
The Chinook Hardware/Software Co-Synthesis System

Pai H. Chou Ross B. Ortega Gaetano Borriello

Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195-2350

Abstract
Designers of embedded systems are facing ever tighter

constraints on design time, but computer aided design tools
for embedded systems have not kept pace with these trends.
The Chinook co-synthesis system addresses the automa-
tion of the most time-consuming and error-prone tasks in
embedded controller design, namely: the synthesis of in-
terface hardware and software needed to integrate system
components; the migrationof functions between processors
or custom logic; and the co-simulation of the design before,
during, and after synthesis. This paper describes the prin-
cipal elements of Chinook and discuss its application to a
variety of embedded designs.

1 Introduction
Embedded system designers, in varied industry seg-

ments that include consumer electronics, automotive con-
trol, and medical equipment, are facing increased pressure
to create products quickly and inexpensively. This trend
is coupled to the increasing levels of integration, perfor-
mance, and programmability achievable in off-the-shelf in-
tegrated circuits including microprocessors, programmable
logic, and devices such as LCDs, network interface con-
trollers, and speech generators. Designers find using these
devices advantageous because of their low cost and they
facilitate rapid realization of designs not only for prototyp-
ing but for production as well. In fact many products have
declining lifetimes that make custom integrated circuits a
less economically viable option.

The job of the embedded system designer has also
changed. In addition to correctness, the designer must
worry about time to market constraints and cost effec-
tiveness of the implementation. Thus, designers need to
explore a large design space of potential solutions, yet
no integrated CAD tools are available for this task. The
design must be quickly defined and simulated and then
mapped onto the cheapest combination of components.
Unlike general-purpose computers, embedded systems are
designed and optimized to provide specific functionality.
Thus, the most time consuming and error-prone task in em-
bedded system design is precisely the detailed mapping of
the abstract functional specification onto the target compo-
nents. In fact, the process is so time-consuming that many
designers fix the target architecture and system components
well before a complete evaluation of the final system and
perform only one mapping. This often leads designers to
over-designtheir systems with faster processors or larger

capacity logic devices than really needed, thereby increas-
ing the cost. If the target architecture were to prove inade-
quate due to performance or capacity constraints, designers
would face a costly re-mapping process.

It is clear that design exploration tools to automate the
mapping process and thus provide faster feedback on de-
sign decisions are sorely needed. Many design automation
tools and frameworks have been proposed to address a few
of these problems. These tools either look at high-level
specifications but do not assist with the actual implementa-
tion, or they help with individual parts of the implementa-
tion but do not provide a system view. Examples of the for-
mer include behavioral simulators and formal specification
languages while the latter include compilers, board layout
tools, and logic synthesis systems. Recently, tools for deal-
ing with the hardware and software portions of the system
have been proposed, but these have not addressed the sys-
tem integration issues that dominate the design cycle.

2 Taxonomy of HW/SW Co-design
The field of hardware/software co-design of real-time

embedded systems can be organized along three principal
dimensions: the implementation technology, the applica-
tion domain, and the aspect of the design cycle.

2.1 Technology
An embedded system may be implemented with a

number of technologies, including off-the-shelf compo-
nents, programmable logic, and full-custom or semi-
custom ASICs. Examples of such technologies include
interface controllers, FPGAs, custom or standard proces-
sor cores, possibly enhanced with custom datapath and I/O
logic. The choice of technologies has a significant impact
on the price/performance of the embedded system. ASICs
provide higher performance but can be expensive to design
and are difficult to modify once fabricated. FPGAs and pro-
cessors are reprogrammable and can be used to quickly pro-
totype a system. Because they are available in large quan-
tities, they often have competitive price/performance ratios
to custom logic. Increasingly, more functionality is be-
ing moved into software because microprocessors can de-
liver the desired performance, obviating the need for much
custom logic. Thus, the design burden is shifting to soft-
ware and increases the need to automate tasks such as de-
vice driver generation and scheduling to meet timing con-
straints.



2.2 Domains
Embedded systems can be divided into two principal do-

mains, control-dominated and data-flow, based on the ap-
plication. In data-flow, data is sampled at regular intervals
and processed in the same order. The behavior of the sys-
tem remains the same over time. In each time step, a set
of mathematical operators is applied to a window of data
samples. Digital signal processing (DSP) systems are the
canonical example for data-flow. Control-dominated sys-
tems span a much wider range and are characterized by
complex conditional or modal behavior rather than math-
intensive computations. Examples include a network con-
troller or avionics control system. Of course, many systems
contain elements of both domains but usually one domi-
nates the designer’s attention.

2.3 Design Problems
The problems in embedded systems design include spec-

ification of behavior and timing constraints, partitioning,
interfacing, scheduling, code-generation, analysis, simu-
lation and debugging. Point tools either exist or are be-
ing contemplated for all these aspects of the design pro-
cess. We focus our discussion of this dimension on control-
dominated applications.

Specification captures the behavior and requirements of
a design. This is for the most part done informally using a
mixture of natural language documents, pseudo-code, and
block diagrams. This approach has made design mainte-
nance, upgrading, and retargeting very time consuming and
difficult. Several formal specification methods have been
proposed including finitestate machines [3], Petri nets [18],
and CSP [15]. Today’s tools lie somewhere in the middle,
using a high-level programming or a simulatable hardware
description language, but there is still noaccepted formal-
ization of the timing and performance constraints. With-
out these constraints explicitly represented, designers must
devise and validate software schedules and interactions be-
tween components by hand. Simulators can help with this
task but are limited to the tests performed explicitly. For-
mal verification or synthesis techniques are needed to guar-
antee that constraints are satisfied.

Partitioning is the process of determining the compo-
nents on which to implement portions of system function-
ality. This may be a split between a processor and auxiliary
logic or among a set of processors. Attempts at automating
partitioning have included simulated annealing algorithms
[9] and hardware to software migration [12] but have gen-
erally ignored interfacing and communication between the
parts. In fact, designers spend a large fraction of the time in
interfacing system components toeach other and the oper-
ating environment, including user interfaces, because it is
where the bulk of errors lie. Yet, interfacing remains one of
the least addressed areas in many co-synthesis tools. The
interfacing task may involve both hardware and software
aspects of the interface as well as low level timing concerns
that may require glue logic. Interface generation has been
described in [20], though the synthesis of interface software
is not addressed.

Other aspects of the embedded system design cycle in-
clude retargetable code-generation, for off-the-shelf pro-
cessors as well as custom ones. Analysis toolsare needed to
predict execution times, and possibly the size, of code frag-
ments, in order for partitioning to meet timing constraints

with confidence. Finally, simulators, debuggers, and pro-
filers are needed to evaluate the final design at a detailed
level.

3 The Chinook Co-Synthesis System
Our approach to the co-synthesis of real-time reactive

embedded systems is embodied in Chinook, a tool that gen-
erates complete design specifications given a single high-
level specification of the desired system functionality. Us-
ing the taxonomy of section 2, Chinook is intended for
control-dominated designs constructed from off-the-shelf
components. It addresses the aspects of the design pro-
cess whose automation will provide the most benefit to de-
signers in terms of shortening the design cycle, permitting
more design space exploration, and automating tasks that
are error-prone or cumbersome. The following elements
of Chinook are where the principal innovations lie. It is
important to note that what makes Chinook unique is the
combination of these elements rather than any single one.
Single specification. A designer writes one specifica-
tion in a single specification language with explicit tim-
ing/performance constraints rather than separate netlist,
hardware description, and software languages all with im-
plicit constraints. This is key to the retargetability and
maintainability of the design.
One simulation environment. The high-level specifica-
tion of the design can be simulated directly to help debug
the designer’s intent as well as operational aspects of the
design. The final synthesized result, and any intermediate
steps, can be simulated in the same environment and aug-
mented with additional tools, such as debuggers and profil-
ers for software.
Comprehensive software scheduling.Chinook synthe-
sizes the appropriate software architecture for the timing
requirements of the system: low-level partitioning to en-
sure signaling constraints are satisfied (possibly by synthe-
sized hardware modules), static fine-grained scheduling to
tailor device drivers, and customized dynamic schedulers
and interrupt handlers.
Interface synthesis. Interface hardware and software be-
tween system components, including peripheral devices as
well as multiple processors, are automatically synthesized
with appropriate changes reflected in interprocessor com-
munication and device drivers.
Complete information for physical prototyping. Chi-
nook generates a complete netlist for the system and com-
plete code for its processors to run. The output contains
everything needed to build the system and evaluate it in its
intended environment.

The Chinook co-synthesis system consists of the parser,
the processor/device library, the device-driver synthesizer,
the interface synthesizer, the communication synthesizer,
the scheduler, and the simulator, as shown in Fig. 1. The
parser accepts a system description in annotated Verilog.
In addition to a behavioral specification, it also contains a
structural specification that instantiates the principal com-
ponents of the system, including processors, peripheral de-
vices, and standard interfaces. The device library con-
tains detailed generic specifications of device interfaces (in
the form of timing diagrams and Verilog code) and mod-
els for their simulation (in C). For processors it contains
specifications of their interfaces as well as timing schemas
for software run-time estimation [19]. The device-driver



Verilog
Specification

Processor &
Device Libraries

parser

driver
synthesizer

communication
synthesizer

scheduler

interface
synthesizer

code
generator

program

netlist

Behavioral
Simulation

Mixed
Simulation

Structural
Simulation

Figure 1: The Chinook Co-Synthesis System

synthesizer compiles the timing diagrams and Verilog de-
vice drivers into customized code for the given processor
and makes low-level partitioning decisions to meet signal-
ing constraints. The interface synthesizer allocates I/O re-
sources to connect a processor to the peripheral devices it
will control, and customizes the access routines to reflect
these assignments. The communication synthesizer gen-
erates the hardware and software needed for interprocessor
communication. With all resources allocated, the scheduler
generates C code to meet real-time constraints in software.
The C code is compiled by a processor-specific compiler.
Chinook also outputs the netlist, including the necessary
glue logic, to construct the desired system.

Chinook does not attempt several tasks. It does no
high-level partitioning of functionality between hardware
or software or between processors. Instead, it assumes that
designers are in a better position to make these assignments
at the module and task levels. Chinook does not compile
code to the target processor(s). It assumes not only the exis-
tence of the appropriate C compilers but also that these will
be able to provide the scheduler with estimated run-times
of code fragments.

4 Specification
The singleVerilog file provided as input to Chinookcon-

tains both behavioral and structural constructs. The be-
havioral style imposed by Chinook enables the expression
of real-time reactive behavior and facilitates partitioning.
The structural component lists the processors, peripheral
devices, and communication interfaces that will be used. In
the behavioral specification, Chinook expects the designer
to tag tasks or modules with the processor that is preferred
for their implementation. The implementation of untagged
modules/tasks is assumed to be in software. This separation
of functionality from components allows the designer to
quickly explore the design space by instantiating different
processors and alternative peripheral devices without mod-
ifying the behavioral specification. All interactions with
the devices and interfaces are specified using a procedural
abstraction layer. As long as two interfaces (e.g., SCSI and
PCMCIA) support the sameaccess routines (e.g, read and
write) they can be easily interchanged.

To model the reactive behavior of control-dominated ap-
plications, we organize the control states of the system as
a set ofmodes. Each mode defines a behavioral regime,

that is, how the system should respond to its inputs. A
mode also defines a scope for a set of timing constraints
that must be satisfied while the system is within that mode
but not necessarily when it is operating outsideof it. Modes
are similar to the hierarchical states of [14] in that they can
capture both sequential and concurrent behavior.

Chinook allows the specification of real-time require-
ments in terms of minimum and maximum separation be-
tween I/O events. At the low level, the constraints may
correspond to setup and hold times, or simply the sequenc-
ing constraints between successive I/Os. At the high level,
they may expressresponse timesto system inputs andrate
constraints on performance [8].

In a given mode, the system’s responses are defined by
a set ofhandlers. Conceptually, they are event-triggered
routines, but their activation conditions are checked by a
time-triggered loop. A handler consists of a trigger condi-
tion and a body. The trigger condition is an event expres-
sion consisting of inputs from the environment and other
handlers. When the trigger condition evaluates to true, the
handler body is executed. Handlers respond by generating
I/O events and/or causing a mode transition. For example, a
network interface chip may signal that a message is pending
and this triggers a handler to read that message. Note that
the handler body can be in software, hardware, or a com-
bination of the two, depending on its tag and the ability of
the processor to meet the timing constraints in the handler.
From a specification point of view, a handler is executed
atomically, but may be interleaved by the scheduler.

5 Scheduling
Embedded systems have timing constraints at different

levels. Their interaction with the devices and the envi-
ronment must respect not only low-level signaling con-
straints but also performance requirements such as rate
and response time constraints. To satisfy these high-level
constraints, designers have usedprocess-basedschedul-
ing techniques based on operating systems concepts [17].
These techniques are coarse-grained, priority-driven, and
dynamically preemptive. They assume that the processor
does not perform I/O directly and the processes are in-
dependent of each other. Since all timing constraints are
coarse-grained, overhead incurred by the executive during
preemption can be dismissed. However, many embedded
systems must perform direct I/O and meet fine-grained tim-
ing constraints. These constraints are much more difficult
to meet because the scheduler cannot afford to incur much,
if any, run-time overhead, and at the same time must handle
uncertainties in the execution delays.

Chinook statically schedules all low-level I/O and high-
level operations as grouped in modes. A customized dy-
namic scheduler may be generated for modes at the top
of the hierarchy. Chinook uses a static, nonpreemptive
scheduling algorithm to meet min/max timing constraints
on fine-grained operations with delay ranges [5]. It deter-
mines a serial ordering for the operations, and inserts delays
to meet minimum constraints, if necessary. Because the
complexity of the problem is NP-hard, we use heuristics
to help the exact algorithm quickly find a valid and short
schedule. Experimental results show that our best heuristic
consistently outperforms one that solves the same problem
inexactly [13].



At the high level, rate constraints are specified on a ref-
erence event between successive iterations, and response
times are constraints on the time it takes to do a mode
transition. In statically scheduling the software, Chinook
first converts handlers within a mode into a single handler
containing their bodies, possibly using unrolling, and then
schedules this singlepartially-ordered handler by interleav-
ing [8]. Note that a mode transition may be triggered by
one of the handlers before other handlers run to comple-
tion, and the scheduler must maintain the integrity of all
handler states. We do not use critical regions to achieve
atomic execution because they disable interleaving, which
is necessary when servicing devices with long separation
between sequential events. Instead, Chinook allows the
user to definesafe pointsin the handlers, where potential
mode transitions can safely occur [4]. All parallel handlers
must reach their safe points before a mode transition is al-
lowed to take effect.

6 Interface Synthesis
Interface synthesis is the realization of communication

between components via both hardware and software el-
ements. Chinook handles a wide range of interface syn-
thesis problems. At the lowest level, Chinook synthesizes
device drivers directly from timing diagrams. It generates
customized code for the particular processor being used,
and separates out the portions that cannot be implemented
in software by synthesizing the required external hardware.
For processors with general purpose I/O ports, Chinook
employs an efficient heuristic for connecting devices and
processors using minimal interface hardware. For proces-
sors without I/O ports, Chinook automatically implements
the interface using memory-mapped I/O including allocat-
ing address spaces and generating the required bus logic
and instructions.

These synthesis solutions require knowledge about the
interfaces of the processors and the devices, which are cap-
tured in the libraries. A processor is defined by its I/O re-
sources, built-in functionality (e.g., serial-line controller,
timer, etc.), and detailed architecture templates (e.g., down
to the specific resistors and capacitors required for power-
up reset). A device description contains interface informa-
tion including ports and skeletal access routines that encap-
sulate timing diagrams. After successful interface synthe-
sis, Chinook updates theaccess routines by binding the de-
vice ports to the processor’s I/O ports or memory bus, and
taking into account any intervening glue logic that it may
have synthesized. By managing these connectivity details
and generating the interface across the hardware/software
boundary, the interface synthesizer completes the design
and enables simulation and evaluation at the final imple-
mentation level.

6.1 Driver Synthesis from Timing Diagrams
At the most detailed level, device interfaces are de-

scribed in data sheets in the form of timing diagrams. They
show the sequences of signaling events that make up I/O
transactions across the interface. These timing diagrams
are usually annotated with timing requirements, timing de-
lays, and timing guarantees. The first are requirements im-
posed on the user of the interface, while the last two are
timing promises made by the device. When new devices
are added to the device library, these constraints and their

corresponding timing diagrams are entered via an interac-
tive editor [11]. Chinook parses these files and synthesizes
the device driver code by choosing a linear schedule of con-
troller events, and inserting additional interface glue logic
where necessary [22].
6.2 I/O Port Allocation

Many processors used in embedded systems include I/O
ports that can be used to directly sense and manipulate
the processor’s environment. These ports can be accessed
from software-like registers thus providing a low-cost and
straightforward interfacing mechanism. Chinook provides
a port allocation scheme that also outputs customized ac-
cess routines to reflect the pin assignment [7]. The key
idea is that an I/O port may be able to service multiple de-
vices without glue logic and without performance penal-
ties. These devices have interfaces that are able to iso-
late themselves from the shared bus, and become active
only when the appropriate control signals, orguards, en-
able them. Thus, guarded interfaces share the same I/O
port with each other because they are never active at the
same time. If necessary, the port allocator inserts glue logic
to add guards to previously unguarded interfaces to enable
sharing.

6.3 Memory-Mapped I/O
Chinook synthesizes the interface using memory-

mapped I/O when I/O ports are too inefficient due to mul-
tiple instructions to manipulate their values, or are un-
available as is the case for higher-performance processors.
Many parts contain built-in address matching logic and can
be connected to the memory bus with little or no glue logic.
Those components without built-in address comparators
can often still be connected with little or no glue logic, de-
pending on the available address space the user reserves
for I/O. Devices are allocated portions of the address space
of the processor controlling them. Currently Chinook can
synthesize address matching logic using either one-hot, bi-
nary, or Huffman encoding to address the devices [6]. Chi-
nook also generates the I/O primitives in terms of load/store
instructions.

7 Communication Synthesis
Requirements for faster response times and increased

modularity frequently guide embedded system designers
to employ multiple processors. These processors are of-
ten heterogeneous as cost and modularity concerns drive
designers to tailor processors to specific functions. CAD
support is non-existent for these types of systems. There
are not even debuggers to support concurrent development
of programs on two identical processors. Designers find
heterogeneous multiple processor systems the most diffi-
cult to debug and thus constrain designs unnecessarily just
to make debugging tasks tractable.

Chinook provides support for interprocessor communi-
cation by synthesizing the hardware and software needed
to transfer data between processors. A designer tags the
procedures and modules with the processor that should be
used to implement them. Chinook then determines the data
that must be transferred and the mechanism to use for those
transfers including the interconnections between the pro-
cessors, glue logic, and/or buffers and memory.

Main issues in interprocessor communications include
interconnect topology and protocols. The interconnect



/
8

from p2.6
from P2.0

LCD:E

87C51

ALE

P2/

A[8:15]

AD[0:7]

P0/
P1

P3.7/~RD
P3.6/~WR

P3.1/TxD
P3.0/RxD

 

SPEAKER

8

/

RxD

/
6

D

SPKR

TP5087

A[13:8]
A[7:0]

D[7:0]

~WE~OE

RAM

373

CLK

D Q

SLM21602(LCD)

db[7:0] RSERW

/
8

B1
B2
B3

B0

from p2.1

(a)

I/O
Devices

Processor

Network

DRAM
memory
driver

network driver

I/O
driver

processor driver

I/O
handler

network handler

processor handler

MAGIC

(b)

Figure 2: Examples synthesized in Chinook. (a) Portable Electronic Phonebook. (b) Communication in the MAGIC system.

topology could be bus-based, point-to-point, or a hybrid
scheme. The protocol may be contention based or stati-
cally scheduled, blocking or non-blocking, or master-slave
or peers. Chinook supports most of these choices, but
by default uses a model suitable for real-time control-
dominated applications, based on non-blocking peers with
either point-to-point or bus-based interconnect.

Interprocessor messages are transmitted via communi-
cation channels synthesized with elements from a commu-
nication library that contains buffers, FIFOs, arbiters, and
interconnect templates. Given a partitioning of handlers
provided by the user, Chinook will synthesize communica-
tion channels to satisfy timing and resource constraints and
connect them to the processors using the interfacing tech-
niques in Section 6.

Through assignment tags in the high-level specification,
a designer can rapidly change the partitioning of function-
ality - between two processors, or between a processor and
a direct hardware implementation. Migrating functionality
is divided into parameter passing and control sequencing.
Input and output parameters are mapped to latches or mem-
ory locations which are connected to the processor using
the interfacing techniques discussed earlier. The control
sequencing may simply be moved to another processor or
to hardware where it will be instantiated as an FSM and
data-path. The general solution to this requires behavioral
synthesis but is quite straightforward in most cases. The
original software is replaced with routines that pass the in-
puts, kick-start the state machine on the other processor,
and then read back the result [6].

8 Simulation
The design can be simulated at different levels of detail.

The initial specification is compatible with behavioral Ver-
ilog and is simulated without exact timing or detailed I/O.
As abstract communications and operations become refined
into more concrete signals and components, outputs from
intermediate design steps and the final implementation can
also be simulated with cycle-level accuracy.

The simulator uses the Verilog-XL Programming Lan-
guage Interface [2] to communicate with peripheral device
models. The device models are written in C and make X-
window calls to visually represent the simulated device.
Each device model exports the same application program
interface (API) for simulation and synthesis. To simulate

the specification during the early stages of the design, the
API is bound to a behavioral simulation model. For exam-
ple, a SCSI device exports asend routine. During simu-
lation, the user may pop-up a window containing the var-
ious fields of a SCSI packet. After creating a new packet,
the designer selects the send option which calls thesend
routine. This enables the user to simulate the environment
of the system being designed in a consistent manner. Dur-
ing structural simulation of the system, the device’s pin in-
terface is modeled by running multiple FSMs to recognize
all possible I/O sequencings in parallel, and the FSM that
matches the waveform invokes the corresponding simula-
tion routine.

Chinook uses RTL-level processor models for simulat-
ing the final system implementation. It interprets the same
machine code that runs on the actual processor. The binary
code is disassembled and the registers, program counter,
stack, internal memory, and built-in devices are visible in
the processor status window. The processor model faith-
fully reproduces, within cycle-level accuracy, the appropri-
ate waveforms on the processor’s pins.

9 Examples
Several embedded systems have been designed using the

Chinook tools. The following examples show the type of
complexity that the current version supports. They are a
portable electronic phonebook, a node controller for a dis-
tributed system, and a mobile defibrillator.
9.1 Portable Electronic Phonebook

The Portable Electronic Phonebook was originally de-
signed by senior undergraduate students. Taking their im-
plementation, we reverse-engineered a high level specifi-
cation which was run through the Chinook tools (see Fig-
ure 2a). The generated solution required less hardware than
the original implementation due to the interface synthesis
algorithm. We were able to simulate the entire system at
the behavioral and structural levels to validate the design.
After building this application in hardware according to the
generated netlist, the system operated correctly upon apply-
ing power.
9.2 MAGIC

The MAGIC (Memory and General Interconnect Con-
troller) is a custom node controller for the FLASH archi-
tecture [16]. It communicates with a processor, network,



I/O devices and DRAM (see Figure 2b). We modeled this
architecture with three handlers, one for the processor re-
quests, one for the network requests and one for the I/O
requests. We used the MAGIC application to experiment
with using a common API for different peripherals. The
specification is modular in that it is easy to replace the net-
work interface with SCSI or Ethernet, for example. This
demonstrates that designers can easily explore different
high level options and observe their ramifications on other
parts of the system. Using the results synthesized by Chi-
nook, we performed our experiments with the simulator.

9.3 A Mobile Defibrillator
The purpose of the mobile defibrillator is to revive heart-

attack victims with a powerful electrical shock. We con-
sider the digital control subsystem containing an extensive
interface including display of ECG waveforms, voice syn-
thesis, digital audio recording, and PC-Card non-volatile
storage. Because of the difficulty of guaranteeing that all
timing constraints would be respected, the commercial ver-
sion of this application was designed with a microcontroller
and an ASIC. We are currently exploring solutions using
reprogrammable components.

10 Conclusion
With increasingly inexpensive and powerful compo-

nents, designers of embedded systems have more imple-
mentation choices than ever but are given less time to real-
ize their designs. Unfortunately, CAD toolsare not tracking
these trends. Chinook facilitates design space exploration
and automates the most time-consuming and error-prone
tasks in the design process.

Design space exploration is enabled by the use of a sin-
gle system specification that captures the reactive real-time
behavior of the system with abstracted communications to
enhance retargetability. To meet timing constraints, Chi-
nook uses static scheduling to guarantee their satisfaction
by construction. To enable designers to rapidly evaluate
different architectural templates and partitionings, Chinook
facilitates migration of functionality among processing el-
ements and manages the communication requirements be-
tween processors at the high level; at the low level, it man-
ages interfacing details with automatic I/O resource allo-
cation and device driver generation. Simulation is sup-
ported throughout the design cycle from the initial behav-
ioral specification through the final structural implementa-
tion. Chinook is the only tool that outputs all the elements
needed for constructing the complete system.

We have used Chinook to synthesize several embed-
ded systems including an electronic phonebook, a SCSI in-
terface to a VLSI chip tester, a hand-held logic analyzer,
and an infrared network transceiver. We are currently ex-
perimenting with an automatic defibrillator and a multi-
processor I/O subsystem. Future work includes developing
synthesis methods for more efficient communication using
higher level knowledge about the dataflow and control de-
pendencies of the handlers. Ongoing work includes inte-
grating the scheduler and compiler/estimator.

References
[1] F. Boussinotand R. De Simone. The Esterel language.Proc.

IEEE, 79(9), Sept. 1991.

[2] CADENCE Design Systems, Inc.Programming Language
Interface Reference Manual. CADENCE Design Systems,
Inc., 1992.

[3] M. Chiodo et al. HW-SW codesign of embedded systems.
IEEE Micro, 14(4):26–36, Aug. 1994.

[4] P. Chou and G. Borriello. Software scheduling in the co-
synthesis of reactive real-time systems. InProc. 31st DAC,
June 1994.

[5] P. Chou and G. Borriello. Interval scheduling: Fine-grained
software scheduling for embedded systems. InProc. 32nd
DAC, June 1995.

[6] P. Chou, R. Ortega, and G. Borriello. Interface Co-
Synthesis Techniques for Embedded Systems. InProc. IC-
CAD, Nov. 1995.

[7] P. Chou, R. Ortega, and G. Borriello. Synthesis of the
HW/SW interface in microcontroller-based systems. In
Proc. ICCAD, Nov. 1992.

[8] P. Chou, E. A. Walkup, and G. Borriello. Scheduling for
reactive real-time systems.IEEE Micro, 14(4):37–47, Aug.
1994.

[9] R. Ernst, J. Henkel, and T. Benner. HW-SW cosynthesis for
microcontrollers.IEEE D&TC, 10(4):64–75, Dec. 1993.

[10] D. D. Gajski and F. Vahid. Specification and design of
embedded HW-SW systems.IEEE D&TC, 12(1):53–67,
Spring 1995.

[11] B. Gladstone. Specification of timing in a digital system.
ASIC and EDA, pp.46–52, August 1993.

[12] R. Gupta and G. De Micheli. HW-SW cosynthesis for
digital systems. Computers and Electrical Engineering,
10(3):29–41, Sept. 1993.

[13] R. K. Gupta and G. De Micheli. Constrained software gen-
eration for HW-SW systems. InPro. 3rd Int’l Workshop on
HW/SW Codesign, pp.56–63, Sept. 1994.

[14] D. Harel. StateCharts: a visual formalism for complex sys-
tems.Science of Programming, 8, 1987.

[15] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[16] J. Kuskin et al. The Stanford FLASH multiprocessor. In
21st Annual International Symposium on Computer Archi-
tecture, pp.302–313, 1994.

[17] A. K. Mok. The design of real-time programming systems
based on process models. InReal Time Systems Symposium,
pp.5–17, 1984.

[18] T. Murata. Petri nets: Properties, analysis, and applications.
Proc. IEEE, 77(4):541–580, April 1989.

[19] C. Y. Park. Predicting Deterministic Execution Times of
Real-Time Programs. PhD thesis, Univ. of Washington,
1992. TR 92-08-02, Dep’t of CS&E.

[20] M. Srivastava, B.C.Richards, and R.W.Brodersen. System
level hardware module generation.IEEE Trans. on VLSI
Systems, 3(1), March 1995.

[21] D. E. Thomas and P. R. Moorby.The Verilog Hardware
Description Language. Kluwer Academic, 1991.

[22] E. A. Walkup and G. Borriello. Interface timing verification
with application to synthesis. InProc.31st DAC, June 1994.


	Compendium95
	ISSS95
	Front Matter
	Table of Contents
	Session Index
	Author Index


