detect that certain constraints cannot be met if implemented in software. If so, these functions are

pushed into the hardware partition. Chinook then synthesizes the device and its interface hardware

as a new devices with updated driver routines. This combined partitioning and synthesis problem



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 6

is addressed in Section 5. Partitioning may be revisited if the high-level scheduler discovers that it

cannot meet a performance requirement.

2.4 I/O Port Allocation and Interface Synthesis

Processors need to be connected to the devices they control. If a processor has general-purpose I/O

ports, Chinook will attempt to use them because they incur minimal hardware and software cost. A

greedy algorithm [5] attempts to use the same I/O port to service those devices that are not active

at the same time. If there are not enough I/O ports to service all the devices, then multiplexing

hardware is synthesized along with the driver routines. If the processor does not have general

purpose I/O ports, then a memory-mapped scheme is used to access these devices. Under user

guidance, Chinook assigns addresses to the devices, and synthesizes the address-decoding logic. All

device driver procedures are updated to reect the binding to I/O ports or the use of multiplexing

logic.

2.5 System-Level Scheduler

After the resource binding is completed, we can more accurately estimate the run time of the opera-

tions and perform scheduling. Scheduling is required to serialize the initial behavioral speci�cation,

which may contain concurrent elements. In Section 4, we discuss methods for satisfying sequenc-

ing, rate, and response time constraints. If no feasible schedule exists, then we must consider

re-partitioning the design among multiple processors or moving functions into hardware.

2.6 Output

The output of Chinook provides all the elements needed to construct the complete embedded

system. The principal parts are the net-list of components (devices, processors, and synthesized

glue logic) and the code for each processor in the system. For the code generation task, we use

a retargetable compiler that also provides estimates of code execution time and code size. These

estimates are used during the partitioning and scheduling steps.



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 7

3 A Model for Reactive Real-Time Systems

Our model for reactive real-time systems captures reactive behavior with control constructs similar

to those in Esterel and StateCharts, but also allows the speci�cation of general deterministic timing

constraints between I/O operations to be scheduled. Scheduling is divided into two levels. At the

low level, the scheduler/partitioner (Section 5) schedules those operations with constraints on or

below the order of the CPU instruction cycle time, as meeting these constraints may require both

hardware and software. Each group of operations that have been scheduled together at the low

level appears as a single atomic sequence of software instructions to be scheduled at the high level

(Section 4).

3.1 Reactive Control Flow

Reactive behavior can often be conveniently and succinctly expressed with concurrency and watchdog-

like preemption, two of the common features of Esterel and StateCharts. We have chosen struc-

tured control ow as in Esterel, instead of arbitrary state transitions with go-to semantics as in

StateCharts.

Our model uses fork-join and disable primitives, similar to those in Verilog. A fork speci�es

a list of concurrent operations. A corresponding join waits for the forked operations to terminate

before passing control to the next statement. A disable causes a named block of statements to

terminate. A disable in conjunction with a fork can be used as a watchdog. For example, one

branch of a fork can be the main loop of the system, while the other branch watches the reset

button until it is pressed and then disables the entire fork statement block. Watchdogs may also

be used to describe timeout behavior.

One immediate question is \where does the disable take e�ect?" In Esterel, there are two

possibilities under the perfect synchrony hypothesis, which states that operations consume no time

to execute. The �rst possibility is for the watchdog to terminate the code being watched at the

beginning of an instant (Esterel's watching construct). The second possibility is to give its peer

statements a chance to run until they block and then terminate them (Esterel's trap construct).



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 8

Our disable is similar to the trap construct in Esterel, although the timing semantics is di�erent

because operations in our model do consume time. To ensure that I/O's and operations in general

are not disabled in an inconsistent state, we allow the disabled operation to de�ne a number of

safe-exit points, where disables may take e�ect. This is especially important for maintaining the

integrity of I/O interactions while enabling interleaving. At the high level, the safe-exit points can

be used to give the disabled operation a chance to save its state.

3.2 Timing Constraints and Modes in Reactive Systems

Timing constraints are the minimum or maximum separations between pairs of events. In hardware,

events include rising and falling edges where timing constraints such as set-up and hold times are

de�ned between edges. In software, we de�ne the events to be the start of a software operation.

Since we use watchdogs for modeling reactive behavior, each watchdog de�nes a natural scope in

which a set of timing constraints is active at the same time. Each such scope is called a mode.

Thus modes are quite similar to a hierarchical state in StateCharts, but also include the timing

constraints that must be satis�ed in that state.

We divide the types of timing constraints into those within a mode and those between two

modes. Timing constraints within a mode include sequencing and rate requirements. A sequencing

constraint is the minimum or maximum separation between the start of two events in the same

iteration. A rate constraint is the min/max separation between the start of consecutive iterations.

When a watchdog detects an event, it disables the mode and causes a mode transition. Timing con-

straints can also be speci�ed between two operations across a mode transition. Such an intermodal

constraint is known as a response time constraint.

3.3 An Example

To help illustrate the concepts in this paper, we consider a simple speech sampling and playback

system (Fig.3). The system consists of a CPU, an LCD, four buttons (up, down, enter, reset),

an analog-to-digital converter (ADC) connected to a microphone, a digital-to-analog converter

(DAC) connected to a speaker, and an interface to the ISA bus. Chinook's initial partitioning is to



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 9

(environment)

-�
ISA Bus

host computer

B Play

A Sample C Upload

D Download

CPU

6

up

down

enter

reset

u
u

u
u

�
�
�
� A/D

D/A

-
�

-
�

System Architecture

Init

poll Reset

fork

? ?

Menu

Sample Play upload download

?
? ? ? ?

loop

?

loop

mode M

disable M

Top-Level Modes

Figure 3: Example Speech Capture/Playback System with Bus Interface

instantiate only the required hardware (LCD, buttons, ADC, and DAC), and implement as much

as possible in software, including the bus interface. On startup, the system enters the initialization

mode �rst, and then enters the menu mode to poll the buttons and update the menu on the LCD.

The menu selection will cause the system to enter one of the following modes:

1. Record sound by reading 8-bit sound samples from an A/D converter at 20KHz and store

them in a 16K memory.

2. Play back the sound in the bu�er by writing to the D/A converter at 20KHz. In addition,

pressing the UP button during recording causes a time stamp to be recorded.

3. Upload the sound data to a host computer via the ISA bus

4. Download the sound data from the host computer.

If, at any time, the reset button is pressed, the system restarts from the initialization mode

by disabling mode M, which contains the main loop and the watchdog for reset in parallel.

The timing constraints at this level include rates and response times. An example of a response

time constraint is \start sampling within 1 ms after the enter button is pressed." In addition to

the 20KHz sampling and playback rate, the buttons may also have a polling rate constraint.



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 10

M

�

download

Menu

disable M

fork

poll

reset

? ?

?

(a)

M3

?

?

M3
disable

disable M

M2
disable

M2

poll

reset

poll

reset

fork

? ?

fork

? ?
Menu

download

M

disable M

?

(b)

Figure 4: Example of Flattening

4 Scheduling in the Reactive Real-Time System Model

The system-level scheduling problem can be classi�ed as �ne-grained, static, and nonpreemptive.

Operations may have nonuniform integral worst-case execution times and are related by precedence

(i.e., partial order) de�ned by the minimum and maximum separations between pairs of operations.

Instead of computing a single static schedule for the entire reactive system, our approach is to

produce multiple schedules, one for each mode of the system. When the system changes mode, it

starts running with the new schedule for the new mode. In the general case, modes are hierarchical

and may contain parallel loops with di�erent rate requirements. These mode structures require

transformation before they can be scheduled statically. The following two subsections discuss how

to atten hierarchical modes and parallel loops so that they can be scheduled statically to meet

the intramodal and intermodal constraints.

4.1 Scheduling Hierarchical Modes

Hierarchical modes must be attened before they can be scheduled. If a watchdog watches an

event over multiple mutually exclusive modes within a hierarchical mode, the watchdog must be

\inlined" for each of these nested modes to atten the hierarchy. In addition, if the watchdog has

rate constraints, we may need to add them as intermodal constraints.

Consider the speech sampler example in Figure 4(a) prior to attening. The watchdog for the



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 11

reset button is active when the system is in either the menu mode or the download mode. To atten

the hierarchy, the reset watchdog is replicated in both nested modes, as shown in Fig. 4(b). If the

reset watchdog has a rate constraint, then an intermodal constraint equal to its period is added

from the watchdog in M2 to the one in M3, as well as from M3 to M2. If either the menu mode

or the download mode is hierarchical, then attening continues recursively. Flattening results in

parallel loops that can be processed by the following techniques.

4.2 Scheduling Parallel Loops

Here we consider the case where a mode consists of several loops running in parallel. Each loop may

have some minimum and maximum rate constraint, and the body of each loop can have sequencing

constraints. An example of this structure is when the system needs to service or watch inputs from

several devices in parallel, each with its own protocol and rate requirement. We can schedule this

mode by �rst transforming the parallel loops into an outer loop with a parallel body, so that the

body of the loop can be scheduled using known techniques [6]. Here we describe the transformation

step called rate matching.

The new loop must have a rate constraint such that the bodies of parallel loops can be executed

at their required rates. If they have di�erent rates, then the new loop period is the least common

multiple (LCM) of the periods. A loop Li with a period pi is unrolled LCM(p1; � � � ; pn)=pi times.

Several techniques can help reduce this potential code explosion: exploiting the freedom in the rate

requirement, performing partial unrolling, and converting a polling loop into an interrupt.

Often the rate constraints are speci�ed as ranges rather than just a single value. We exploit

this freedom to minimize the unrolling factor, especially when either the upper or lower bound is

left unspeci�ed. In the speech sampler example, the \playback" mode contains three parallel loops:

polling the reset button, polling the up button, and playing the sound. The button polling loops

have a maximum period constraint of 10ms but no minimum period constraints; the playback loop

has a required period of 50�s (Fig. 5(a)). By matching the button polling rates with the playback

rate, we can completely eliminate the need for unrolling (Fig. 5(b)).

Instead of matching the periods, partial unrolling unrolls a faster loop enough times to match



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 12

fork

poll
reset

read
mem

write
D/A

poll
up

? ??

?

50

10 10msms

�s

max max

�� �

(a)

�

�-
join
?

�s50

?

? ??

up
poll

D/A
write

mem
read

reset
poll

fork

(b)

loop

-

times
199

?

write
?

mem
read

D/A
?

write
?

mem
read

D/A
?

�

�-
join

? ??

up
poll

reset
poll

fork

(c)

Figure 5: Example of Rate Matching (b) and Partial Unrolling (c) of the structure (a).

the execution latency of the slower loop. To illustrate this method, assume the polling loops have

a minimum period constraint of 10ms also. Since the execution latency of the button polling loops

is short, partial unrolling eliminates unrolling the playback code during the idle time of the polling

loops (Fig. 5(c)).

Sometimes it is desirable to transform one or more watchdogs from polling loops into an inter-

rupt implementation. Such watchdogs can be characterized by having a fast polling rate relative to

their peers, a short response time constraint, and/or a response action requiring little computation

time. These watchdogs also tend to watch over a large hierarchical mode, such as the reset watch-

dog in the speech sampler example. Extracting the code from the fork and implementing it with an

interrupt not only saves code size but also reduces the processor load. Information regarding the

frequency of interrupts must also be known to ensure that other loops are not adversely a�ected

by this transformation. This type of transformation requires further investigation.

4.3 The Core Scheduling Algorithm

The core of the scheduling problem serializes concurrent operations for each mode and assigns their

start times to meet timing constraints. To compute a schedule within a mode, we assume that the

mode has been transformed using the techniques already discussed, so that it contains no loops.

The scheduling problem can be formulated as a graph, where the vertices represent operations, and



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 13

the edges represent timing constraints similar to relative scheduling [7]. Our scheduling algorithm

[6] calls the Bellman-Ford single-source longest path algorithm as a subroutine both to check

feasibility and to assign start times of the operations. To take inter-modal constraints into account,

we schedule each mode with incoming and outgoing constraints on the mode transitions.

5 Automatic Device Driver Synthesis

In addition to satisfying the real time constraints speci�ed for our application, we must also satisfy

the timing requirements of all peripheral devices with which the microcontroller communicates. We

do this by encapsulating device behavior within device drivers. These drivers consist of a script

of software instructions for the microcontroller and interface hardware between the microcontroller

and devices. The device drivers are responsible for generating the appropriate signal sequences

to interact with each device correctly. The higher-level software, which implements system func-

tionality, can then invoke the drivers without attending to the hardware and timing details of the

peripheral devices. Thus, device drivers create a useful layer of abstraction between hardware re-

quirements and system performance requirements while permitting optimization within the device

drivers themselves. The problem of determining a good implementation of the driver { so that it

meets timing constraints imposed by the device and makes e�cient use of hardware resources {

can be posed as a combined scheduling and partitioning problem.

Previous work in the �eld of interface synthesis [8] considered the problem of generating glue

logic to interconnect devices whose interfaces are speci�ed by timing diagrams. Given the presence

of a microprocessor in the systems we are considering, it is natural to implement much of that

interface logic as software routines and thus reduce the cost of interface hardware while providing

added exibility. However, interface hardware may still be necessary, even with today's micropro-

cessors and microcontrollers, for performance and bandwidth reasons. The processor may not be

fast enough to meet the timing constraints of the devices; the processor may not be able to achieve

the interface throughput required; or the processor may not have enough external pins (ports) to

directly connect with all the devices that it must control. This paper addresses the performance

problem; bandwidth issues of port alocation and memory mapping are handled by the algorithm

described in Chou et al [5].



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 14

Di�erent processors with di�erent speeds, instruction sets, and I/O ports will require di�erent

variations on the software routines. In addition, though it is possible to write a standard suite

of device driver routines for each device-processor combination, there are several reasons it may

be advantageous to synthesize new drivers automatically. For example, an application which uses

only a subset of a device's possible operations may not require as much interface hardware as one

using a comprehensive set. Furthermore, even when the microprocessor speed is well matched to

the device's communication requirements, tighter system-level real-time constraints may overload

the microprocessor and thus force more system functionality to be implemented in hardware.

When possible, it is desirable to separately satisfy the timing constraints induced by the

devices and those induced by the real-time constraints, since the latter will tend to involve time

intervals an order of magnitude larger than the former. With such issues in mind, we wish to

create for each device a driver consisting of software routines and interface hardware connecting

the microprocessor to the device, if necessary. The software routine implements an atomic device

operation either directly or indirectly by driving the interface hardware to meet the device's timing

constraints and realize the transaction.

setup hold

setup hold

hold

request ack valid ack

data driven data valid
hold

tri-state

cpu->bus

cpu->bus

cpu->bus

bus->cpu

bus->cpu

Address1

Address2

MEMR*

Ready

DATA

Figure 6: Timing diagram for ISA bus ready-read operation.

Device behavior is generally described with timing diagrams. Figure 6 shows an example of

the ISA bus ready-read operation. In this example, a simple software device driver would read

and write I/O ports directly connected to the bus and execute the following steps:

� provide data for Address1 and Address2

� drive MEMR* low



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 15

� poll Ready until its value is 0

� poll Ready until its value is 1

� read a word from DATA line

� drive MEMR* high

Suppose, however, that the amount of time between the events request-ack and valid-ack on the

Ready line is small enough that the microprocessor we have chosen cannot be guaranteed to catch

the zero value on the Ready signal line. If this event were missed, the microcontroller would have

to assume that the read command it issued was not received by the bus. To solve this problem, we

can introduce a hardware �nite state machine to watch the MEMR* and Ready lines and to catch

the valid-ack event. This state machine generates a signal (Data-ready*) that can be polled by the

microcontroller at a later time to determine if the data are valid. Figure 7 shows a possible device

driver for this scenario. It consists of microcontroller code, a hardware �nite state machine, and a

timing diagram which depicts the new timing relationships between signals.

ISA Read(in adr1,in adr2, out dataReg):
Address1 := adr1;
Address2 := adr2;
MEMR* := 0;
While(Data ready* == 1);
dataReg := DATA ;
MEMR* := 1;

MEMR* == 0 and Ready == 0

reset

Ready == 1 / Data ready* := 0
MEMR* == 1 / Data ready* := 1

setup hold

setup hold

hold

request ack valid ack

interface delay
interface

data driven data valid
hold

tri-state

cpu->bus

cpu->bus

cpu->bus,interface

bus->interface

bus->cpu

interface->cpu

Address1

Address2

MEMR*

Ready

Data ready*

DATA

Figure 7: Device driver for ISA read operation, consisting of a microprocessor routine and hardware
�nite state machine.



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 16

5.1 A Combined Scheduling and Partitioning Problem

Events represented in the timing diagram fall into two categories: device events, which are generated

by the device itself, and driver events, which must be generated by any user of the device. For the

Ready signal in Figure 6, the device events are request-ack and data-valid. In addition, there are

two implied driver events, namely reading a zero value on the Ready line, and then reading a one

value.

Creation of the device driver consists of three steps. First, for each device routine used, we

partition the driver events into two sets, those that can be controlled directly by software and

those that necessitate external hardware. This step will introduce interface signals for controlling

the interactions between the software and the external hardware. Second, for each di�erent device

call, we schedule a software subroutine consisting of those driver events we can control using mi-

croprocessor I/O instructions. Third, we interface the processor with the device by producing a

speci�cation for a �nite-state machine to generate and/or sense any events that cannot be handled

directly by the software routines. Note that one such �nite state machine is shared among all im-

plemented device routines. The synthesis of the hardware FSM is not covered, as several sequential

logic synthesis tools are available for this task.

Our combined partitioning and scheduling problem is di�erent from other scheduling problems

because we schedule a set of signal events over two di�erent \processors" with di�erent cost metrics

{ the microprocessor itself and the additional FSM hardware. In software, the costly resource is

time, which is represented by the individual events; in hardware, cost is dominated by area, which

is closely related to the number of distinct signals on which events occur.

We make the following simplifying assumptions. First, we assume that the microprocessor

can issue port read and write instructions with constant, regular spacing in time. Second, we

assume that all driver sequences are executed atomically by the processor, possibly in response to

an interrupt from the device, and cannot be overlapped or otherwise interrupted. These are both

acceptable assumptions in the domain of real-time embedded controllers.

We can now provide a more formal description of a simpli�ed version of the combined parti-



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 17

tioning/scheduling problem. Given

� a set of signal wires, the inputs and outputs of the device,

� a set of events, with each event assigned to occur on particular wire(s),

� timing constraints specifying maximum and minimum separations between the events, as

obtained from the device's databook, and

� a processor scheduling quantum, the time separation between successive instructions on the

microprocessor,

compute a valid schedule, if one exists, such that all driver events are implemented in either interface

hardware or software, and such that all scheduled times of events meet the given timing constraints.

Each event implemented in software is assigned a unique time slot which is a multiple of the

processor scheduling quantum.

5.2 A Flow-Based Approach to Partitioning and Scheduling

Creating such a partition begins by �rst determining if the driver events can be completely scheduled

in software. If so, then there is no need to partition the events between hardware and software.

However, when we must partition the events we will rely upon a Kernighan-Lin-style [9] iterative

improvement algorithm on top of a max-ow/min-cut-based partitioning technique in the spirit of

Bui et al [10]. Details of this algorithm are provided in Walkup and Borriello [11].

The input to the min-cut algorithm consists of a graph with weighted edges and two distin-

guished nodes, the source and the sink. The min-cut of a graph divides graph nodes into two

partitions such that the source and sink are in di�erent partitions and such that the total weight

of the edges crossing the partitions is minimized. This is particularly appropriate since we already

have a natural choice of the source and sink for our set of events { events which occur in hardware,

such as data provided in a read operation, and events which must originate in software, such as

data writes. Nodes in our min-cut graph represent the events to be partitioned and scheduled,

and the weights of edges between them are heuristically determined to encourage a schedulable

partition while generating as small an interface FSM as possible.

We begin by scheduling all events on the microprocessor, but initially allow more than one

event to be scheduled in a single time slot. To encourage driver events to be scheduled in software



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 18

whenever possible, we add edges connecting all driver events to the software sink. In areas of \high

congestion" (i.e. where there are more events than instruction slots), we encourage one or more

events to be pulled into the hardware partition by adding edges between them and the hardware

\source". Furthermore, we create edges between events occurring on the same signal wire so that

when events are moved to ease congestion, those whose signals are already in hardware will be

more likely to move to hardware. We do this to minimize the size of the interface FSM, since its

size grows with the number of signal wires it reads and/or writes. Events sharing narrow timing

constraints have edges between them with weights inversely proportional to the constraint; these

edges, in conjunction with the \high congestion" edge weight, encourage tightly timed events to

be moved to hardware. The min-cut algorithm is then applied to this graph, and those events

remaining in software are re-scheduled. This continues until a feasible schedule is found.

Figure 8 gives a graphical representation of the events and capacity relationships for the timing

diagram of Figure 6. In this example, if the driver events cannot be feasibly scheduled on the

microprocessor and some event must be moved to hardware, an appropriate choice would be moving

the two reads of the Ready signal because they are less connected to other driver events.

Although it is possible to generate a separate hardware �nite state machine for each device

call used, greater hardware minimization is possible if we combine all �nite state machines for

such a device into one large FSM. This means that what might be an optimal software-hardware

partitioning of driver events for a single device call may not be optimal for the entire device. More

speci�cally, while it is events which we must partition between hardware and software, if we wish

to minimize interface hardware size, we must minimize the number of distinct signals that appear

in the interface logic. Therefore, one would apply this technique to all device routines for a single

device at once.

Once the partitioning has been determined, we must generate the software routines and possi-

bly a hardware state machine. Both of these tasks are straightforward. The software is essentially

scheduled at the end of the iterative improvements. The hardware state machine can be constructed

directly from the speci�cation of the events on the signals to be generated by the hardware. More

sophisticated FSM synthesis methods will be required when complex and tight timing constraints

are involved.



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 19

Ready high

Ready low

read Ready high

read Ready low

read DATA

MEMR* high

MEMR* low

DATA driven

DATA tri-state

DATA invalid

DATA valid

Address2 invalid

Address2 valid

Address1 invalid

Address1 valid

software
sink

hardware
source

device events driver events

timing relationships
events on same wire
structural relationships

capacities express relationships
between events

Events ordered top to bottom

Figure 8: Flow solution for ISA bus read function.

6 Closing Remarks

We have outlined some issues in the scheduling of code for reactive real-time systems. Timing

constraints are divided into two principal categories: high-level constraints arising from functional

speci�cations that include rate, sequencing, and response requirements; and low-level constraints

arising from the signaling protocols of the peripheral devices. This separation is a natural one as

constraints within each of these two domains generally di�er by orders of magnitude. Furthermore,

tight low-level timing may require the addition of interface logic to handle some interactions for

the processor. These di�erences lead to di�erent methods being applied to solve the problems at

the two levels.

The ideas presented here have led to algorithms that are being implemented in the Chinook

hardware-software co-synthesis system under development at the University of Washington. The



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 20

initial goal of the project is an automatic mapping tool that takes a high-level speci�cation of an

embedded system's functionality and its performance requirements and maps them onto a speci�ed

collection of processors and peripheral devices, which are described in detail in a library. The output

provides all the elements needed to construct and program the system to operate as intended.

Currently, the �rst complete version of Chinook is operational and can handle designs with one

processor and user-speci�ed partitioning. Thus, we have initial versions of all the pieces described

in Figure 2 except for automatic partitioning.

The next steps include introducing automated partitioning and taking a closer look at the

synthesis of interrupt-driven code. In addition, we are applying Chinook to an ever larger array of

embedded systems applications for validation purposes as well as to help identify new directions

for research.

References

[1] Richard Gerber and Seongsoo Hong. Semantics-based compiler transformations for enhanced
schedulability. In Proceedings of the Real Time Systems Symposium, December 1993.

[2] R. De Simone F. Boussinot. The Esterel language. Proceedings of the IEEE, 79(9), September
1991.

[3] D. Harel. StateCharts: a visual formalism for complex systems. Science of Programming, 8,
1987.

[4] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description Language. Kluwer
Academic, 1991.

[5] Pai Chou, Ross Ortega, and Gaetano Borriello. Synthesis of hardware/software interface in
microcontroller-based systems. In Proceedings of the International Conference on Computer
Aided Design, November 1992.

[6] Pai Chou and Gaetano Borriello. Software scheduling in the co-synthesis of reactive real-time
systems. In Proceedings of the Design Automation Conference, June 1994.

[7] David C. Ku and Giovanni De Micheli. Relative scheduling under timing constraints: al-
gorithms for high-level synthesis of digital circuits. IEEE Transactions on Computer-Aided
Design, 11(6), June 1992.

[8] Gaetano Borriello. A New Interface Speci�cation Methodology and its Application to Trans-
ducer Synthesis. PhD thesis, University of California, May 1988. Report No. UCB/CSD
88/430.

[9] B. W. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, February 1970.

[10] T.N. Bui, S. Chaudhuri, F.T. Leighton, and M. Sipser. Graph bisection algoritms with good
average case behavior. Combinatorica, 7(2), 1987.

[11] Elizabeth A. Walkup and Gaetano Borriello. Automatic synthesis of device drivers for embed-
ded systems. Technical report, University of Washington, April 1994.



Scheduling Issues in the Co-Synthesis of Reactive Real-Time Systems 21

[12] Edward Solari. ISA and ESA, Theory and Operation. Annabooks, 1992.

[13] Bruce Gladstone. Speci�cation of timing in a digital system. ASIC and EDA, pages 46{52,
August 1993.

Acknowledgements

This work was supported by an NSF Graduate Fellowship (Walkup), a PYI Award (MIP-8858782),
and by the DARPA/CSTO Microsystems Program under an ONR monitored contract (N00014-91-
J-4041).


