
Fast Compressive Sensing
Based on Dominant Frequency Estimation

Abstract—This work investigates the theoretical analysis to
enable fast and accurate estimation of dominant frequencies
from randomly sampled signals by compressive sensing (CS). We
show that dominant frequencies can be discovered using partially
computed Discrete Cosine Transform (DCT). We also propose
a new system structure with an estimation unit that enables
the signal reconstruction to be selectively bypassed for CS-based
devices on signals with dominant frequencies, thus increasing the
responsiveness and further reducing the power consumption. For
verification, we design a photoplethysmagram (PPG) based heart
rate monitor. Our two-step algorithm consists of prior estimation,
which extracts the dominant frequency as the heart rate without
reconstructing the original signal, and optional sparse reconstruc-
tion using Compressive Sensing Matching Pursuit (CoSaMP). The
accuracy is tested using MIMIC database. The detected heart
rate is within 1 beat per minute from the reference over 99% of
the data.

Index Terms—Compressed sensing, Frequency estimation, Dis-
crete cosine transforms, Matching pursuit algorithms, Photo-
plethysmography

I. INTRODUCTION

Energy consumption has always been a key issue for long-
time miniature sensing systems and sensor networks. Low-
power design not only helps increase the operation time but
also reduce the overall system size since the battery tends
to be the largest component in such systems. Compressive
sensing (CS) provides a potential solution to this problem.
The classic CS approach is to first randomly sample a signal
at a low rate and then perform sparse reconstruction to
approximate the original by either basis pursuit (BP) [8], i.e.
convex optimization, or matching pursuit (MP) [30]. Some
CS systems can work even at a sub-Nyqvist rate. However,
the potentially complex reconstruction process can increase
the system’s response time and power consumption by more
than can be saved in sampling.

In this work, we explore the inherent signal characteristic
to address this problem. One of the most fruitful areas of
CS is reconstruction with known support, also called prior
knowledge, which can generally reduce the complexity of CS.
In particular, many signals in the natural world possess strong
periodic components. In frequency domain, these periodicities
appear as one or multiple large coefficients of Discrete Fourier
Transform (DFT) or Discrete Cosine Transform (DCT). We
introduce a new frequency-dominant model to better represent
these signals. On top of this model, we show that dominant
frequencies can be discovered using partially computed DCT.
We also propose a novel system structure with a prior es-
timation unit as shown in Fig. 2. This unit enables signal
reconstruction to be bypassed in some applications, thus
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Fig. 2: Proposed CS structure

increasing the system responsiveness and further reducing the
power consumption.

For verification purpose, we design a Photoplethysmogram
(PPG)-based heart-rate monitor (HRM). PPG is the collection
of vital signs from pulse oximetry, where a single infrared
LED or a pair of infrared and red LEDs emit light into body
tissues, and one or multiple photo receivers measure the trans-
mittance or reflectance of the light to estimate the absorbance
due to the pulsatile arterial blood. PPG monitors are commonly
seen in intensive care, elderly care, sports and fitness, newborn
screening, and other medical applications. In particular, PPG-
based HRM have become popular, because they are more
comfortable to wear than the traditional Electrocardiography
(ECG)-based HRM. A commercial pulse oximeter consumes
55-120 mW, most of which is consumed by the LEDs [29].
CS can directly save the LED power by reducing the LED on-
time, thus making it a natural candidate. We propose a two-
step algorithm consisting of prior estimation and Compressive
Sensing Matching Pursuit (CoSaMP) [24]. It estimates prior
information without actually reconstructing the original signal,
thereby enabling accurate heart rate estimation. Our algorithm
requires no extra sampling and is of low complexity. Test
results on PPG data from MIMIC Database [16] shows that
our algorithm accurately reports the heart rate and reconstructs
the signal with much fewer iterations than previous works.

This paper first provides a background on CS, DCT, and
pulse oximetry. We then formally define the signal model



followed by the dominant frequency estimation algorithm and
proof of its probability of success. We present experimental
results for designing a PPG based HRM with a discussion of
the implications.

II. BACKGROUND AND RELATED WORKS

A. Compressive Sensing

A discrete time-frequency signal of N samples can be
represented as

T = D−1(N)X

where T is the time-domain samples, X is the DFT coefficient
and D−1(N) is the inverse DCT matrix. A randomly sampled
signal with k samples can be represented as

PT = PD−1(N)X

The matrix P, shown as follows, takes the k random rows out
of T .

P =

∣∣∣∣∣∣∣∣
0 . . . 0 1 0 . . .
0 . . . 0 1 0 . . .

. . . . . .
. . . 0 1 0 . . .

∣∣∣∣∣∣∣∣
Let b = PT and Φ = PD−1(N). Then

b = ΦX

where b is the time-domain observation, and X is the
frequency-domain signal that we want to recover from b. To
differentiate, we call P the time-domain selection matrix and
Φ the sampling matrix. Φ consists of k random rows from the
inverse DCT matrix D−1(N).

When k < N, this linear system is underdetermined, i.e.,
having infinite solutions. However, if we know X is sparse,
then we can search for the most sparse solution out of all
the possible combinations of coefficients. The classic CS
theory states that an exact reconstruction for a sparse signal
is possible from partial knowledge of its Fourier coefficients
[8]. An s-sparse discrete signal can be reconstructed from
O(s · logN) random samples in time domain with probability
≥ 1−O(N−C), where C is a given accuracy parameter and N
the size of DFT basis. The actually sparse reconstruction can
be solved by BP [8] (l1-norm) minimization or MP [30]. In
practice, this idea can be extended to different transform bases
such as wavelet or some redundant basis [9].

Many CS applications have been developed over the past
decade [7], [18], [23], [29]. The typical diagram of a CS-
based sensing system is shown in Fig. 1. Both the coding
unit and decoding unit are optional. The economy of CS is
acquired either from transmission link or the sensing unit.
For transmission link, CS is used more as a compression
than sampling method. A real-time ECG monitor based on
CS [18] does uniform sampling but uses a sensing matrix
during compression to reduce the bandwidth requirement.
Compared with ECG, the sampling process of PPG signal is
more expensive due to LED usage as discussed in Section I.
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Fig. 3: Pulse oximeter block diagram

How to fast and accurately reconstruct the original signal is
very well studied in the CS community. It is generally believed
that BP-based algorithms yield higher accuracy if the signal
is sufficiently sparse [22], while MP-based greedy algorithms
only guarantee to recover an s-sparse signal when the number
of measurements is proportion to s [30]. On the other hand, the
complexity of MP-based algorithms can be only O(sNk) while
that of BP is generally much higher [30]. For our application,
we choose MP, because we are targeting low-power embedded
platforms that usually do not possess the resource to perform
convex optimization.

Several previous works attempted to recover PPG signal
from compressed samples. The Gradient Projection based
Sparse Reconstruction (GPSR) [14] is used in [5], [7]. GPSR
is based on convex optimization, which is generally of higher
complexity than MP-based greedy algorithms. OMP is used in
[6]. A significant drawback of OMP is that it picks only one
coefficient every iteration. This inevitably increases the num-
ber of iterations and requires a higher order of computational
resources. It is estimated that OMP would take tens to even
hundreds of iterations for PPG reconstruction [6].

We believe in thoroughly exploring the properties of the
source signal before applying the algorithm. Any reconstruc-
tion method within the CS framework should not be used
as a black box. In our example, the reconstruction is based
on CoSaMP [24]. Different from OMP, CoSaMP can rapidly
reconstruct the signal by adding multiple coefficients into
the support. We customize several parameters based on the
characteristics of PPG signals to further reduce the number of
iterations.

B. Photoplethysmogram

Photoplethysmogram uses pulse oximetry to measure the
absorbance of light due to the pulsatile arterial blood. The
system structure of a typical transmittance-type pulse oximeter
is shown in Fig. 3. The DSP finds the best signal to noise ratio
(SNR) by controlling the LED driver and both amplifiers based
on the voltage level of both amplified and raw inputs from the
photoreceiver. Heart rate and oxygen concentration (SpO2) are
the two most basic indices that can be extracted from PPG.
Among several signal-processing techniques used, weighted
moving average (WMA) [26] is a beat-by-beat algorithm that
detects signal peaks in a PPG signal and computes the average
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Fig. 4: Typical PPG signal and its DCT transform. Top: PPG
signal from patient No. 55 in MIMIC database, bottom:

absolute value of the DCT coefficients

HR and SpO2. In practice, SpO2 can be estimated as

Ratio =
AC(Red)
DC(Red)

/ AC(IR)
DC(IR)

SpO2 =−2.5Ratio+110

DFT and DCT are also shown as alternative measures [26]–
[28]. In contrast to WMA, these are known as transform-based
algorithms. They transform a series of time domain samples
to a frequency domain signal and perform spectral analysis.
A typical PPG signal and the magnitude of DCT coefficients
are shown in Fig. 4. HR can be calculated from the highest
peak between 0.5-2.5 Hz. The AC and DC components can be
calculated from the cardiac line and DC line, respectively.

C. DCT Basis

The performance of sparse reconstruction relies heavily on
the transform basis for two reasons. One is that the basis
directly decides the sparsity of the signal. The other is that
complex computation can sometimes be optimized on certain
bases. In this work, we use DCT basis. It is similar to DFT
basis but using only real numbers.

xn =
N−1

∑
k=0

α(k)ak cos
[

π(2n+1)
2N

k
]
, n ∈ [0,N−1]

an = α(n)
N−1

∑
k=0

xk cos
[

π(2k+1)
2N

n
]
, n ∈ [0,N−1] (1)

In both equations, α(n) is defined as:

α(n) =


√

1
N

if n = 0,√
2
N

if n 6= 0
(2)

x = [x1x2· · ·xN ]
T is the time-domain observation, and a =

[a1a2· · ·aN ]
T is the DCT coefficient vector. The following

equation transfers an index in N-point DCT into the corre-
sponding frequency. id is the DCT index number, fs is the
sampling rate, and ft is the frequency.

ft =
fs× id

2N
; (3)

For simplicity, we directly use frequency as the DCT index
omitting the projection. In previous work, however, wavelet
basis is used to represent PPG signals. We favor DCT in the
HRM application for the following reasons.
1. DCT coefficients can be computed fast from FFT [11]. FFT

algorithm runs in O(N lgN) time. Many DSPs are equipped
with hardware butterfly units [1] to accelerate FFT. A great
advantage over wavelet is that only a linear processing step
is needed to compute DCT from FFT.

2. The PPG signal in DCT domain is sparse when only few
dominant frequencies exist as shown in Fig. 4. Our study
also shows that most PPG signals can be represented using
around 60 coefficients in the case of 1024-point DCT.

3. The DCT coefficients can be used directly to compute heart
rate and SpO2 level. Thus, no extra time-domain processing
is required. In previous works [5]–[7], the heart rate and
SpO2 are detected by the extra beat-by-beat analysis after
the reconstruction, therefore consuming extra power.

III. THEORY

A. Dominant Frequency Signal Model

To describe our algorithm, we first start with a formal
definition of dominant frequency:

Definition 1. A frequency fk is dominant to frequency f
′
k with

degree M > 0 if |ak|> |ak′ | and |ak−ak′ |= M.

In real situations, spectral leakage [19] happens due to the
windowing effect of DCT. Spectral leakage represents the
energy from a non-integer frequency leaked into the adjacent
DCT bins. Spectral leakage reduces the dominance degree, as
can be seen in Fig. 4. To overcome this influence, we introduce
an extra factor of tolerance β into the definition of a dominant
frequency over a range.

Definition 2. Let fk ∈ { fn1 , fn2}, Γ = { fk−β , fk+β}. Let Γ|a|
be the set of all absolute values of DCT coefficients within Γ.
We say fk is dominant in { fn1 , fn2} with degree M > 0 if the
following holds for all fk′ ∈ { fn1 , fn2}−Γ.

|ak|= sup{Γ|a|}, |ak−ak′ | ≥M (4)

As the above definition shows, a dominant component can
be either plus or minus as long as it stands up in the DCT
spectral. The advantage of this model is that it very well
quantifies the dominance degree of a DCT component. It is
also related to the sparse model. We can loosely interpret a
sparse signal under our defined model. It is easily shown that
if a signal is s-sparse in DCT domain, then it has s dominant
frequencies with a certain degree. We can approximate a
signal with s dominant frequencies using the s-sparse model
by discarding all the coefficients that are not dominant. In
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Fig. 5: Partially computed DCT using different number of
random samples

fact, it has been shown in [13] that a signal is compressible if
the sorted transform coefficients decay exponentially. This is
equivalent to exponentially decayed dominance degrees.

B. Dominant Frequency Estimator

We use partially computed DCT transform from random sam-
ples to estimate the dominant frequencies defined in Eq. (5).

Cpartial = DPT b (5)

where D is the DCT matrix, P is the selection matrix, and
b is the time-domain sample. Letting Φ+ denote the pseudo-
inverse of the sensing matrix Φ, Eq. (5) is equivalent to

Cpartial = Φ
+b (6)

Fig. 5 shows the original DCT and the partially computed
DCT with a different number of samples. It is easy to see
the high resemblance of the dominant frequencies. If one
frequency is dominant enough in the original DCT, it may
be still dominant in the partially computed DCT. This method
is mentioned in different contexts from the previous works
[15], [24], but neither shows that it can be used to directly
extract a significant parameter. In this section, we analyze the
correctness of this approach. Particularly, we show that it will
pick up the dominant frequency with high probability when the
dominance degree M is sufficiently large. We first present the
following theorem and also provide a sketch of the proof. We
assume that the source {xn}0≤n≤N−1 is normalized to [−1,1].
We define the following notations:

X : ∑
N−1
i=0 ai xi

Y : ∑
N−1
i=0 bi xi

{xn}: the time-domain samples,
{an},{bn}: the two rows from the DCT matrix,

0≤ n≤ N−1
{K1, . . . ,Kk}: a subset of size k randomly taken

from {0,1, . . . ,N−1} with k�N
XK : ∑

Kk
i=K1

aixi

YK : ∑
Kk
i=K1

bixi.

Theorem 1. If X−Y = M for some M > 0, then

Pr(XK > YK)≥
M2

N−K
N−1

2N−M2

K +M2
(7)

.

Proof. We define random variable (r.v.) Z to take on {(an−
bn)xn}n=0,1,...,N−1. We also use the following notations.

Var[Z] =
σ2

Z
N

,

Z̄ =
N−1

∑
i=0

(ai−bi)xi,

ZK = XK−YK

Obviously, E[XK ] =
K
N

X and E[YK ] =
K
N

Y . From Chebyshev-
Cantelli inequality [17] we have:

Pr(XK−YK > 0) = Pr(XK−YK−
k
N

M >− k
N

M)

≥ 1− Var[XK−YK ]

Var[XK−YK ]+
k2

N2 M2
≥

k2M2

N2

Var[ZK ]+
k2

N2 M2
(8)

We define another r.v. Z′ to take on {Zk}k=0,1,...,N−1. ZK is the
sum of k samples drawn out of N without replacement. We
denote them as {Z′i}i=1,2,...,k. We have Cov(Z′i ,Z

′
j)i6= j =−

σ2
Z

N−1 .
It follows that

Var[ZK ] =Var
[
Z′1 + . . .+Z′k

]
(9)

= k2 N− k
N−1

σ2
Z

k
(10)

We need to develop an upper bound for σ2
Z .

σ
2
Z =

N−1

∑
i=0

[(ai−bi)xi− Z̄]2

N

=
N−1

∑
i=0

[
(ai−bi)

2x2
i

N

]
−2Z̄

N−1

∑
i=0

[(ai−bi)xi]

N
+ Z̄2

=
N−1

∑
i=0

[(ai−bi)
2x2

i ]

N
− M2

N2 ≤
N−1

∑
i=0

[(ai−bi)
2]

N
− M2

N2

≤ 2
N
− M2

N2 (11)

Here, we use the fact that xi ≤ 1 and Z̄ = M
N . Since DCT

matrix is orthogonal, ∑
N−1
i=0 a2

i = ∑
N−1
i=0 b2

i = 1 and ∑
N−1
i=0 aibi =
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0. Substituting σ2
Z into Eq. (10) and then into Eq. (8), we have:

Pr(XK > YK)≥
k2M2

N2

k2 N−k
N−1

σ2
Z
k + k2M2

N2

(12)

≥ M2

N−k
N−1

2N−M2

k +M2
(13)

This problem is actually about two random variables that
have a gap between their expectations. We want to find the
relationship between them in terms of the gap. The theorem
implies that we can extract the dominant frequencies with
the maximum of partial DCT coefficients as XK = ∑

Kk
i=K1

aixi.
xK1 , . . . ,xKk is our time domain observation and aK1 , . . . ,aKk is
the corresponding partial row in DCT matrix. In the example
of PPG signal, we use 1024-point DCT and continuously
monitored the PPG signal in MIMIC database [16]. When the
heart rate is stable, the dominance degree M is over 9. The
probability of success is 93.5% for 256 random samples and
85.8% for 128 random samples using Eq. (13) .

This is just a loose bound derived from all the samples
at the maximum value in Eq. (11). It is hard to put a
tight bound without knowing the distribution of the source
signal. However, if we can assume that Ex[{xn}n=0,1,...,N−1] is
around 0, then we can approximate ∑

N−1
i=0 [(ai−bi)

2x2
i ]/N with

(∑N−1
i=0 [x2

i ]/N)(∑N−1
i=0 [(ai−bi)

2]/N). According to Popoviciu’s
inequality [17] on variances, this would be less than 1/N. That
would give us 96.7% for 256 random samples and 92.6% for
128 samples. The real situation should be much higher. Fig. 6
shows the success rate of 10,000 tests using a 1024-point
segment with a dominance degree of 9.8 from patient No. 55
in MIMIC database. The success rate is overwhelmingly high
when the number of samples is over 96.

In reality, however, M is unknown. We will next develop an
estimator for M and its confidence interval as defined in [17].
Given {Z′i}i=1,2,...,k and ZK = XK−YK = M′, we now consider
how closely we can estimate M. It is proved in [17] that we
can estimate M using the expectation and variance of Z′ for
the signal that has a normal distribution.

Pr

(
Z̄′− M

N

S/
√

k
≤ zα/2

)
= 1−α (14)
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Here we use the notation

Z̄′ =
∑

k
i=1 Z′i
k

=
M′

k

S =

√√√√ k

∑
i=1

(Z′i − Z̄′)2

k

zα/2 can be derived from the normal distribution N(0,1). For
example, z.025 = 1.96 and z.050 = 1.645. This can usually be
done by a lookup table. Even if the original signal is not
normal, (Z̄′−M/N)/(S/

√
k) has an approximate N(0,1) when

sample size k≥ 50 [17]. Fig. 7 clearly shows this distribution,
which is created from 100,000 tests using the data of patient
No. 55.

In practice, we can fix α and lower bound of M as ML.
We also put a threshold on M′ to decide whether M is large
enough. The following has to be satisfied for M ≥ML.

M′ ≥ ML k
N

+
zα/2Sk
√

k
(15)

For example, if we want ML = 5 with 90% of confidence then
we would need M′ > 1.0226 with S = 0.0213 for the data
shown in Fig. 4.

C. The Role of Randomness

It is obvious that if all the time-domain samples are zeros or
close to zero, then the algorithm will fail, since the samples
do not provide enough information to extract the dominant
frequency or to reconstruct the signal. The randomness actu-
ally ensures that this happens with a very small probability.
The variance term in Eq. (15) also adds a correction factor to
reduce the chance of false detection.

IV. DESIGN EXAMPLE

A. Heart Rate Estimation Algorithm

Our heart-rate detection algorithm has two parts: prior
estimation and sparse reconstruction. We want to find the
greatest peak in the cardiac frequency range of 0.5–2.5 Hz and



the dominance degree of the peak frequency. If it is larger than
the threshold, then we are confident that it is the heart rate.
If not, we need to reconstruct the original signal for further
signal processing. The sparse reconstruction will be discussed
in the next section.

A partial DCT transform actually performs dot products
of size k for N times. Instead of doing this to the whole
DCT basis DN×N , we can pick up the rows in the range {R:
0.5 Hz ≤ f ≤ 2.5 Hz} and store it locally. The algorithm is
shown in Algorithm 1. We assume that Max(C) operation finds
the maximum absolute value in set C and outputs a 2-tuple
(cmax, fmax) for the DCT coefficient and the corresponding
frequency. We use the same notation for error β and Γ as
in the Section III-A. An acceptable error range for heart rate
is usually ±1 beat per minute (bpm), β = 1/60 Hz.

Input: selection matrix P, time domain sample Y , partial
DCT matrix D′, confidence interval α , error β

Output: heart rate Hbpm beats per minute over the
sampling period of N

begin
Cpartial ← D′Y ; /* partial DCT */

(cmax, fmax)←Max(Cpartial);
Γ = [ fmax−β , fmax +β ];
for ( f ,c f ) in {R−Γ} do

M′← |cmax− c f |;
T HL← Mk

N +
zα/2Sk
√

k
; /* Eq. (15) */

if M′ < T HL then
CoSaMP();
Peak Detection();
return;

end
end
Hbpm← 60× fmax;
return;

end
Algorithm 1: Heart Rate Detection Algorithm

The actual range of the PPG signal is usually determined
by the range of ADC. There is no need for normalization
but to adjust the threshold of the dominance level. The
running time of the prior estimation part is dominated by
variance calculation in Eq. (15), which takes O(k · cR) time
with cR being the size of R. Since cR,k� N, it can be easily
implemented on a mobile device or a low-power DSP [1].

B. Sparse Reconstruction

Heart rate variation or significant noise will result in an
insufficient dominance degree. The original needs to be re-
constructed in order to perform a beat-by-beat analysis. Our
intention is not to develop a universal algorithm but one that
works effectively for this special type of signal.

We use CoSaMP to reconstruction the signal. The standard
CoSaMP algorithm is shown as follows. Maxn(S) finds the
best n support from set S. ΦT denotes the matrix restricted to
the columns in set T .

Input: sampling matrix Φ, time domain sample y,
sparsity level s, stopping criteria P

Output: s-sparse representation vector x
begin

x0← 0; /* xi is the ith approximation */

e← y; /* current error */

i← 1; /* iteration count */

while P not true do
C←Φ+y; /* formula (6) */

Ω←Max2s(C);
T ←Ω∪ xi−1;
bT ←Φ

+
T y; /* least square */

xi←Maxs(b);
r← y−Φxi; /* time domain residue */

i← i+1;
end

end
Algorithm 2: Basic CoSaMP

Fig. 8 shows the reconstructed signal using 30, 60, and 90
coefficients. The original algorithm does not work well for our
application as expected, for two reasons.
1. As mentioned above, CoSaMP also uses partial DCT to

approximate the original. It can easily be seen in Fig. 5 that
the gap between each pair of frequencies becomes much
smaller or even gets reversed. Even if a component is not
dominant enough, it can still be wrongly selected into the
best 2s support. This is especially significant when we do
not have an accurate estimate of the sparsity level.

2. The l2-norm of the time domain residue r is commonly used
as a stopping criterion, but it does not correctly reflect the
accuracy of the reconstruction as shown in Fig. 8. We also
observed that increasing the sparsity level does not always
help when the total number of samples is relatively small
(below 200) compared to the cardinality of the basis. In
Fig. 8, the signal reconstructed with sparsity level of 60
actually generates more error than 30 does, even though
the residual l2-norm is smaller.

We reduce the size of the basis to solve this problem. Fig. 9
shows the histogram of 1024-point DCT coefficients over the
PPG data of 55 patients in MIMIC database. Every count
in the histogram is weighted by the absolute value of the
corresponding coefficient. The majority of the coefficients is
concentrated in bins 1–120. To ensure that our algorithm can
also work for signals with severe noise, we set up a separate
threshold for the frequencies outside the above range. We still
pick them up if they are dominant enough. This works much
better than just restricting the basis to bins 1–120.

Fig. 10 shows the reconstruction over different sparsity level
after reducing the basis. We use the record of patient No. 208
because of its low dominance degree throughout the whole
data. As can be seen from Table I, 399 out of 433 segments
require reconstruction. We compare the reconstructed signal
with the original to compute l2-norm instead of the residue.
This gives us the accuracy but it is not available in the
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Fig. 8: PPG reconstruction with 192 samples
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Fig. 9: Weighted histogram of DCT coefficients

real application. It is obvious that adding more support will
improve the accuracy, but it will also increase the complexity
of the reconstruction. In practice, we find that a support of
size around 60 is enough for heart rate detection. The main
test result is shown in the next section. Fig. 11 shows the
reconstruction of one DCT segment. We could still see the
difference that generates large l2-norm of the time domain
signal, but there is no need to add more coefficients to the
support for this application.

C. Test Result

1) Detection Rate: We continuously divide the digital sam-
ples from MIMIC database into 1024-point segments and run
our algorithm on them. The sampling rate is 125 Hz. The
number of random samples is 192 over each DCT segment.
We find it is very difficult to get a stable performance of the
sparse reconstruction when given fewer samples. Some other
parameters for the experiment are shown as follows.

a) interval α = 0.1 with zα/2 = 1.645
b) Threshold on dominance degree ML: 5
c) Threshold out of the range MR: 4
d) Tolerance β : 1 DCT bin
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Fig. 10: Reconstruction with different sparsity level. Data
from patient No. 208 in MIMIC database. l2-norm is

computed using the original signal.
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Fig. 11: Reconstruction with the proposed CoSaMP

e) CoSaMP stopping criteria: residual l2-norm < 10−10, or
residue l2-norm difference between current and last itera-
tion < 10−10, or iteration count > 100

The main result is shown in Table I. The heart rate on some
segments is detected just by prior estimation while others by
beat-by-beat analysis after reconstruction. The error columns
in the table are average error in the unit of bpm. We manually
removed some segments severely polluted by noise. Examples
of such segments are shown in Fig. 12. The results show that
our algorithm is effective to over 99% of the data.

The reference heart rate is calculated by two algorithms,
a beat-by-beat peak searching algorithm [10] for the recon-
structed signal and a DCT algorithm for the signal with the
prior estimation. For the peak searching algorithm, the signal
first goes through a band pass filter (BPF). Then each sample
is compared with the thresholds for peak detection. Two sets
of adaptive threshold are maintained for peaking searching,
one for heart beat and the other for noise peaks. For the DCT
algorithm, a full DCT is performed to the original signal to
compute the heart rate.



TABLE I: Detection rate

Patient Seg. Det. Recons. Prior Esti.
# Tol. Rate. Tol. Err. Tol. Err.
55 14206 99.58% 5363 0.08 8843 0.25

208 433 95.61% 399 0.30 34 0.76
209 8590 94.99% 8037 0.25 553 0.41
210 5835 95.29% 5326 0.23 509 0.89
211 8866 99.37% 4750 0.05 4116 0.29
212 17570 99.88% 1951 0.09 15619 0.32
216 10107 98.43% 2773 0.28 7334 0.45
218 8792 97.71% 4357 0.19 4435 0.45
219 9638 99.22% 2935 0.10 6703 0.35
220 482 99.99% 190 0.00 292 0.41
221 10087 99.96% 917 0.07 9170 0.28
224 20199 99.68% 4879 0.16 15320 0.28
225 17935 99.64% 6357 0.07 11578 0.34
226 12204 99.56% 2346 0.13 9858 0.29
230 3400 99.94% 1006 0.00 2394 0.28
231 18083 99.89% 15441 0.01 2642 0.27
237 16318 99.53% 4590 0.10 11728 0.34
252 10901 99.75% 2371 0.10 8530 0.30
430 2753 98.80% 1658 0.13 1095 0.30
437 19978 99.26% 5601 0.19 14377 0.27
438 19746 98.27% 18074 0.08 1672 0.56
439 19872 99.82% 2855 0.11 17017 0.24
446 10511 97.47% 9043 0.13 1468 0.19
449 6353 99.98% 1659 0.01 4694 0.53
451 11661 99.81% 4599 0.02 7062 0.29
452 13861 97.35% 10154 0.21 3707 0.28
453 17461 96.08% 14554 0.21 2907 0.46
454 14374 95.11% 11776 0.25 2598 0.53
456 15776 99.32% 6428 0.14 9348 0.27
466 5927 99.95% 1132 0.02 4795 0.33
471 25291 98.66% 10036 0.16 15255 0.37
472 2997 94.56% 2145 0.31 852 0.60
474 3850 99.92% 97 0.14 3753 0.31

The average iteration count of the reconstruction over dif-
ferent sparsity levels is shown in Fig. 13. Again, the data of
patient No. 208 is used. The traditional OMP algorithm would
take at least 50% more iterations since the OMP iteration count
is roughly the same with the size of support.

2) Power Consumption: The under sampling rate (USR) is
generally used to quantify the rate of random sampling. It is
equal to N/k with the same N and k defined in Section II-A.
For our work, the USR is around 5. The previous works claim
they can reconstruct the PPG signal with a USR of under 20
without losing much information [6]. However, the target of
our reconstruction algorithm is the data with high level noise
and high heart rate variation. The prior estimation stage will
naturally screen the signal to avoid reconstruction for the more
sparse signal generally shown in other works. We believe the
setting of our experiment is closer to the real applications.

The power saving mainly comes from the optional recon-
struction in the back end. It is hard to estimate the actual effect
without the detailed information. However, as shown in Table
I, for PPG signal with a stable heart rate, over 99% of the
reconstruction can be saved with very little power increase in
the front end. The system response is also greatly improved.

As a justification for the power saving effect of CS, the LED

2 4 6 8 10 12 14 16
−1.5

−1

−0.5

0

0.5

1

1.5

Time(s)

PP
G

 S
ig

na
l

2 4 6 8 10 12 14 16
−1.5

−1

−0.5

0

0.5

1

1.5

Time(s)

PP
G

 S
ig

na
l

Fig. 12: Corrupted and noisy PPG signal segments. Top: data
containing NaN (not a number), bottom: data with high noise
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Fig. 13: Iteration count vs. sparsity level

power saved at the USR of 5 is around 0.99 mW for the high-
end pulse oximeter hardware platform [3] using a low-power
DSP TMS320C5515 [1]. This alone is already around 16% of
the system power. The PPG samples are taken and processed
during the interrupt service routine (ISR) by the DSP. The
parameters used for this calculation are shown as follows.

Average ISR time: 600 µs [7]
DSP active power: 59.1 mW@100MHz [2]

DSP standby power: 0.7 mW [2]
IR LED on power: 19.8 mW (60mA at 3.3V)

IR LED on time: 50 µs
Sampling rate: 125 Hz

The system takes 6.32 mW overall before applying CS. Over
50% of the power is actually saved from setting the DSP to
standby mode than turning off the LED.

One would think to uniformly sample the signal at 25 Hz
and detect the heart rate. We run our peak searching algorithm
to the down-sampled data from patient No. 208 and find a
maximum heart rate error of over 1.8 bpm for the same data
set used in Table I. This is much larger than the error after
the sparse reconstruction, which is around 0.6 bpm. Several
heart beat peaks are detected as noise peaks when using down-



sampled signal. Even though the frequency range of interest
is 0.4-5 Hz [26] for the PPG signal, detection algorithms
require a higher sampling rate to tolerate noise and irregular
heart beats. Most of the systems are actually running at high
sampling rates of 100-1k Hz [3], [12], [20], [21], [25], [31].

D. Discussion

Increasing the number of random samples inevitably in-
creases the power consumption, but it actually discourages
reconstruction since the probability of discovering the domi-
nant cardiac frequency in prior estimation becomes higher. It
would be very interesting to find an optimal point for power
consumption on a real platform. This will be done for our
future work.

For the segments needing reconstruction, we did observe
some significant deviation from beat-by-beat analysis as large
as 7–10 bpm, but we ascribe that to the environment noise
and corrupted samples such as the data shown in Fig. 12. Our
implementation of the detection algorithm could not even yield
a reliable result under these conditions. The overwhelmingly
large number of the total segments still validates the correct-
ness of our algorithm.

For the segments estimated with the prior, the error is mainly
caused by the spectral leakage as discussed in Section III-A.
One obvious way to deal with the error is to decrease the
minimum sampling interval, i.e. shorten the width of each
DCT bin. Another is to change the signal to a zero-padded
DCT as discussed in [13]. This topic is beyond the scope of
this work.

Our sparse reconstruction obviously takes advantage of
the low-pass filtering to the source signal, as it makes the
source signal sparse. This could be implemented in hardware
[4] without significantly increasing the power consumption.
The intuition is that the proposed CoSaMP should also be
effective on unfiltered data. As our future work, we will
acquire unfiltered data using real hardware to confirm the
performance of our algorithm.

V. CONCLUSIONS

We have presented a novel fast CS system structure based
on dominant frequency estimation. The correctness is proved
by both statistical analysis and a real implementation of
a PPG-based HRM with the heart-rate detection algorithm
consisting of prior estimation and sparse reconstruction based
on CoSaMP. Experimental results show it promising on real
applications. The low complexity of the prior estimation
enables implementation on the embedded sensing front end or
mobile devices. We also showed that the fast greedy algorithm
of CoSaMP to be a viable option, in contrast to traditional BP
or OMP used in previous works. We accelerate the process
by taking advantage of the dominance frequencies and the
sparsity of PPG signals. Our experience shows two important
implications: 1) The signal properties should be thoroughly
studied in order to reduce the complexity of CS. 2) The sparse
reconstruction should be specific to the target application.

There is no need to design a universal algorithm that may
over- or under-reconstruct the signal.
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