
Combined Functional Partitioning
and Communication Speed Selection

for Networked Voltage-Scalable Processors ∗

Jinfeng Liu, Pai H. Chou, Nader Bagherzadeh
Department of Electrical & Computer Engineering

University of California, Irvine, CA 92697-2625, USA
{jinfengl, chou, nader}@ece.uci.edu

ABSTRACT
This paper presents a new technique for global energy optimiza-
tion through coordinated functional partitioning and speed selec-
tion for embedded processors interconnected by a high-speed se-
rial bus. Many such serial interfaces are capable of operating at
multiple speeds and can open up a new dimension of trade-offs
to complement today’s CPU-centric voltage scaling techniques for
processors. We propose a multi-dimensional dynamic program-
ming formulation for energy-optimal functional partitioning with
CPU/communication speed selection for a class of data-regular ap-
plications under performance constraints. We demonstrate the ef-
fectiveness of our optimization techniques with an image process-
ing application mapped onto a multi-processor architecture with a
multi-speed Ethernet.

1. INTRODUCTION
A key trend in embedded systems is towards the use of high-speed
serial busses for system-level interconnect. High-speed serial con-
trollers such as Ethernet are now an integral part of many embed-
ded processors. Newer protocols such as FireWire (IEEE 1394)
and USB are commonly used not only for peripheral devices but
also for connecting embedded processors. Many have advocated
high-speed, serial packet networks for systems-on-chip for their
compelling advantages including modularity, composability, scala-
bility, form factor, and power efficiency.

For power optimization, previous efforts focused on the processor
for several reasons. The CPU was the main consumer of power, and
it also offered the most options for power management, including
voltage scaling. However, recent advances in both processors and
communication interfaces are driving a shift in how power should
be managed.

Low-power CPU, High-power Communication
∗Thisresearch was sponsored by DARPA grant F33615-00-1-1719
and Printronix Fellowship.

CPU-centric power management has given rise to a new generation
of processors with dramatically improved power efficiency, and the
CPU is now drawing a smaller percentage of the overall system
power. The insatiable demand for bandwidth has also resulted in
high-speed communication interfaces. Even though their power ef-
ficiency (i.e., energy per bit transmitted) has also been improved,
communication power now matches or surpasses the CPU, and is
thus a larger fraction of the system power. For instance, the Intel
XScale processor consumes 1.6W at full speed, while a GigaBit
Ethernet interface consumes 6W.

Multi-speed Communication Interfaces
Many communication interfaces today support multiple data rates.
However, the scaling effects tend to be the opposite those of voltage
scalable CPUs. For CPUs, slower speed generally means lower
power and lower energy per instruction; but for communication,
faster speed means higher power but often less energy per bit. This
is highly dependent on the specific controller. Few research works
to date explored communication speed as a key parameter for power
optimization.

Speed Selection and Functional Partitioning
Speed selection cannot be performed for just communication or
computation in isolation, because a local decision can have a global
impact. The CPUs cannot all be run at the slowest, most power-
efficient speeds, because they must compete for the available time
and power with each other and with the communication interfaces.
A faster communication speed, even at a higher energy-per-bit, can
save energy by creating opportunities for voltage scaling the pro-
cessors. Greedily saving communication power may actually result
in higher overall energy. At the same time, functional partitioning
must be an integral part of the optimization loop, because different
partitioning schemes can dramatically alter the communication and
computation workload for each node.

Approach
For a given workload on a networked architecture, our problem
statement is to generate a functional partitioning scheme and to se-
lect the speeds of communication interfaces and processors, such
that the total energy is minimized. In general, such a problem is ex-
tremely difficult. Fortunately, for a class of systems with pipelined
tasks under an overall latency constraint, efficient, exact solutions
exist. This paper presents a multi-dimensional dynamic program-
ming solution to such a problem. It formulates the energy con-
sumed by the processors and communication interfaces with their
power/speed scaling factors within their available time budget. We

demonstrate the effectiveness of this technique with an image pro-
cessingalgorithm mapped onto a multi-processor architecture in-
terconnected by a GigaBit Ethernet.

2. RELATED WORK
Previous works have explored communication synthesis and opti-
mization in distributed multi-processor systems. [13] presents com-
munication scheduling to work with rate-monotonic tasks, while
[5] assumes the more deterministic time-triggered protocol (TTP).
[10] distributes timing constraints on communication among seg-
ments through priority assignment on serial busses (such as control-
area network) and customization of device drivers. While these as-
sume a bus or a network protocol, LYCOS [7] integrates the ability
to select among several communication protocols (with different
delays, data sizes, burstiness) into the main partitioning loop. Al-
though these and many other works can be extended to SoC archi-
tectures, they do not specifically optimize for energy minimization
by exploiting the processors’ voltage scaling capabilities.

Related techniques that optimize for power consumption of pro-
cessors typically assume a fixed communication data rate. [3] uses
simulated heating search strategies to find low-power design points
for voltage scalable embedded processors. [9] performs battery-
aware task post-scheduling for distributed, voltage-scalable proces-
sors by moving tasks to smooth the power profile. [12, 11] propose
partitioning the computation onto a multi-processor architecture
that consumes significantly less power than a single processor. [4]
reduces switching activities of both functional units and commu-
nication links by partitioning tasks onto a multi-chip architecture;
while [6] maximizes the opportunity to shut down idle processors
through functional partitioning. All these techniques focus on the
computational aspect without exploring the speed/power scalability
of the communication interfaces.

Existing techniques cannot be readily combined to explore many
timing/power trade-offs between computation and communication.
The quadratic voltage scaling properties for CPU’s do not general-
ize to communication interfaces. Even if they do, these techniques
have not considered the partitioning of power and timing budgets
among computation/communication components across the network.
Selecting communication attributes by only considering deadlines
without power will lead to unexpected, often incorrect results at the
system level.

3. SYSTEM MODEL
This section defines a system-level performance/energy model for
both computation and communication components in a networked,
multiple-processor embedded system. In this paper, such a system
consists ofM processing nodesNi , i = 1,2, . . . ,M connected by a
shared communication medium. Eachprocessing node(or node
for short) consists of a processor, a local memory, and one or more
communication interfaces that send and/or receive data from other
nodes.

A processing jobassigned to a node is modeled in terms of three
tasks:RECV, PROC, andSEND, which must be executed serially
in that order. RECV andSENDare communication tasks on the
interfaces, andPROCis a computation task on the processor. For
communication tasksRECVandSEND, workloadWr andWs indi-
cate the number of bits to be received and sent, respectively. For
the computation taskPROC, the workloadWp is the number of cy-
cles. LetTp,Tr ,Ts denote thedelaysof tasksPROC, RECV and
SEND, respectively. LetFp denote the clock frequency of the pro-

cessor, andFr andFs the respective data bit rates for receiving and
sending. We have

Tp =
Wp

Fp
; Tr =

Wr

Fr
; Ts =

Ws

Fs
(1)

(1) is reasonable for processors executing data-dominated programs,
where the total cyclesWp can be analyzed and bounded statically.

To model non-ideal aspects of the medium, we introduce thecom-
munication efficiencyterms,ρr andρs, where 0≤ ρr ,ρs≤ 1, such
thatTr = Wr

ρr Fr
andTs = Ws

ρsFs
. Note thatρr andρs need not be con-

stants, but may be functions of communication speedsFr ,Fs. For
brevity, our experimental results assume an ideal communication
medium (ρr = ρs = 1) without loss of generality.

D is a deadlineon each processing job, which requiresTr + Tp +
Ts≤ D for the three serialized tasks. If any slack time exists, then
we assume we can always slow down taskPROCby voltage scal-
ing to reduce energy, based on the capability of modern embedded
processors. Therefore, we convert the inequality into an equality in
the deadline equation. That is,

D = Tr +Tp +Ts (2)

We assume a processor’s voltage-scaling characteristics can be ex-
pressed by a scaling functionScalep that maps the CPU’s frequency
to its power level. A communication interface also has scaling
functionsScales andScaler for sending and receiving. (2) implies
Scalep is continuous, while communication interfaces support only
a few discrete scaling points. LetPp, Pr , andPs denote the power
for the processor, receiving, and sending, respectively. Then,

Pp = Scalep(Fp); Pr = Scaler (Fr); Ps = Scales(Fs) (3)

Let Povh denote the power overhead associated with having an ad-
ditional node into the system. It captures the power of the memory,
minimum power of the CPU and communication interface, CPU’s
power duringRECVandSEND(DMA), and communication inter-
faces’ power duringPROC.

Theenergy consumption of a taskis the power-delay product. Let
Ep,Er ,Es, andEovh denote the energy consumption of tasksPROC,
RECV, SEND, and overhead of a node, respectively. LetENi de-
note thetotal energy of node Ni . Finally, thetotal energy of the
systemis the sum of energy consumption on each node. To sum-
marize,

Ep = PpTp; Er = PrTr ; Es = PsTs; Eovh = PovhD (4)

ENi = Epi +Er i +Esi +Eovhi (5)

Esys= ∑M
i=1ENi (6)

Fig. 1 shows the timing and power breakdown of the tasks on a
node. The gray bar represents the overhead, while the white bars

D

RECV SENDPROC

Time

Power

Pr
Ps

Pp

delay:
Tr = Wr / Fr

delay:
Ts = Ws / Fsdelay:

Tp = Wp / Fp

PROC

Wp cycles on processor

sending
Ws bits

receiving
Wr bits

power: Pr
speed: Fr

power: Pp
speed: Fp

power: Ps
speed: Fs

OVERHEAD power: Povh

RECV SEND

(a) block digram (b) timing-power digram

Figure 1: Timing and power properties of a processing node.

D

RE
CV

SE
NDPROC

Time

Tr1 Ts1= Tr2
Tp1

D

RE
CV

SEND
PROC

Time

Ts2 = Tr3

Tp2

D

RECV SE
ND

PROC

Time

Ts3

Tp3

(a) serialized timing diagram

RE
CV

SE
NDPROC

Time

Tp1

RE
CV

SEND
PROC

Time

D

RECV

Time

(b) pipelined timing diagram

SENDPROC

Tp2

RECV SE
ND

PROCSE
NDPROC

Tp3 -
Ts1

PR
OC

N1

N2

N3

Ts1= Tr2

Ts2 = Tr3

Ts3

Tr1

N1

N2

N3

Figure 2: A 3-node pipeline.

representtasksRECV, PROCandSEND. The area of a bar rep-
resents the energy consumption by the corresponding task or over-
head.

This paper considers a special case called anM-node pipeline. It
consists of identical nodesNi , i = 1,2, . . . ,M as characterized by
Scalep,Scaler ,Scales,Eovh. Each nodeNi receivesWr i bits of data
from the previous nodeNi−1 (exceptN1), processes the data inWpi

cycles, and sends theWsi -bit result to the next nodeNi+1 (except
NM). EachSENDi → RECVi+1 communication pair sends and re-
ceives same amount of data at the same communication speed, with
the same communication delay, and we assume they start and finish
at the same time. That is,Wsi = Wr i+1,Fsi = Fr i+1,Tsi = Tr i+1. All
nodes have the same deadlineD, and each node acts as a pipeline
stage with delayD. Fig. 2 shows an example of a three-node
pipeline. For brevity, the overhead is not shown. Fig. 2(b) shows
the pipelined timing diagram by folding the tasks in Fig. 2(a) into
a common interval with durationD, which is the delay of each
pipeline stage. [8] presented the schedulability conditions for an
M-node pipeline based on collision and utilization of the shared
communication medium.

An M-node pipeline can be partitioned and mapped onto anM′-
node pipeline (M′ ≤M) by merging adjacent nodesNi ,Ni+1, . . . ,Nj
(j ≥ i) into a new nodeN′

k. The new nodeN′
k combines all compu-

tation workload, receivesWr i bits of data, and sendsWsj bits of data.
Communication within a node become local data accesses. That
is, W′

pk
= ∑ j

l=i Wpl , andW′
rk

= Wr i ,W
′
sk

= Wsj . The newM′-node
pipeline is called apartitioningof the initialM-node pipeline.

4. MOTIVATING EXAMPLE
We use an automatic target recognition (ATR) algorithm (Fig. 3)
as our motivating example. Originally it is a serial algorithm. We
reconstructed a parallel version and mapped it onto pipelined mul-
tiple processors. Pipelining allows each processor to run at a much
slower speed with a lower voltage level to reduce overall compu-
tation energy, while parallelism compensates for the performance.
Of course, having extra processors costs energy overhead for inter-
processor communication, memory, etc.

Task to Node Mapping

N1:
Target

Detection

Wp1 =
400K
cycles

Ws1
= Wr2
= 14Kb

Wr1 =
 128Kb

N2:

FFT

Wp2 =
1190K
cycles

Ws2
= Wr3
= 14Kb

N3:

Filter
Wp3 =
504K
cycles

N4:

IFFT

Wp4 =
3570K
cycles

Ws4
= Wr5
= 42Kb

N5:
Compute
Distance

Wp5 =
2639K
cycles

Ws5 =
14Kb

Ws3
= Wr4
= 42Kb

Figure 3: Stages of the ATR algorithm.

D

RECV1
@ 10 Mbps

SEND1
@ 10 MbpsPROC1

@300MHz

(a) A fine-grain partitioning scheme reduces energy on computation, at the
cost of inter-proessor communication and overhead of additional nodes.

Time

Power

OVERHEAD

D

RECV2
@ 10 Mbps

SEND2
@ 10 MbpsPROC2

@300MHz

Time

Power

OVERHEAD

Node N1

Node N2

D

RECV1
@ 10 Mbps

SEND2
@ 10 Mbps

PROC (increased workload)
@600MHz

Time

Power

OVERHEAD

Merge N1 and N2
into a combined node N

(b) The combined node reduces
communication and overhead,

but it requires more energy
for computation.

D

RECV1
@ 100 Mbps

SEND2
@ 100 Mbps

PROC @300MHz

Time

Power

OVERHEAD

Node N

(c) The computation energy can be reduced
by increasing communication speeds,

which leaves more time on computation.

Figure 4: The impact of different partitioning schemes and
communicationspeed settings.

Given the decomposition into five stages of the ATR algorithm,
several partitioning schemes are possible for mapping them onto a
number of pipelined nodes. Fig. 4 shows an example by consider-
ing how they map the first two stages onto (a) two nodes and (b) one
node. In Fig. 4(a), mapping onto two nodesN1 andN2 enables both
processors to operate at a reduced speed (300MHz) for computa-
tion. The two nodes together consume lower computation energy
than one node at a faster speed but must pay the price of commu-
nication energy forSEND1→ RECV2. In Fig. 4(b), even though
merging the two stages onto one node eliminates theSEND1→
RECV2 communication, the CPU must execute the combined com-
putation workload at a faster clock rate (600MHz), a less energy-
efficient level.

Zooming out, many partitioning schemes are possible, even when
limited to a pipelined organization. For example, one partitioning
[N1,N2][N3,N4,N5] may be optimal for nodesN1 andN2; but
it will preclude another solution[N1], [N2,N3], [N4,N5] that may
lead to less energy for the whole system.

Speed Selection for CPU and Communication
The selection of communication speed is an equally critical issue.
For example, a 10/100/1000 Base-T Ethernet interface can con-
sume more power than a CPU at high (100/1000Mbps) speeds, but
less power at the slower, 10Mbps data rate. In Fig. 4(b), the pro-
cessor must operate at a high clock rate due to the low-speed com-
munication at 10Mbps. Because of the deadlineD, communication
and computation compete for this budget. Low-speed communica-
tion leaves less time for computation, thereby forcing the processor
to run faster to meet the deadline. Conversely, high-speed commu-
nication could free up more time budget for computation, as shown
in Fig. 4(c), where the CPU’s clock rate is dropped to 300MHz
with 100Mbps communication. Although extra energy could be al-
located to communication, if the energy saving on the CPU could
compensate for this cost, then (c) would be more energy-efficient

than (b).

The communication-computation interaction becomes more intri-
cate in a multi-processor environment. Any data dependency be-
tween different nodes must involve their communication interfaces.
The communication speed of a sender will not only determine the
receiver’s communication speed but also influence the choice of
the receiver’s computation speed. The communication speed on
the first node of the pipeline will have a chain effect on all other
nodes in the system. A locally optimal speed for the first node will
not necessarily lead to a globally optimal solution.

Combining Partitioning and Speed Selection
Given a fixed partitioning scheme, the designers can always find
the corresponding optimal speed setting that minimizes energy for
that scheme. However, energy-optimal speed selection for a par-
titioning is not necessarily optimal over all partitionings. Instead,
partitioning and speed selection are mutually enabling. In this pa-
per, we take a multi-dimensional optimization approach that con-
siders performance requirements, schedulability, load balancing,
communication-computation trade-offs, and multi-processor over-
head in a system-level context.

5. PROBLEM FORMULATION
Given anM-node pipeline, choices of partitioning and communi-
cation speed settings will lead to different levels of energy con-
sumption at the system level. This section formulates three energy
minimization problems: by partitioning, by communication speed
selection, and by both. In the first two problems, the optimal solu-
tion can be obtained by dynamic programming, and the combined
optimization problem can be solved by multi-dimensional dynamic
programming.

Problem 1 (Optimal Partitioning) Given
(a)M pipelined nodesNi with workloadWpi ,Wr i ,Wsi , i = 1,2, . . . ,M,
(b) a deadlineD for all nodes, and
(c) the constraint that the speed settings of all communication in-
stance must match:Fr1,Fsi = Fr i+1,FsM , for i = 1,2, . . . ,M−1,
find a partitioning scheme that minimizes energyEsys.

To avoid exhaustive enumeration in theO(2M−1) solution space,
we construct a series of optimal solutions to sub-problems by map-
ping the originalM nodes one by one onto new sub-partitionings.
We compute the optimal cost function in terms of the minimum en-
ergy consumption over the sub-partitionings. Upon mapping each
node, the new optimal sub-solution can be computed from past op-
timal sub-solutions. Therefore, a dynamic programming approach
is applicable.

For dynamic programming, we use anenergy matrix Eto store the
cost function. Each entryE[i, j] indicates the minimum energy of
a sub-problem that maps firstj original nodesN1,N2, . . . ,Nj onto
a new sub-partitioning withi nodesN′

1,N
′
2, . . . ,N

′
i . Matrix E is ini-

tialized to∞.

E[i, j] =


0 for i = j = 0

min
i−1≤l≤ j−1

[
E[i−1,l]+
EN′

i

]
for

1≤ i ≤
j ≤M

(7)

(7) indicates that the optimali-node sub-partitioning that maps first
j original nodes must be a combination of the followings: (a) a
sub-partitioning that maps firstl original nodesN1,N2, . . . ,Nl to
i−1 new nodes, and (b) theith new nodeN′

i that combines original
nodesNl+1, . . . ,Nj . The sub-partitioning (a) must be optimal with
minimum energyE[i−1,l]. (b) only has one nodeN′

i . Its energy
is denoted asEN′

i
. SinceE[i, j] is the optimal energy for the sub-

problem, it must be the minimum value of (7) among all possible
choices ofl . The dynamic programming algorithm can iterate (7)
from i = j = 0 until i = j = M. Each optimal sub-solutionE[i, j]
can be derived from previously computedE[i− 1,l]. Finally, the
minimum energy is min(E[i, M]),∀i = 1,2, . . . ,M. We omit the al-
gorithm for brevity. Its time complexity isO(M3).

Problem 2 (Optimal Communication Speed Selection)Given
(a) a fixed partitioning scheme withM pipelined nodesNi with
workloadWpi ,Wr i ,Wsi , i = 1,2, . . . ,M,
(b) a deadlineD for all nodes, and
(c) the available choices for communication speed settingsFck ,k =
1,2, . . . ,C,
find all processor speedsFpi and communication speedsFr i ,Fsi that
minimize energyEsys.

We also perform dynamic programming as opposed to exhaustive
search inO(CM+1) solution space. During stepi when process-
ing nodeNi , we only select communication speedsFr i ,Fsi of Ni ,
because they determineFpi , and the previous speed settings of the
sub-problems have already been selected to optimal. For each choice
of Fr i ,Fsi , we compute the energy of nodeNi , plus the optimal en-
ergy of a sub-problem computed by stepi− 1 with Fsi−1 = Fr i to
find the optimal energy of the new sub-problem in stepi.

Each elementE[i, k] in theenergy matrix Eindicates the minimum
energy of a sub-problem. It hasi nodesN1,N2, . . . ,Ni with the last
nodeNi ’s sending speed selected to be thekth speed choiceFck . E
is initialized to∞.

E[i, k] =


0

for i = 0,
1≤ k≤C

min
1≤m≤C

[
E[i−1,m]+
ENi (Fr = Fcm,Fs = Fck)

]
for 1≤ i ≤M,
1≤ k≤C

(8)

(8) indicates that the optimal speed setting for the sub-problem up
to nodeNi whose sending speedFsi = Fck is determined by: (a)
a previous optimal sub-solution where nodeNi−1’s sending speed
Fsi−1 = Fcm, plus (b) nodeNi whose receiving speedFr i = Fcm, send-
ing speedFsi = Fck . (a) includesi−1 nodesN1,N2, . . . ,Ni−1 and
communicates with (b) through speedFcm. The optimal energy of
sub-problem (a) isE[i− 1,m]. (b) has only one nodeNi that re-
ceives data from (a) through speedFcm; and its sending speed is
Fck . Its energy is denoted asENi (Fr = Fcm,Fs = Fck). SinceE[i, k]
is optimal, it must be the minimum value among all possible speed
settingsFcm in (8). The algorithm is omitted for brevity. It it-
erates (8) untili = M,k = C. EachE[i, k] can be derived from
previously computedE[i− 1,m]. The global minimum energy is
min(E[M,k]),∀k = 1,2, . . . ,C. The time complexity of the algo-
rithm is O(MC2).

Problem 3 (Optimal Partitioning and Speed Selection)Given
(a)M pipelined nodesNi with workloadWpi ,Wr i ,Wsi , i = 1,2, . . . ,M,

(b) a deadlineD for all nodes, and
(c) the available choices for communication speed settingsFck ,k =
1,2, . . . ,C,
find a partitioning with communication speed settings that achieves
minimum energyEsys.

Due to the inter-dependency between speed setting and partition-
ing, the optimal solution cannot be achieved by solving two pre-
vious problems individually. Exhaustively enumerating over one
dimension and dynamic programming over the other is quite expen-
sive with the time complexity as eitherO(2M−1MC2) orO(CM+1M3).
We propose a multi-dimensional dynamic programming algorithm
given the fact that the previous two problems can be solved by dy-
namic programming independently. Based on the previous two dy-
namic programming approaches, theenergy matrix Efor the com-
bined problem is defined as follows: each elementE[i, j,k] stores
the minimum energy of a sub-problem that maps firstj original
nodesN1,N2, . . . ,Nj onto a newi-node sub-partitioning, whose last
nodeN′

i has sending speedF ′si
= Fck .

E[i, j,k] =


0

for i = j = 0,
1≤ k≤C

min

i−1≤ l ≤ j−1,
1≤m≤C

 E[i−1,l ,m]+
EN′

i
(Fr = Fcm,

Fs = Fck)

 for 1≤ i
≤ j ≤M,
1≤ k≤C

(9)

The optimal energyE[i, j,k] is derived from: (a)E[i−1,l ,m] of a
previous optimal sub-solution, which mapsl original nodesN1, . . . ,Nl
ontoi−1 new nodesN′

1, . . . ,N
′
i−1 with the last nodeN′

i−1’s sending
speed selected to beFcm, plus (b) the new nodeN′

i that combines
original nodesNl+1, . . . ,Nj with receiving speedFcm and sending
speedFck . The sub-solution (a) has the optimal energyE[i−1,l ,m].
Note that (b) has only one nodeN′

i , and its energy is denoted as
EN′

i
(Fr = Fcm,Fs = Fck). E[i, j,k] must be derived from all possible

pairs of(l ,m) to achieve the minimum value of (9).

The algorithm is shown in Fig. 5. It combines two previous algo-
rithms by two-dimensional dynamic programming. There are three
additional matrices. Theutilization matrix U tracks the schedula-
bility condition [8] and guards each optimal sub-solution to guar-
antee its schedulability. Thepartitioning matrix Pandspeed ma-
trix S are used to record the intermediate solutions and for retriev-
ing the optimal partitioningPopt and optimal speed settingSopt
when the algorithm terminates. The global minimum energy is
min(E[i, M,k]),∀i = 1,2, . . . ,M,∀k = 1,2, . . . ,C. The time com-
plexity of the algorithm isO(M3C2).

6. ANALYTICAL RESULTS
To evaluate our energy optimization techniques, we experiment
with mapping the ATR algorithm onto two fixed partitioning schemes:
(a) a single-node that combines all blocks, and (b) a five-node pipeline
that maps each block onto an individual node (Fig. 6). The in-
put data size is 128K bits, and the output is 14K bits per frame.
In scheme (a), the single node combines all the workload of five
nodes in (b); and it eliminates all internal communication instances
between nodes in (b). (a) and (b) are two extremes representing
serial vs. parallel schemes. For both (a) and (b) we apply optimal
speed selection. We also find the optimal partitioning with speed
selection as (c) and compare its energy consumption with (a) and

partitioning-speedselection(Wr [1 : M],Ws[1 : M],Wp[1 : M],
Fc[1 :C],Scaler ,Scales,Scalep,D,Povh)

for i := 0 toM do
for j := i to M do

for k := 1 toC do
E[i, j,k] := U [i, j,k] := P[i, j,k] := S[i, j,k] := ∞

for k := 1 toC do
E[0,0,k] := 0
U [0,0,k] := Wr [1]/Fc[k]/D

for i := 1 toM do
for j := i to M do

for k := 1 toC do
for l := i−1 to j−1 do

for m := 1 toC do
e := E[i−1,l ,m]+EN′

i
(Fr = Fc[m],Fs = Fc[k])

u := U [i−1,l ,m]+Ws[j]/Fc[k]/D
if u≤ 1 and e< E[i, j,k] then

E[i, j,k] := e
U [i, j,k] := u
P[i, j,k] := l
S[i, j,k] := m

Eopt,Popt,Sopt := retrieve from matricesE,U,P,S
return Eopt,Popt,Sopt

Figure 5: Combined partitioning with speed selection.

N1:
Target

Detection

Wp1 =
400K
cycles

Ws1
= Wr2
= 14Kb

Wr1 =
 128Kb

N2:

FFT

Wp2 =
1190K
cycles

Ws2
= Wr3
= 14Kb

N3:

Filter
Wp3 =
504K
cycles

N4:

IFFT

Wp4 =
3570K
cycles

Ws4
= Wr5
= 42Kb

N5:
Compute
Distance

Wp5 =
2639K
cycles

Ws5 =
14Kb

Ws3
= Wr4
= 42Kb

N:
Merging N1, N2, N3, N4, N5

into one node

Wp = Wp1 + Wp2 + Wp3 + Wp4 + Wp5 =
8303K cycles

Wr =
 128Kb

Ws =
14Kb

(a) single-node partitioning

(b) five-node partitioning

Figure 6: Two fixed partitioning schemes of ATR.

Figure 7: Power vs. performance of the XScale processor.

Mode

10M bps 800 mW

100M bps 1.5W

1000M bps 6W

Power consumption

Figure 8: Power modes of the Ethernet interface.

(b) under two types of performance requirements: (1) high perfor-
mance,D = 10ms, (2) moderate performance,D = 15ms.

Each node consists of an Intel XScale processor [2] whose power
vs. performance level ranges from 50mW@150MHz to 1.6W@1GHz
(Fig. 7), and an Intel LXT-1000 Ethernet interface [1] with power
levels of 0.8W@10Mbps, 1.5W@100Mbps, and 6W@1000Mbps
(Fig. 8). We assume each node has a constant power drawPovh =
100mW.

The results are presented in Fig. 9. In all cases, 1000Mbps is al-
ways the optimal speed setting for communication. The low-power,
10Mbps communication speed results in the highest energy. This
is because it leaves so little time for computation such that the pro-
cessors must run faster with more energy to meet the deadline, and
it has the highest energy-per-bit rating. The low-speed communi-
cation also tends to violate the schedulability conditions [8]. Given
properties of this particular Ethernet interface, 1000Mbps commu-
nication will always lead to the lowest energy consumption since
it requires the least amount of energy per bit and leaves the maxi-
mum amount of time budget for reducing CPU energy. However, in
cases where the energy-per-bit rating does not decrease monotoni-
cally with the communication speed, the optimal speed setting may
involve some combinations of low-speed and high-speed settings
between different nodes. For example, the nodeNi may communi-
cate withNi−1 at 1000Mbps and withNi+1 at 100Mbps.

Fig 9(1) shows the energy consumption of all three partitioning
schemes under a tight performance constraint. The single-node
(a) is heavily loaded with computation. Therefore it is desirable
to reduce CPU energy by pipelining. As a result, the five-node
pipeline (b) is more energy-efficient at the cost of additional com-
munication and overhead. However, the optimal partitioning is (c)
with three nodes:[N1,N2], [N3,N4], [N5]. It consumes more CPU
energy than (b), but overall it is optimal with less energy on com-

0

2

4

6

8

10

12

14

(a) 1-node (b) 5-node (c) Optimal
N1N2 | N3 N4 | N5

E
ne

rg
y

 (
m

J)

0

2

4

6

8

10

12

14

(a) 1-node (b) 5-node (c) Optimal
N1N2N3N4 | N5

Overhead Communication Computation

(1) high performance
D = 10ms

(2) moderate performance
D = 15ms

Figure 9: Experiment results.

municationand overhead.

In case of the moderate performance constraint (Fig 9(2)), (a) is
still dominated by computation but it is not heavily loaded due to
the relaxed deadline. The reduction of CPU energy by (b) cannot
compensate for the added overhead of new nodes and communi-
cation. Therefore (a) is better than (b) and pipelining seems in-
efficient. However, the optimal partitioning (c) is still a pipelined
solution. It combinesN1,N2,N3,N4 into one node and mapsN5
to another node. (c) achieves minimum energy by appropriately
balancing computation, communication with pipelining overhead.
If the performance constraint is further relaxed, the serial solution
(a) will become optimal.

7. CONCLUSION
We present an energy optimization technique for networked em-
bedded processors and emerging system-on-chip architectures with
high-speed on-chip networks. We exploit with the multi-speed fea-
ture of modern high-speed communication interfaces as an effective
way to complement and enhance today’s CPU-centric power opti-
mization approaches. In such systems, communication and compu-
tation compete over opportunities for operating at the most energy-
efficient points. It is critical to not only balance the load among
processors by functional partitioning, but also to balance the speeds
between communication and computation on each node and across
the whole system. Our multi-dimensional dynamic programming
formulation is exact and produces the energy-optimal solution as
defined by a partitioning scheme and the speed selections for all
computation and communication tasks. We expect this technique
to be applicable to a large class of data dominated systems that can
be structured in a pipelined organization.

8. REFERENCES
[1] INTEL ethernet PHYs/transceivers.

http://developer.intel.com/design/network/products/
ethernet/linecardept.htm.

[2] INTEL XScale microarchitecture.
http://developer.intel.com/design/intelxscale/.

[3] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler.
Hybrid global/local search strategies for dynamic voltage
scaling in embedded multiprocessors. InProc. International
Symposium on Hardware/Software Codesign, pages
243–248, 2001.

[4] R. Cherabuddi, M. Bayoumi, and H. Krishnamurthy. A low
power based system partitioning and binding technique for
multi-chip module architectures. InProc. Great Lakes
Symposium on VLSI, pages 156–162, 1997.

[5] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with bus
access optimization for distributed embedded systems.IEEE
Transactions on VLSI Systems, 8(5):472–491, 2000.

[6] E. Huwang, F. Vahid, and Y.-C. Hsu. FSMD functional
partitioning for low power. InProc. Design, Automation and
Test in Europe, pages 22–28, 1999.

[7] P. V. Knudsen and J. Madsen. Integrating communication
protocol selection with hardware/software codesign.IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 18(8):1077–1095, August 1999.

[8] J. Liu, P. H. Chou, and N. Bagherzadeh. Communication
speed selection for embedded systems with networked
voltage-scalable processors. InProc. International
Symposium on Hardware/Software Codesign, pages
169–174, April 2002.

[9] J. Luo and N. K. Jha. Battery-aware static scheduling for
distributed real-time embedded systems. InProc. Design
Automation Conference, pages 444–449, June 2001.

[10] R. Ortega and G. Borriello. Communication synthesis for
distributed embedded systems. InProc. International
Conference on Computer-Aided Design, pages 437–444,
1998.

[11] A. Wang and A. Chandrakasan. Energy efficient system
partitioning for distributed wireless sensor networks. InProc.
IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 905–908, May 2001.

[12] E. F. Weglarz, K. K. Saluja, and M. H. Lipasti. Minimizing
energy consumption for high-performance processing. In
Proc. Asian and South Pacific Design Automation
Conference, pages 199–204, 2002.

[13] W. Wolf. An architectural co-synthesis algorithm for
distributed embedded computing systems.IEEE
Transactions on VLSI Systems, pages 218–229, June 1997.

