
Remote Progressive Firmware Update for
Flash-Based Networked Embedded Systems

Jinsik Kim1

1University of California, Irvine
CA, USA 92697-2625

jinsikk@uci.edu

Pai H. Chou1,2

2National Tsing Hua University
Hsinchu, Taiwan 30013

phchou@uci.edu

ABSTRACT
Firmware update over a network connection is an essential but ex-
pensive feature for many embedded systems due to the relatively
high power consumption and limited bandwidth. This work pro-
poses a page-level, link-time technique that minimizes not only the
size of patching scripts but also perturbation to the firmware mem-
ory, over the entire sequence of updates in the system’s lifetime.
Experimental results show our technique to reduce the energy con-
sumption of firmware update by 38–42% over the state-of-the-art.

General Terms
Algorithms, Management, Measurement, Performance

Keywords
High-level analysis, NOR Flash memory, Page, Diff, Clycomatic
complexity, Progressive code update, Embedded systems

1. INTRODUCTION
The ability to update firmware over a network link is becom-

ing an increasingly important feature. Updates are applied for en-
hanced security, feature upgrade, bug fixes, and conformance to
newly finalized industry standards, among many reasons. Firmware
is usually stored in nonvolatile memory such as EEPROM or Flash.
Remote firmware update can be an expensive process for many em-
bedded systems. For instance, a wireless sensor node that is de-
ployed remotely or deeply embedded may need to run on battery
or harvested power, and RF transceivers and flash memory access
almost always consume higher power than any other component
in the system by at least an order of magnitude. While one may
overwrite the entire firmware image, it is less desirable due to un-
necessary wear-and-tear and potentially long time. The problem is
exacerbated if the firmware update process is done by peers.

Previous works have attempted to reduce the cost of firmware
update by transmitting differences in the code images. Even if the
difference is small, any change in code size can cause shift in poten-
tially unchanged data, translating into more energy consumption,
delay, and additional wear-and-tear of the flash memory. Although

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

researchers have proposed leaving gaps to avoid anticipated shifts,
their effectiveness over theentire lifetimeof the system has not
been demonstrated.

We propose a new technique, called Remote Progressive Firmware
Update (RPFU), which improves over the state-of-the-art consider-
ing the characteristics of different functions in not only grouping
them in the same pages but also ordering them within the page.
This is a step performed during linking after compilation. The re-
sulting code image translates into a small diff script to minimize
energy for transmission. Moreover, the diff script performs mini-
mal shifting, thereby reducing the number of unnecessary rewrites
to the flash memory. A distinguishing technique is that our tech-
niqueevolveswell over the entire lifetime of the system, not just
between some randomly chosen pair of successive versions. We
show the effectiveness over at least nine consecutive versions of
real applications.

2. RELATED WORK
Previous works have studied the cost reduction of firmware up-

date. The costs are associated with the communication and the
number of rewrites. Note that low communication cost does not
automatically imply fewer rewrites, because one may transmit a
small script that commands many data movements.

To reduce communication cost, previous works have considered
transmitting the difference of code between different versions [14,
7, 11, 10]. They have the effect of reducing communication cost
but unfortunately do not consider the flash memory characteristics.
The main difference with flash memory is that data modification
requires explicit erasure before writing, as it cannot simply over-
write existing data. Moreover, erasure is done in units of pages.
Erasure costs power, time, and wear-and-tear. Conventional mem-
ory management techniques, when applied to flash memory, have
the problem of shifting of unchanged data in order to accommo-
date newly written data of a different size. To address this problem,
fragmented layout [8] has been proposed by inserting gaps between
erasure units. However, this leads to memory fragmentation, and
their effectiveness over a series of firmware updates has not been
demonstrated.

Another problem with shifting code is control-flow dependency.
That is, if a callee is moved, then all callers of that function must
be updated with the new address, and these callers may reside on
several different pages. A common solution is to make an indi-
rect call through a jump table, so that only the jump table needs to
be updated, but this incurs runtime overhead each time. To mini-
mize the domino effect of code shift, feedback linking [15] takes a
code-layout approach by placing modified functions at the end of
an image or gaps between functions. However, it does not analyze
the callers to effectively minimize their updates when the callee is



Dirty-
Check

new 
source

null or 
old Source

Clustering Imaging 

null or
old Image

new image 
and diff script

Figure 1: Framework Block Diagram

PROGRESSIVEUPDATE(NSC,OSC,OPBI)
� see Appendix for list of symbols

1 MF← DIRTYCHECK(NSC,OSC)
2 URPBI← CLUSTERING(MF,OPBI)
3 DS,PBI← IMAGING(MF,URPBI)
4 return DS,PBI

Figure 2: Top-level algorithm.

shifted.
Our proposed work makes several contributions. It computes a

code layout based on the structure of the program, so that it will be
efficient to update throughout the system’s entire lifetime. That is,
it minimize not only the difference between two arbitrary succes-
sive versions, but also the total Hamming distance from the first to
the last version. This means it will be not only energy efficient to
transfer, since thediff script is small, but also energy efficient to
patch, since the shifting and rewriting are minimized.

3. OVERALL FRAMEWORK
In this paper, we define two procedures named CLUSTERING

and IMAGING for the purpose of generating code images that are
illustrated in Fig. 2, PROGRESSIVEUPDATE() pseudocode. The
symbols in all pseuduocode in this paper are illustrated in section
??, Appendx. The images are organized into pages that match the
native page size of the flash memory. The CLUSTERING procedure
performs grouping of functions into pages, while the IMAGING pro-
cedure inputs these groups and produces the final layout as well as
adiff script. The diff script contains commands and difference data
for updating the firmware, and it is what is actually disseminated to
the sensor nodes over the communication link. In Figure 1, CLUS-
TERING and IMAGING procedures are performed on the host side,
while the diff script is parsed on the deployed node side.

Without loss of generality, for the purpose of our experiments,
we assume power characteristics of Eco platform [2] and NOR flash
memory [5]. The characteristics are in Tables 1 and 2, respectively.
We also make several other assumptions. First, this method ap-
plies to updates of monolithic binaries such as operating systems,
virtual machine engines, and scripting engines as well as mono-
lithic binaries on real-time systems without memory management.
The updates are through a communication interface that is rela-
tively costly to operate, by consuming relatively high power (e.g.,
RF module of a wireless sensor node) or is relatively slow. We also
assume NOR type of flash memory for firmware due to its ability to
perform byte-reading and page-erasing, and it is the most popular
form of nonvolatile program memory for embedded systems.

Table 1: Eco power characteristics
Parameter current

RF RX 10.5 mA
RF TX 19 mA

EEPROM 5 mA

Parameter current

CPU Active 3mA
CPU Powerdown 2 µA

ADC 0.9 mA

Table 2: Flash energy consumption (unit:µJ/byte)
ComponentReadWrite Erase
AT29C010A 0.25 0.48 0.48

Dirty-Check
: Function granuarity

new source

null or 
old source

Splitting
: Page granuarity

-> generating 
call graph

null or
old image

new image 
and 

diff script

Reclustering
: Page granuarity

-> generating 
unresolved page-

based image

Clustering

Ordering
-> generating resolved 

page-based image

Imaging
Diff Script

Generator
-> generating 

diff script

Figure 3: Framework in detail

4. CLUSTERING WITHIN PAGES
The CLUSTERING procedure performs grouping of functions to

fit in pages whenever possible, such that the number of references
across pages (i.e., caller to callee) is minimized. For code updates
based on flash memory, modifying a function may occur in two dif-
ferent ways: modification in-place and page reassignment. In the
first case, modifying a function in-place may mean shifting code of
all the other functions that are placed after the modified function
within the same page. This will in turn cause other pages contain-
ing references to those shifted functions to be updated as well, and
this represents the worst case of modification. In the second case,
all pages containing references to the modified function need be
modified. This procedure may need to modify some of the pages
containing references to the modified function.

The CLUSTERING procedure is further divided into SPLITTING

and RE-CLUSTERING. SPLITTING extracts the call graph structure
for the functions. If this is the very first version of the program,
then the graph covers the entire set of functions. Otherwise, it cov-
ers the set of modified functions plus those in an existing page-
based image. The call graph structure is fed to the next step, RE-
CLUSTERING. The purpose of RE-CLUSTERING is to create either
a good initial grouping or minimally different grouping that will re-
sult in low energy consumption when transmitted or updated. Each
group of functions will fit within a page and then ordered to further
minimize intra-page shifts. The CLUSTERING algorithm is shown
as a flow chart and pseudocode in Figs. 3 and??. The SPLITTING

and RE-CLUSTERINGprocedures are presented next.

4.1 Splitting
SPLITTING inputs a list of modified functions and the page-based

image from the previous version. It first calls CGDATA STRUC-
TURE to analyze the caller-callee relationship and the complexity
of the functions, and then partitions them among the pages. Each
function is assumed to fit within a page. Then, SPLITTING calls
PBCALL GRAPH to construct apage-based call graph(PBCG),
where the vertices represent the functions and the edges represent
caller-callee relationships, and the vertices are grouped by pages.
The objective of SPLITTING is to minimize the cost of the PBCG.

The cost of update is directly related to (1) the number of pages

CLUSTERING(MF,OPBI)
� See Appendix for list of symbols

1 DSS,PBCG← SPLITTING(MF,OPBI)
2 URPBI← RECLUSTERING(DSS,PBCG)
3 return URPBI

Figure 4: CLUSTERING algorithm.



SPLITTING(MF,OPBI)
� see Appendix for list of symbols

1 DSS← CGDATA STRUCTURE(MF)
2 PBCG← PBCALL GRAPH(DSS,OPBI)
3 return DSS,PBCG

PBCALL GRAPH(DSS,OPBI)
1 PBCG←{}
2 while DSS6= {}
3 do fk ∈ DSS
4 if fk = ENLARGEDFUNCTION

5 then PBCG← ENFCOST(fk,OPBI,PBCG)
6 else if fk = SHRUNKFUNCTION

7 then PBCG← SHFCOST(fk,OPBI,PBCG)
8 else
9 PBCG← RMFCOST(fk,OPBI,PBCG)

10 return PBCG

Figure 5: SPLITTING and PBCALL GRAPH pseudocode.

that need to be updated and (2) the style of update for each function.
A page needs to be updated if it contains either a modified function
or references to a relocated function. Note that a modified function
may be the same size, enlarged, shrunk, removed, or newly added
with respect to the previous version. The update style for each
function can be further classified into (1)in-placeupdate, i.e., same
starting address on the same page; (2)anew-in-placeupdate, i.e.,
same starting address on the same page within-placeupdate; (3)
writing the modified function to free space, orhole, in another page;
(4) shiftingsome other functions’ code on the same page in addition
to writing the modified function; (5)anew-shiftingthe some other
functions asshifting that on the same page in addition to writing
the modified function; (6) allocation of anewpage; (7)removinga
page. The energy for these update styles are modeled as follows.

Einplace(∆( fk)) = (Ecpu(FLASH+BUF)+Ebuf(read+write)
+Eflash(read+ program))×size(PAGE( fk))
+(Erf +Ecpu(RF))× (size(Rshift( fk))+size(∆( fk)))
+FLASHerase×PAGE( fk) (1)

Eanewinplace(∆( fk)) = (Ecpu(FLASH+BUF)+Ebuf(read+write)
+Eflash(read+ program))×size(PAGE( fk))
+(Erf +Ecpu(RF))× (size(Rshift( fk)+∆( fk))) (2)

Ehole(∆( fk)) = (Ecpu(FLASH+BUF)+Ebuf(read+write)
+Eflash(read+ program))×size(PAGE( fk))
+(Erf +Ecpu(RF))× (size(Rshift( fk))+size(∆( fk)))
+Eflash(erase+ read+ program)×PAGE(R( fk)) (3)

Eshift(∆( fk)) = ((Ecpu(FLASH+BUF)+Ebuf(read+write)
+Eflash(read+ program))× (size(PAGE(I( fk)))
+(Erf +Ecpu(RF))× (size(R( fk))+size(∆( fk)))
+Eflash(erase+ read+ program)×PAGE(R( fk)) (4)

Eanewshift(∆( fk)) = (Erf +Ecpu(RF))× (size(R( fk))+size(∆( fk))) (5)

Enew( fk) = (Erf +Ecpu(RF))× (size(Rshift( fk))+size(∆( fk)))
+Eflash(erase+ read+ program)×PAGE(R( fk)) (6)

Eremove( fk) = Eflash(erase+ read+ program)×PAGE(R( fk)) (7)

Ecpu(FLASH), Ecpu(BUF), and Ecpu(RF) represent the energy
consumption of CPU execution for flash memory, a buffer, or RF
communication, respectively.Ebuf(), Eflash(), andErf() represent
the energy consumption of a buffer execution, flash memory exe-
cution, and RF transmission, respectively.R( fk) represents refer-
ences tofk, andRshift( fk) represents references to functions shifted
by fk. I( fk) represents functions shifted byfk.

In Fig. 5,F4 is enlarged and renamedF4_E. One way is to write
F4_E to a newly allocated Page 5, which necessitates updates to
F4’s callers on Page 2. Another way is to writeF4_E back to Page

F1 F2

Page 5 (newly used)

F1 F2

F3

F5F7

F8F9 F6

F4_E

Page 1

Page 2

Page 3

Page 4 (a)

(b)

F3F8F9 F6 F4

Page 1

Page 3Page 4

Old Image

F1 F2

F3

F5F7

F8F9 F6 F4_E

Page 1

Page 2

Page 3Page 4

F5F7

Page 2

New Image

Figure 6: Splitting in case of an enlarged function,F4. (a) the
enlarged function, F4_E, moved to the page # 5 : page 1, page
3, and page 5 to be updated. (b)F4_E in place : page 1 and
page 3 to be updated.

F1 F2

F3F5F7

F8F9 F6 F4

Page 1 F1 F2

F3F5
F7

F8F9 F6 F4

Page 1

F1 F2

F3F5F7

F8F9 F6 F4

Page 1F1 F2

F3F5F7

F8F9 F6 F4

Page 1

Page 2Page 2

(a)

(b)(c)

(a)
(b)

(c)

Figure 7: Different Clustering Ways

3 by shiftingF3; although this does not affect the callers ofF4, it
affect the callers ofF3 and thus requires update to Page 1.

4.2 Reclustering
RECLUSTERINGadds the modified functions (MF) to the page-

based call graph (PBCG) to generate an unresolved page-based im-
age. Its objective is to minimize the number of inter-page refer-
ences. To do this, RECLUSTERING explores grouping functions
that are related asparents(callers) of a commonchild (callee), (b)
cousins, i.e., nodes with common callees, and (c) parent and its
children (callees) or subset thereof. Fig. 8 shows these three ways
to cluster with respect to the functionF7. The objective of recluster-
ing is to minimize the number of inter-page references. Formally,

minimize
n

∑
k=1

(NRPageall (Pagek)) (8)

whereNR= number of inter-page references,n= number of pages,
k = page number, andPage= erasure unit of flash memory. The
expressionNRcallee(callers) counts the number of references in
callers to callee, andNRPageall (Pagek) means the number of ref-
erences in all pages toPagek. For example, in Fig. 5,NRf6( f7) = 1
andNRf6( f7, f5) = 2. Equations 7, 8, and 9 express the number
of reference crossing pages (NRCP) after clustering with one of a
parent node, a cousin node, and a child node. RECURSIVECLUS-
TERING finds and merges a function into its parent, cousin, or child



RECLUSTERING(DSS,PBCG)
� see Appendix for list of symbols

1 URPBI= NULL

2 while DSS6= {}
3 do TN← DSS.pop()
4 NS.push(TN)
5 NS,URPBI← RECURSIVECLUSTRING(NS,TN,

URPBI,PBCG)
6 return URPBI

RECURSIVECLUSTERING(NS,AncN,N,PtrN,URPBI,PBCG)
1 if NS 6= NULL

2 then if AncN= NULL

3 then AncN← N
4 N← NS.pop()
5 PreSv← NULL

6 else AncN← N
7 N← PtrN
8 PreSv← CurSv
9 CurSv,PreSv,PtrN

← FINDPTRNODE(AncN,N,PBCG,PreSv)
10 if CurSv= NULL

11 then NS.push(N)
12 RECURSIVECLUSTRING(NS,AncN,N,PtrN,URPBI

PBCG)
13 else URPBI,PBCG

← CLUSTERINGTWONODES(N,
PtrN,URPBI,PBCG)

14 return NS,URPBI

Figure 8: RECLUSTERING and RECURSIVECLUSTERING pseu-
docode.

page.

NRCPparent =
n

∑
k=1

(NRPageall (Pagek))−NRf j ( fi) (9)

NRCPcousin=
n

∑
k=1

(NRPageall (Pagek))−NRfi (Child( fi , f j )) (10)

NRCPchild =
n

∑
k=1

(NRPageall (Pagek))−NRfi ( f j ) (11)

In addition, FINDPTRNODE finds the node which will be clustered
with N based on the equation??comparing withPreSvandCurSv.
The found node is called as a parter node,PtrN which is used as an
input for CLUSTERINGTWONODES. CLUSTERINGTWONODES
clustersN with PtrN and adds the clustered node to an unresolved
page-based call graph from the existing page-based call graph.

FINDPTRNODE( fi , f j ) =
fi if size( fi)+size( f j ) > PAGESIZE

fi ∪ ( f j ∈ (min({Eq.7| f j ∈ fi ’s parent},
{Eq.8| f j ∈ fi ’cousin},
{Eq.9| f j ∈ fi ’s child})) if size( fi)+size( f j )≤ PAGESIZE

(12)

5. IMAGING
The IMAGING procedure is invoked after CLUSTERING to create

a page-based image and generate a diff script to be disseminated
over wireless networks. The IMAGING procedure is illustrated as a
flow chart in Figure 3 as well.

The primary objective is to minimize the influence of code shift
on references. Another objective is to minimize the size of the diff
script that it generates.

IMAGING(DSS,URPBI,OPBI)
� see Appendix for list of symbols

1 PBI← ORDERING(URPBI)
2 DS← GENDIFF(DSS,OPBI,PBI)
3 return DS,PBI

Figure 9: IMAGING algorithm.

Our IMAGING procedure is further decomposed into two proce-
dures called ORDERING and GENDIFF. The IMAGING algorithm
is shown in Fig. 11.

5.1 Ordering
ORDERING performsintra-pagearrangement of functions. The

purpose is to place those functions that are likely to be modified
near the end of the page. This way, they will less likely disturb other
functions within the same page, because only functions placed after
them can potentially be shifted.

As an illustration, consider the example shown in Fig. 12. Fig.
12(a) and (b) show two different images named Old Image 1 and
Old Image 2 for the same initial version of the program. The dif-
ference is that in Page 2, the former arranges the functionF2 before
F3 while the latter doesF3 beforeF2. The point of this example
is to show that a good initial ordering even just within Page 2 can
lead to dramatically lower perturbation to the code memory, when
functionF2 is enlarged.

Starting with Old Image 1, Fig. 12(a) may evolve into either New
Image 1 or New Image 2, depending on how the enlarged func-
tion F2 is kept in the original page (Page 2) or put in a newly al-
located page (Page 5), respectively. If in the same page,F2 still
has the same starting address and therefore none of its callers need
to change, butF3 is shifted and all of its callers must be updated,
includingF4 on Page 3 andF5 on Page 4. In total, three pages must
be updated. On the other hand, if the enlarged functionF2 is placed
in a newly allocated Page 5, callers ofF2 need to be updated, and
they also affect three pages (1, 2, 5) as shown in New Image 2, but
it uses a total of five pages instead of four as New Image 1.

Fig. 12(b) shows that a different initial image (Old Image 2) can
reduce the number of affected pages from three down to one, sim-
ply by orderingF3 beforeF2 on Page 2. The functionF2 can be
enlarged within Page 2 without affecting the starting address of ei-
therF2 or F3. Therefore, none of their callers need to be updated,
and the only page that needs to be updated is Page 2.

How does one determine what functions are more likely to be
modified than others? Several software metrics can be considered,
including the number of lines of the source code, Cyclomatic com-
plexity [12], and code coverage have been proposed. It has been
reasoned that a function with higher logical complexity is more
likely to contain errors and therefore more likely to require bug
fixes [6], and it can be quantified by the Cyclomatic Complexity
metric.

5.1.1 Ordering Determination
Calculating the influence of each function involves evaluating

the likelihood of change. The influence can be derived by the com-
plexity of each function and the number of references to each func-
tion. The complexity can be measured by using cyclomatic com-
plexity[12] based on analyzing its control flow graph. The cyclo-
matic complexity counts the number of linearly independent paths
of each function in order to obtain its quantitative values. The equa-
tion of the Cyclomatic Complexity is as follows:

M = E−N+2P (13)



Old Image 1 New Image 1

F5

F1
Call F2

Page 1

Enlarged
F2

F3

F4
Call F3

Call F3

Call F2
Page 2

Page 3

Page 4

F5

F1
Call F2

Page 1

F2

F3

F4
Call F3

Call F3

Call F2

Page 2

Page 3

Page 4

F5

F1
Call F2

Page 1

F3

F4

Call F3

Call F3

Call F2

Page 2

Page 3

Page 4

Page 5

Enlarged
F2

New Image 2

F5

F1
Call F2

Page 1

F2

F3

F4
Call F3

Call F3

Call F2

Page 2

Page 3

Page 4

F5

F1
Call F2

Page 1

Enlarged
F2

F3

F4
Call F3

Call F3

Call F2

Page 2

Page 3

Page 4
New Image 3Old Image 2

(a) (b)

Figure 10: Different Layouts and Different Updates. (a) In case
of the enlarged function,F2 placed at lower address thanF3. (b)
In case ofF2 placed at higher address thanF3.

where

M = cyclomatic complexity

E = the number of edges in the graph

N = the number of nodes in the graph

P = the number of connected components.

We use the tool called C & C++ Code Counter (CCCC) [1] to
obtain the quantitative value of cyclomatic complexity.

To quantify the influence of a function on other functions, we
define the Influence EquationIE( fk) of the function fk as the Cy-
clomatic Complexity offk weighted by the number of references
to fk, as shown below:

IE( fk) = CC( fk)×NRfm(SF−{ fk}) (14)

whereCC( fk) denotes the Cyclomatic Complexity of the function,
SF is a set of functions{ f1, f2, f3, ..., fn}within a page, andNRfk()
is the number of references tofk.

5.1.2 Ordering Algorithm
In this paper, we present the equation (19) to calculate influence

values of each function within each page. The influence values are
based on the complexity of each function within each page and the
sum of the number of references to the function. Consequently, we
use the influence values to determine what a function belonging to a
page is more likely to be modified and should be placed toward the
end of the page. Based on the influence vales, we propose Ordering
algorithm that ranks each function belonging to each page.

These sets,SF, SC, andSR, are defined as follows.

SF= { f1, f2, f3, ..., fn} (15)

SC= {c1,c2,c3, ...,cn} (16)

ck = CC( fk) (17)

SR= {r1, r2, r3, ..., rn} (18)

rk = NRfk(SF−{ fk}) (19)

IE( fk) =
n

∑
k=1

(SR−{rk})×ck (20)

ORDERING(URPBI)
� see Appendix for list of symbols

1 for k← 0 to NUMBEROFPAGE

2 do Pagek← GETTINGPAGE(k)
3 Pagek← ORDERINGWITHIN PAGE(Pagek)
4 PBI← PAGEBASEDIMAGE(Pagek,PBI)
5 return PBI

Figure 11: ORDERING algorithm.

ORDERINGWITHIN PAGE(SF)
� see Appendix for list of symbols

1 NSF←{}
2 iemin← ∞
3 while SF 6= {}
4 do for each elementfk ∈ SF
5 do iek← IE( fk)
6 if iemin > iek
7 then iemin← iek, fmin← fk
8 SF← SF\{ fmin}
9 NSF← NSF∪{ fmin}

10 return NSF

Figure 12: ORDERINGWITHIN PAGE algorithm.

, whereSF is a set of functions within a page,SC is a set of the
complexity of the functions, andSR, a set of the number of ref-
erences to the functions.IE( fk) calculates the influence value of
function fk.

Whereas the set,SF, is for unsorted functions, the sequence,
NSF, is for sorted functions. After calculating the influence values
among unsorted functions one by one, a function having the mini-
mum influence value moves from among the unsorted functions to
the sequence,NSF. By repeating this procedure, all of the sorted
functions go into the sequence,NSF. The ORDERING(URPBI) il-
lustrates this procedure as shown in Fig.??.

The ORDERINGWITHIN PAGE(SF) ranks each function within
each page, which is a process to resolve each function’s start ad-
dress.

5.2 Diff Scripting
The IMAGING procedure generates a diff script to be dissemi-

nated over the wireless link to the nodes. Issues with dissemination
include network protocol design [9] and security [13], though they
are outside the scope of this work. Our diff script is similar to the
previous work such as [14] in that it includes three primitives: in-
sert, replace, and copy. The insert and replace primitives have the
format of a one-byte opcode and two-byte destination address with
n bytes of data or instructions. The format of the copy primitive is
one byte of opcode, two bytes of source address, two bytes of des-
tination address, and two bytes of length of the data or instruction
block copied.

6. EXPERIMENTAL RESULTS
Table 3 shows our two test cases: (1) nine versions of RX (re-

ceive) and nine versions of TX (transmit). These images are com-
piled by the Small Device C Compiler (SDCC) [4] targeting Eco,
an ultra-compact wireless sensor platform. We use the engery char-
acteristics of NOR flash memory [5] with 128-byte pages.

Table 3: Size of RX and TX mode images[byte]
Version 0 1 2 3 4 5 6 7 8

RX Image321131943032244528162838281625372791
TX Image 321131943032191222472282224719241957



(a) Energy Consumption of RX
Images

(b) Energy Consumption of TX
Images

(c) Energy Consumption of RX
Images by comparing with other
flash-based image layouts

(d) Energy Consumption of TX
Images by comparing with other
flash-based image layouts

Figure 13: Energy consumption comparisons.

Table 4: Total Power Consumption of RX and TX Images
through Progressive Firmware Update in [uJ]

clustering+imagingclustering+rev. orderno clustering+no imaging

RX 2290.02 3072.48 4784.64
TX 1769.23 2491.28 4552.08

Table 5: Total Power Consumption of RX and TX Image Up-
dates by comparing with other flash-based image layouts in [uJ]

clustering+imagingfragmented layout 1fragmented layout 2

RX 2290.02 3709.67 3689.84
TX 1769.23 3165.70 3205.35

We compare results from two groups of techniques on the two
test cases. The first group consists of (a) CLUSTERING and IMAG-
ING; (b) CLUSTERING with reversed ORDERING while in IMAG-
ING; (c) no CLUSTERING and no ORDERING but only DIFF while
in IMAGING only. The purpose of the first group of comparisons is
to show the importance of page-based image layouts for flash mem-
ory. The second group consists of (a) our approach (CLUSTERING

and IMAGING), (b) fragmented layouts with slop spaces, and (c)
fragmented layouts by placing functions to free spaces to reduce
code shift incidents. The purpose of the second group is to show
the advantages of our layouts.

Among techniques in the first group, our approach results in low-
est energy consumption by saving 25.28% and 52.02% energy for
the RX and 38.27% and 37.94% for the TX. Among those in the
second group, our technique saves 41.11% and 41.80% energy for
RX and 31.4% and 37.9% for the TX over both other fragmented
layouts approaches.

7. CONCLUSION
In this paper, we proposed a novel technology for numerous

firmware updates for NOR flash memory by analyzing image lay-
outs. Analyzing image layouts on flash memory was done by di-
viding an update step into clustering and imaging. Clustering con-
structed the rough structure of a page-based image, and imaging
constructed the detailed structure of the page-based image. By
these procedures, clustering and imaging benefited a next firmware
update step with less power consumption, memory space usage,
and RF channel usage. The experimental results show different
power consumptions depending on laying out each image though
progressive firmware update for NOR flash memory. Clustering
and Imaging minimize the wearing of NOR flash memory as well
as power consumption.

Appendix: List of Symbols used in Algorithms
AncN: ancestor (parent) node
CurSv: current energy save
DS: diff script
DSS: data structure set of

modified functions
fk: thekth function inDSS
MF: modified functions
NS: stack for nodes
NSC: new source code
NSF: new sequence of func-

tions
N: a node

OPBI: old page-based image
OS: old source code
PBCG: page-based call graph
PBI: page-based image
Pagek: thekth page
PreSv: previous energy save
PrtN: partner node (parent,

cousin, or child)
SF: unsorted functions
TN: temporary node
URPBI: unresolved page-based

image
CLUSTERINGTWONODES(): clusters the node with the parter node
ENFCOST(): energy cost for an enlarged function
FINDPTRNODE(): finds the parter node
RMFCOST(): energy cost for a removed function
SHFCOST(): energy cost for a shrunk function

8. REFERENCES
[1] http://cccc.sourceforge.net/.[2] http://ecomote.net/.[3] http://rsync.samba.org/.[4] http://sdcc.sourceforge.net/.[5] ATMEL. AT29C010A full data sheet :1-megabit 5-volt only

flash memory.[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. InIEEE
Transactions on Software Engineering, pages 100–108,
1999.[7] J. Jeong and D. Culler. Incremental network programming
for wireless sensors. InSensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on, pages 25–33,
Oct. 2004.[8] J. Koshy and R. Pandey. Remote incremental linking for
energy-efficient reprogramming of sensor networks :
Wireless sensor networks. InProceeedings of the Second
European Workshop, pages 354–365, Jan.–Feb. 2005.[9] S. S. Kulkarni and L. Wang. MNP: Multihop network
reprogramming service for sensor networks. InInternational
Conference on Distributed Computing Systems(ICDCS),
pages 7–16, 2005.[10] W. Li, Y. Zhang, J. Yangn, and J. Zheng. UCC:
update-conscious compilation for energy efficiency in
wireless sensor networks. InProceedings of the 2007 PLDI
conference, volume 42, pages 383–393, 2007.[11] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder,
O. Saukh, and K. Rothermel. FlexCup: A flexible and
efficient code update mechanism for sensor networks. In
EWSN 2006, pages 212–227, February 2006.[12] T. J. McCabe. A complexity measure. InIEEE Transactions
on Software Engineering, volume SE-2, pages 308–320,
December 1976.[13] R. G. P. E. Lanigan and P. Narasimhan. Sluice: Secure
dissemination of code updates in sensor networks. In
International Conference on Distributed Computing
Systems(ICDCS), pages 53–63, 2006.[14] N. Reijers and K. Langendoen. Efficient code distribution in
wireless sensor networks. InIn Proceedings of the Second
ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA ’03), pages 60–67, 2003.



[15] C. von Platen and J. Eker. Feedback linking: optimizing
object code layout for updates. InProceedings of the 2006
LCTES Conference, volume 41, pages 2–11, July 2006.


