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ABSTRACT
Tapper is a lightweight scripting engine for highly constrained wire-
less sensor nodes. Many such nodes run on 8-bit microcontrollers
(MCUs) with only a few kilobytes of on-chip memory, often with
segmented memory and unorthogonal registers that make it diffi-
cult to perform even the most basic tasks. To facilitate develop-
ment of software routines and enable dynamic reconfigurability,
Tapper provides a software layer that can interpret human readable
commands either interactively or in batch. It can invoke compiled
routines ranging from timer and interrupt configurations and task
scheduling to accessing I/O devices. Experiments on platforms in-
cluding 8051, ATMega 169V, and Freescale MC9S12NE64 with
built-in Ethernet show that the Tapper setup has the same modu-
lar, dynamic benefits as middleware systems but without the high
overhead in code size and data memory.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming environments—In-
teractive environments

General Terms
Design, Languages

Keywords
Scripting, resource constrained systems, scripting engine, test and
debugging, reprogramming, wireless sensor platform

1. INTRODUCTION
Emerging applications are driving the trend towards heteroge-

neous, distributed and networked sensor systems with dynamic con-
figurability and interoperability. Wireless sensing nodes with a
wide range of form factors, costs, and capabilities have become
available and are actively being developed. On the high end, such
a platform may be a pocket computer with 64MB RAM and a
400MHz processor running Linux. On the low end, it may be a
miniature sensor node with an 8MHz 8-bit microcontroller (MCU)
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and 1KB RAM. In addition to interoperability, new applications
also demand adaptivity and in-field programmability.

Unfortunately, designers today are still taking the same single-
processor, platform-specific approach to the development of these
distributed systems in ways essentially unchanged for the last sev-
eral decades. That is, they manipulate architecture specific-registers
for low-level configuration and control of interrupts, I/O, and power.
This drives up the software development cost and effort and is not
scalable, and interoperability is often added as an afterthought.
Although middleware has been proposed for larger systems, the
high memory and computational requirements make it impractical
to many low-power, memory-constrained miniature sensor nodes.
However, given that memory is one of the largest energy consumers
that must stay on more often than RF, many wireless sensor nodes
cannot afford to have a memory larger than a few kilobytes.

Our approach is to collapse the thick layers of software into a
lightweight scripting engine called Tapper. It interprets a small
command language either interactively or in batch. The language
corresponds to system services including real-time and power con-
trol as well as standard, extensible communication primitives. We
make the observation that all nodes in a wireless sensor network
must exchange messages, as all distributed systems must be able to
handle, and scripts can be viewed as a generalized communication
message format. Thus, the overhead incurred by Tapper is quite
marginal. A scripting architecture for distributed sensor systems
will have the same modular, dynamic benefits as middleware sys-
tems but without the heavy marshalling and demarshalling runtime
overhead. More importantly, the platform-independent subset of
scripts will enable seamless interoperability among a wide range
of systems from the smallest of sensor nodes to large-scale, high-
performance, general-purpose computing systems that can assist
small systems with processing and optimizations.

Tapper has been applied to a variety of wireless and wired sensor
platforms with a wide range of MCU architectures and communi-
cation capabilities. It runs comfortably on an ultra-compact, low-
power wireless sensor called Eco with an 8051 compatible core
and 4K shared program/data RAM. The same scripts also run on an
AVR ATmega MCU with 1K RAM but more I/O devices as well as
a Freescale 16-bit MCU over a TCP/IP protocol stack, and it can
be ported to any general purpose computer. The ability to issue
commands to Tapper interactively is very helpful during software
development and in-field diagnosis. The ability to load different
scripts for batch execution makes these systems evolvable. These
benefits are expected to make Tapper an attractive software plat-
form for a wide range of increasingly heterogeneous networks.

2. BACKGROUND AND RELATED WORK
Although it is possible to implement resource-constrained em-



Table 1: Comparison of different software architectures

Name Code Size Data Size App. Update App. Development Dynamic Kernel Update Require OS
TinyOS with Deluge 21.1KB 597B High NesC No −
SOS 20.4KB 1.1K−2.7KB Medium C Yes −
MatéVM 39.7KB 3196B Low humanreadable script No Yes
VM? 8KB 1.5KB Medium Java Yes Yes
Tapper 3KB−11KB 230B−1.5KB Low humanreadable script No No

beddedsensor systems without runtime support, several runtime
systems have been proposed to support programming abstractions
and configuration. TinyOS [5] is the most widely used system,
where the software components including runtime support and the
application are compiled together to create a monolithic executable.
It supports an event-driven programming model with low runtime
overhead. However, the compiled approach makes it rigid, not eas-
ily evolvable, and not interactive accessible.

To address the problem of code update, the Deluge [6] com-
ponent for TinyOS supports post-deployment system reprogram-
ming by enabling updating of binaries. TinyOS2 supports post-
deployment writing of selective executable code into the program
memory. However, in the case of heterogeneous networks, different
binaries must be generated for each configuration. In all of these
compiled approaches, pre-deployment testing is difficult. It would
require either a simulator that does not have access to the actual
I/O, or an in-circuit emulator (ICE) that may be too bulky to test
in its intended deployment site. In SOS [4], applications are writ-
ten in standard C and compiled to modules that can be added to or
removed from the system. The dynamically uploadable modules
include not only application code but also system services.

To support interactive access, design-time abstractions, testing
support, and post-deployment updates, a variety of interpreters,
middleware, and virtual machines have been proposed. Maté [8] is
a bytecode interpreter built on top of TinyOS and occupies 16.8KB
memory. Its bytecode is for low level operations for a stack ma-
chine, though they allow eight user-defined instructions. The sup-
port for scripting is thus limited. VM? [7] is a Java interpreter with
support for updating both the application and the system software.
However, its interpretation overhead can be very high; it does not
support interactivity, and it needs support from an underlying oper-
ating system, OS?.

Table 1 compares these different software architectures. Tapper
differs from them in several ways. First, it supports a wider range
of hardware platforms, from simple, 8051-based MCUs to 16-bit
MCUs with TCP/IP over Fast Ethernet and much larger ones. Sec-
ond, the lightweight scripting engine can be synthesize to explore
a wider range of implementation options, ranging from extremely
lightweight to arbitrarily complex, depending on the application re-
quirements and resource constraints. Third, Tapper is a stand-alone
software architecture that encompasses both the runtime support
and the interpreter. This is in contrast to other virtual machines or
middleware layers that run on top of some other runtime system.

3. TAPPER SOFTWARE ARCHITECTURE
Tapper features a scripting engine built on top of a set of low

level application programming interfaces (APIs). The lightweight
scripting engine parses human readable scripts and invokes sys-
tem services supported by the underlying hardware platforms. This
section briefly discusses the scripting language, followed by a de-
scription of the services provided by Tapper.
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Figure 1: (a) Tapper architecture (b) Address & operand stack

3.1 Scripting Language
Scripting refers to the interpreted execution of a script program

that defines the invocation order and condition of software compo-
nents, plus data buffers that connect them. Scripts tend to be much
easier and shorter to write and understand than the equivalent pro-
gram insystem programminglanguages such as C and Java [11].

In Tapper, acommandis a string with keywords and values in a
syntax. Ascript is a string that contains a sequence of commands.
Table 2 shows the set of commands on Eco platform. These com-
mands provide system calls to primitives that access the hardware
devices such as ADCs and RF transceivers, and system control such
as repeating or resetting. They are concise, short, and easy to un-
derstand, enabling users to learn in minutes. These commands en-
able Tapper to provide a common abstraction of hardware resources
over heterogeneous platforms.

3.2 Tapper Kernel
The Tapper kernel consists of a command-buffer manager, a light-

weight script interpreter, and the low-level system primitives, as
shown in Fig. 1(a). The command-buffer manager maintains a
buffer to store user input scripts, and the script interpreter parses
commands and invokes the corresponding system services supported
by underlying hardware platform. The system primitives, such as
AD conversion, are platform dependent and must be implemented
on each platform separately, but their APIs to the script interpreter
are fixed for all platforms. Therefore, the same script interpreter
can be made easily portable to different platforms as long as the
low-level primitives are well-defined and correctly implemented.

3.3 Scheduling Services
The command-buffer manager stores a script as a list of com-

mands in a FIFO command queue. This provides a very simple and
efficient scheduling service. In addition to the sequential execution,
Tapper supports simple interleaved parallelism by using the timer
channels on the MCU.

MCUs normally include several software programmable timers,
and user scripts can be scheduled to execute during the timer in-



unsigned char timer_0_func = 0;

void Timer_0_Interrupt(void){

switch(timer_0_func){

case ‘A’:

cmd_run_adc();

break;

case ‘I’:

cmd_get_input();

break;

}

}

(a)

char timer_0_buf[BUF_LENGTH];

void Timer_0_Interrupt(void){

cmd_intepreter(timer_0_buf);

}

(b)

Figure 2: Comparison of two implementations of timer inter-
rupt function: (a) Direct call(b) Indirect Call through inter-
preter

terrupt. For example, the command “T50{A2}” means to sample
ADC Channel 2 every 50ms. Upon detecting a new command with
a timer request (i.e., the symbol “T”), the interpreter first checks if
timer channels are available. If so, then the interpreter initializes a
timer and sets its interrupt handler to be the primitive to be sched-
uled. In the above example, that primitive is the ADC routine. If
all timer channels are busy, then the interpreter will return an error
message. The user can also remove a script from the schedule. For
example, “K2” will kill the scripts executed on timer channel 2 by
disabling the interrupt.

Two methods are applied to implementation of the timer inter-
rupt handler. One way is to use a global variable for each timer
channel. Thistimer function variablerepresents the current exe-
cuted primitive of the timer. In the timer interrupt handling routine,
it checks this variable to determine which primitive will be called,
as the example shows in Fig. 2(a). The variable is a character-type
quantity that occupies 1 byte of memory. This method directly ac-
cesses pre-installed system primitives. So, it is fast, easy to imple-
ment, and requires minimum memory space. However, the prim-
itive to be called has to be compiled with the kernel. Also, only
one primitive may be called during the interrupt. This limits the
flexibility to schedule other tasks.

An alternative way is to allocate a buffer to store user scripts for
each timer channel. At run-time, user-defined scripts will be writ-
ten to these buffers. The timer interrupt handling routine will fetch
the commands from its corresponding buffer and call the script in-
terpreter to parse and execute the command, as the example shows
in Fig. 2(b). This method provides the user with a more flexible
way to dynamically schedule a periodic task in the sensor node.
The drawback is that it incurs additional overhead by sending com-
mands to the interpreter. Another problem is that extra data mem-
ory space is required to store scripts. The size for the buffer should
be carefully considered based on available memory space.

3.4 Loop Execution
For Tapper to support a simple loop execution mechanism, it

maintains an address stack and an operand stack for the execution
of loop command “X”. The address stack is used to store the index
of the first character inside the block of the script, and the operand
stack is used to store the repeat count of the block.

Fig. 1(b) illustrates the loop execution sequence. There are two
blocks in the script, marked by “{” and “}”. Upon executing the
first block, the interpreter first pushes the operand of the command
“X”, representing the repeat count (which is 5), to the operand
stack, and the index of the first character of that block to the ad-
dress stack. During execution of the first block, it meets another
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Figure 3: (a) Writing scripts (b) Invoking scripts

repeat block. Similarly, the operand 10 is pushed onto the operand
stack, and address 18 is pushed onto the address stack. The in-
terpreter starts parsing commands from the second block until it
reaches “}”, which marks the end of a block. The repeat count on
top of the operand stack is decremented by 1. If it is not zero, then
the interpreter parses the command whose address is on top of the
address stack. If the operand on top of the operand stack is zero,
then the operand and address are popped off their respective stacks.
The interpreter continues executing the first block until it reaches
the end. Then, the repeat count of the first block, which is on top of
the stack now, is decremented by 1, and the interpreter checks this
value to decide whether to repeat the first block.

3.5 Reprogramming & Memory Management
A distinguishing feature of our approach ishost-assistedrepro-

gramming and memory management. That is, the host computer
maintains the knowledge about data and program memory usage
on the node. The host translates the memory management actions
into a sequence of lower-level primitives implemented on the node.
This way, the node complexity is kept low. To accomplish the host-
assisted operations, Tapper takes advantage of the Rappit frame-
work [3]. Rappit provides a command line interface that intercepts
and preprocesses all commands before sending them to the node.

Fig. 3 illustrates the process of reprogramming and executing
a new script. Reprogramming the sensor system is performed by
writing the new scripts into the target system’s data memory (Fig.
3(a)), which may be RAM or data flash. A new script has a name,
such as “foo1”, and the user adds it using the “+” command (e.g.,
by typing “+foo1”) on the host. To recall, the host runs the Rap-
pit framework to assist reprogramming and memory management
by maintaining a memory map of the target system. When Rap-
pit parses the “+” command, it passes the command to the mem-
ory manager. The memory manager calculates the length of the
script and allocates the corresponding memory blocks for it. The
“+” command then is translated to the memory write command
“w:x:...”, wherex is the start address of the allocated memory. Af-
ter allocating memory to a new script, the memory manager records
the script’s name, starting address, and length in a table, When call-
ing a script (e.g., “foo1”), the host computer looks up its name and
translates it into executing memory command “e:x:len”, wherex
andlenare the start address and length of the script respectively, as
shown in Fig. 3(b).

The memory space of our sensor node consists of SRAM and
flash memory. A portion of the memory, called thescripts mem-
ory, is configured to store scripts. The memory manager mainly
maintains the scripts memory for each sensor node in our current
implementation, though ongoing work is extending it to managing
data memory as well. It maintains a free memory list and the usage
frequency of each block. In response to a “+” request, the memory
manager attempts to allocate memory from the free list. If there is
not enough free memory, then it will de-allocate some of the occu-
pied memory space based on their usage frequencies. In both cases,
the memory manager on the host expresses the allocation scheme
in terms of memory access primitives to be executed on the node.



Table 2: Tapper commands on Eco platform
Command Description Example

A[ch] Reading ADC channelch A1; A2
E:[addr]:[len] Fetchlenbytes data from addressaddr and execute it E:f000:5
D[n] Delayn ms D100
RA[c] [freq] ReadADC values and send data via RF channelc at frequencyfreq RS101 Hi
RI[p f c w m] RF Init/Info RI 4 1 2 3 T
RS[c] [str] RF send via channelc RS101 Hi
RR[ch] RF receive from channelch RR2
RL RF Listen RL
SETm.para(val) Configuremodulem’s parameterparaasval SETTIMER1.PERIOD(1000)
T[N]{block} Repeatblock in{} everyN ms T5{A2}
X[N ]{block} Repeatblock in{} N times X5{RS101 Hi}
W:[addr]:block Write block to memory address starting ataddr W:f000:PG0=1
!H/S Hardware/Software reset !H; !S
+[func] Uploadfunctionfuncto target system +foo1
−[func] Remove functionfuncfrom target system −foo1

(a) (b) (c)

Figure 4: The Eco wireless sensor platform: (a) Eco on an index
finger (b) Eco vs. Mica2DOT (c) Eco top view.

4. EXAMPLE: TAPPER ON ECO NODE
This section describes implementation details of Tapper in the

context of an ultra-compact wireless sensor node named Eco [14].
As shown in Fig. 4, only 648 mm3 in volume and weighing under
1.6 grams, Eco was initially designed to monitor the spontaneous
motion of pre-term infants for their growth. Eco nodes are also
highly suitable for many real-world applications, including envi-
ronmental monitoring, new computer-human interface, ambient in-
telligence, and interactive art performance [13].

4.1 Eco Hardware Architecture
An Eco node consists of an nRF24E1 [10], a chip antenna, a 32K

external EEPROM, a tri-axial accelerometer and temperature sen-
sor, a light sensor, and a lithium polymer battery. The nRF24E1 is
an 8051 MCU core with built-in I/O resources including a 2.4GHz
RF transceiver, one SPI, one RS-232 port, and a 9-channel AD con-
verter. The user program is stored in the 32K EEPROM and loaded
through SPI. The latest Eco also features an expansion port that
makes these I/O pins accessible to the end user for interfacing with
other types of sensing devices such as a camera, joint angle sensor,
and more [12]. The transceiver on the nRF24E1 uses a GFSK mod-
ulation scheme in the 2.4GHz ISM band. It can choose from 125
frequency channels that are 1MHz apart, and it can transmit at up
to 0dBm at a data rate of 1Mbps. The RF output power, data rate,
and frequency are all software configurable.

Eco is highly memory constrained. The MCU has 4K on-chip
SRAM shared between program and data, plus another 256 bytes
of data RAM divided into two banks. One bank is directly address-
able while the other is indirectly addressable, making it difficult
to allocate memory in a uniform fashion. Existing software plat-
forms shown in Table 1 all use much more RAM and cannot run on
Eco without significant modification. Tapper’s configurable sys-
tem primitives, script interpreter, and host-assisted memory man-
ager together provide an alternative, higher level and lightweight

abstraction for developing applications.

4.2 Configuration of System Primitives
The standard system primitives supported by Eco are RS-232 se-

rial communication, RF transceiver initialization, transmit/receive
data, AD conversion, and interrupt handling. These system prim-
itives are configurable: standard primitives may be removed, and
user-defined primitives can also be included in the kernel to facil-
itate reprogramming. One reason for the configurability is that an
Eco network consists of two types of hardware: Eco station and
Eco nodes. An Eco station serves the purposes of relaying packets
for Eco nodes and interfacing to the host computer, but it does not
perform sensing tasks. Their difference in functional requirements
means that the Eco station and Eco nodes may be configured with
different sets of primitives to reduce memory usage. For instance,
we remove the AD conversion primitives from the Eco station since
it does not perform sensing functions, and we remove the serial port
primitives from Eco nodes that do not use the serial port. Instead, a
user defined, combined primitiverun adc() is added to the Eco
node: it reads the ADC value and sends the data through the RF
transceiver.

Once configured and deployed, the user can reconfigure the sys-
tem in the field. The user can type the reconfiguration commands
interactively through the Rappit terminal, which establishes and
maintains wireless connections to the nodes via the Eco station.
Each node has unique address in the network. The user can send
application code as scripts wirelessly to either a specific Eco node
or to a group of Eco nodes without having to erase and upload the
firmware for each individual embedded application.

4.3 Memory Allocation
Tapper’s data memory usage includes the command buffer, the

address stack, the operand stack, the RF data buffer, and various
variables in the kernel. However, the memory organization of Eco’s
8051 MCU architecture poses a challenge to memory allocation.
As mentioned earlier, its 256-byte on-chip data RAM is evenly di-
vided into direct addressable and indirectly addressable spaces. As
shown in Table 2, each command is very short except in a repeat
command, which may embed several commands. We set the max-
imum length of each command to be 24 bytes, which is enough in
most cases. The command buffer stores the input scripts in a 72-
byte FIFO, which can store up to three commands. The RF buffer
size is set to 24 bytes, the maximum payload of the transceiver.
The stack occupies 8 bytes of data space, which is sufficient for
most applications.
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Figure 5: Implementation of the interpreter on Eco

4.4 Script Interpreter
The script interpreter’s job is to parse the input command and

invoke the corresponding routine. The command-buffer manager
receives a script and invokes the the script interpreter. The inter-
preter follows a trie data structure to recognize the commands, as
shown in Fig. 5, and it parses the arguments accordingly. Then, it
invokes one or more primitives that implement the command.

5. EVALUATION AND ANALYSIS
Tapper has been ported to hardware platforms with a range of

capabilities. We describe these platforms and the applications, the
code size of the Tapper kernel on these platforms, and the measured
overhead due to interpretation and communication.

5.1 Hardware Platforms
Table 3 shows a list of platforms onto which we have ported

Tapper. The high-end ones are 16-bit MCUs such as the Freescale
MC9S12NE64 [2], and the low-end ones are 8-bit MCUs such as
8051. They can serve different purposes in a distributed network.
For instance, the MC9S12NE64 can serve as a base station or a data
aggregator with its built-in Fast Ethernet uplink to the host com-
puter. The nRF24E1, with its integrated radio transceiver, is more
suitable for building ultra-compact wireless sensor nodes such as
Eco. The Eco platform was described in Section 4.1; this section
summarizes the features of the Mini-FDPM and AVR Butterfly.

5.1.1 Mini-FDPM
FDPM, for frequency domain photon migration spectroscopy, is

a new way of detecting breast cancer noninvasively. The Mini-
FDPM system [9] performs broadband modulation on the intensity
of near-infrared laser diodes and measures the phase and amplitude
of backscattered light. Then, a host computer can use the data to
derive the scattering and absorption coefficients of the tissue for
content baseddetection of tumors. The Mini-FDPM system con-
sists of a broadband signal generator, laser drivers, a photo detector,
and an MCU (Fig. 6).

The MC9S12NE64 is a 16-bit MCU with an integrated 10/100
Mbps Fast Ethernet controller. It has an 8K data SRAM and 64K
program flash, which are the largest among our hardware platforms.
It controls peripheral devices including the frequency synthesizers
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Figure 6: The Mini-FDPM system

Figure 7: The AVR Butterfly platform

and the laser drivers through I2C, SPI, and GPIO pins, and performs
measurements with its built-in ADC. The samples are sent back
to the host computer over Fast Ethernet. We ported a version of
Tapper that consists of a script interpreter and routines for accessing
the built-in Ethernet, flash memory, SPI, I2C, ADC, and GPIO.

5.1.2 AVR Butterfly
Fig. 7 shows the AVR Butterfly [1], an evaluation platform demon-

strating the capabilities of the AVR MCU. The board is the most
resource-rich and memory-constrained. The Atmel ATmega169V
8-bit MCU runs at up to 8MHz and has a 512B EEPROM, 1KB
SRAM, 16KB instruction memory, and peripherals including a data
flash, speaker, sensors (temperature, light, voltage), joystick, and
an LCD. We also connected a tri-axial accelerometer to its input
pins and an nRF2401 radio transceiver to this board, so that it is
functionally a superset of the Eco node.

5.2 Application Development by Scripting
We scripted several applications on these platforms. We present

case studies to demonstrate the advantages in terms of portability,
code size, and dynamic reconfigurability.

5.2.1 3-D Tilt Monitor
The first application for Tapper is a real-time 3-D tilt monitor.

The sensor node collects data from a tri-axial accelerometer via the
AD converter and transmits the data over the RF link to the base
station. A host GUI (Fig. 8) receives the data from the base station,
tracks the tilt, and renders a rotated cube in 3D using OpenGL in
real-time.

Initially the base station is configured to connect to the host com-
puter over RS232 or Ethernet. The host computer can send control
commands to the base station and sensor nodes using a terminal
program. The following is a sample interactive session with Tap-
per, where>> is the prompt:

# 3D tilt Monitor
>>!S # software reset base station



Table 3: Experimental hardware platforms for Tapper
Platform Mini-FDPM AVR Butterfly Eco

MCU Type MC9S12NE64 ATmega169V nRF24E1(8051compatible)
Prog.Mem (bytes) 64K 16K 4K (32K ext. EEPROM)
RAM (bytes) 8K 1K 256
Timers 4 3 3
Wired Comm. Type RS-232,Ethernet (built-in) RS-232 RS-232
Wireless Comm. Type N/A nRF2401 nRF2401(built-in)

Figure 8: Real-time 3-D tilt monitor

>>RS 101!S # send software reset command
# to node communication with channel 101

>>SET RF.RR(INT=0) # disable RF interrupt
>>RS 101 {D500; RA101 50} # tell base station to

# send command {D500, RA101 50} to node
>>RL # tell base station to listen to incoming data

The sequence of commands shown above can be turned into a
script for the 3-D tilt monitor. On startup, the host computer sends
a reset command to reset the base station. Next, it asks the base
station to send the same reset command to the sensor node that
talks to the station on channel 101, and the third line disables the
RF interrupt on the station. The next compound command tells the
sensor node to delay for 500ms, start sampling ADC values, and
send back data at a rate of 50Hz. Finally, the base station is set to
listen mode, and it will keep listening to the radio and send the data
back to the host.

This case study shows several advantages of scripting. First, the
script is only 39 bytes long. Second, it provides interactivity, some-
thing that a compiled program cannot do unless programmed in
explicitly. Third, it is portable: the same script runs on both Eco
(8051) and the AVR Butterfly (ATmega169V) without any modifi-
cation. These advantages are expected to facilitate and accelerate
application development for heterogeneous sensor networks.

5.2.2 Surge
Surge is an application in which a sensor node samples a photo

sensor every 2 seconds and sends the data to the host. It was written
in ∼20 lines of Java [7]. The same functionality can be written in
three lines of a Tapper script:

>>+RP{b= RR1; RS 101 b}
>>SET RF.RR(INT=1, FUNC=RP)
>>T2048{a=A0; b=Pack a; RS 101 b}

Line 1 defines a new subroutine as “RP”, which receives an in-
coming packet and relays it through channel 101. Line 2 enables
the RF receiving interrupt and sets the interrupt handling function
to “RP”. Line 3 repeats the sensor reading on ADC channel 0, pack-
aging data by calling the subroutine “Pack”, and sending the packet
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over RF every 2 seconds. Instead of using an event listener [7], we
directly utilize the interrupts supported by the underlying hardware
and simplify the coding greatly. A slightly higher level alternative
is to replace the reference to ADC channel 0 with a symbolic refer-
ence to the photo sensor. Because Rappit tracks the configuration of
the sensor nodes, it can substitute the photo sensor name with ADC
channel 0 during the host-assisted pre-processing of commands.

5.3 Memory Usage
The Tapper kernel includes the command buffer manager, the

interpreter, and the system primitives. Since Tapper is customiz-
able, the code size for each component varies on different plat-
forms, mainly due to the system primitives.

Fig. 9 shows the flash memory footprints and the breakdown for
each Tapper component for our four different hardware platforms,
namely the Eco station, Eco node, AVR Butterfly, and Mini-FDPM.
The system primitives are platform dependent, and they range from
1K bytes to nearly 10K bytes on the Mini-FDPM, where it imple-
ments a TCP/IP protocol stack that occupies 6K bytes. The sizes
of the command buffer manager on different platforms are similar
at around 700 bytes, though sizes of the interpreter range from 2K
to 4K bytes. Even on the similar platforms, such as the Eco sta-
tion and Eco node, the difference in the interpreter size is still more
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Figure 11: Communication latency vs. command length

Table 4: Interpretation overhead for the Mini-FDPM.
Command Description Cmd. Len. Interp. overhead (clks)

PG0 ReadI/O port 3 20
PG0=1 Write I/O port 5 181

A0 ReadADC0 2 147
fr f000 Readflash word 7 3171

fw f000:11 write flash word 10 2696

than1K bytes. Further investigation reveals that since there is a
serial connection to the host computer, we are able to send debug-
ging messages back to the host computer to help the user debug the
system. Those debugging messages are useful, though they occupy
a large fraction of the memory space. After removing the debug-
ging messages in the interpreter, the code size of the Eco station
drops from 5631 to 4887 bytes, where the interpreter takes up 2252
bytes, which is only 100 bytes more than the Eco node. The other
difference is due to the different command sets on these systems.

Fig. 10 shows the data memory usage for all four platforms. The
Eco station and Eco node use up their entire 256 bytes of memory.
This is not surprising, because we allocated the maximum available
data memory to the command buffer. Mini-FDPM occupies a large
data memory of 7.1K bytes. However, 6K bytes of the total are
allocated for the Ethernet buffer.

5.4 Interpretation Overhead
We measure the interpretation overhead by using the timer on the

sensor node. First, the timer’s clock is set to the bus clock. Then,
we record the timer values before and after calling the interpreter
and compare them with direct calls to native functions.

Table 4 shows the interpretation overhead in clock cycles for the
Mini-FDPM system. The results show that longer commands tend
to require more cycles to interpret, although not always. For exam-
ple, the 2-byte ADC command “A0” takes 147 cycles, while the 3-
byte GPIO command “PG0” takes 20 cycles. As another example,
the 7-byte flash read command “fw” takes 3171 cycles, which is
475 cycles more than the 10-byte flash write command “fw”. This
is because the last three bytes of “fw” are a string, the interpreter
can simply pass the pointer to the native function.

Note that a direct comparison with native calls may not be fair for
several reasons. First, our interpretation overhead encompasses in-
teractivity and rapid configurability, which would otherwise require
support from much larger runtime systems that consume much more
program and data memory, Second, the overhead is paid mainly
during interactive execution, but once a routine is configured as a

Table 5: Communication latency for links (10-byte payload)
Serialport Ethernet nRF2401

datarate (Kbps) 19.2 10,000 250
latency (ms) 15.0 0.94 16.2

handler, the MCU no longer pays this overhead. Besides, Tapper’s
scripting results in small application size, ability to compose these
primitives, and instant portability. We believe these benefits signif-
icantly outweigh the overhead.

5.5 Communication overhead
Table 5 lists the data rate and the actual delay of each communi-

cation link for transferring a command with 10 bytes of data. Ether-
net is the fastest and can issue a command in less than 1ms. One in-
teresting fact is that even though the radio transceiver’s 1Mbps data
rate is much faster than the serial port, it actually incurs a longer
latency to transmit the same payload size of up to 24 bytes. This
is because the RF transceiver’s MAC adds a preamble and CRC
to the data packet before transmission. Ethernet has even higher
overhead than the RF on preparing the data packet for transmis-
sion. It would be more efficient to send a larger data packet instead
of several smaller ones with the same total payload size. Fig. 11
compares the communication delays with the command lengths for
RS-232 and Ethernet. We can see that as the command length in-
creases, the communication latency of RS-232 increases rapidly,
while Ethernet maintains almost a constant latency.

Based on these results, one possible way to improve the com-
munication overhead is to send a larger data packet that contains
more commands especially for Ethernet communication. We apply
this technique to the Mini-FDPM system. The original application
scripts for the Mini-FDPM contains 110 commands (534 bytes) and
takes 5 seconds to run. On the host computer side, we modify
the terminal program to send the commands at 1024 bytes per data
packet. The result shows a dramatic reduction in execution time
from 5 seconds down to 0.5 second. The drawback however is that
it requires a much larger data buffer for the data packet.

6. DISCUSSION
We learned several lessons from our development experience

with porting Tapper to these different hardware platforms and ap-
plications. This section discusses issues with hardware primitives,
memory usage, and platform dependence.

6.1 System Primitives
As mentioned in Section 4, to save memory, the Tapper kernel

may be customized by including only the subset of primitives that
are actually needed. The user can customize a Tapper system by
configuring it with a subset of standard primitives or adding their
own primitives, depending on the potential applications and the role
of the system in the network. Based on different primitives in-
cluded, the interpreter can be optimized to parse only the subset of
commands included to reduce code size. Combining several primi-
tives that always go together into a single command can potentially
save several thousand cycles per invocation.

6.2 Data vs. Program Memory
Many MCUs have much more program memory than data mem-

ory, because program memory stored in EEPROM or flash consume
much less power than RAM and can retain their content without
power. Subsetting the primitives tends to save much more pro-
gram memory than data RAM. However, if the user wants to make
changes to the hardware or the application, it may be necessary



to rebuild the kernel again. In general, we attempt to maximize
the number of hardware primitives under the memory constraints
on not only the flash memory but also data memory for the data
buffers. For example, the Eco node has a 32K EEPROM for pro-
gram, 4K SRAM shared between program and data, and 256 bytes
data. The EEPROM is plenty for the Tapper kernel, but statically
allocating data buffer for these primitives is likely to exceed this
limit, even if not all primitives are invoked by any given applica-
tion. Moreover, the application scripts also require space in the
command buffer, both in interactive and batch modes. If there is
not enough data memory, then the maximum command length may
be severely limited, and a user may have to use short commands
entirely in interactive mode, thereby increasing execution time sub-
stantially. On the other hand, allocating too much data memory to
the command buffer prevents the inclusion of more system primi-
tives.

To address the problem of memory allocation, two solutions are
being evaluated. The first solution is to perform relative addressing
by assigning a different base address for each buffer to be activated.
This can reduce data RAM fragmentation and enable more subsets
of primitives to be activated. However, indirect addressing will in-
crease the instruction count and therefore runtime overhead. The
second solution is to borrow ideas from traditional virtual mem-
ory management but adding host assist. The memory of the host
computer can serve as the backing store for the sensor node, and
the host computer can implement a memory manager to help place
or replace the memory block on the sensor node. This can increase
the flexibility and reduce the memory usage of the sensor node sub-
stantially.

7. CONCLUSIONS
This paper presents a software architecture based on Tapper, a

lightweight scripting engine for highly resource-constrained wire-
less sensor systems. Tapper’s scripts are not only a higher level
way for interactive and batch access to common features on sensor
nodes, but they also serve the purpose of a common interopera-
ble message format for heterogeneous sensor networks. We have
ported Tapper to different hardware platforms, from simple 8-bit
8051 and ATmega 169V MCUs to 16-bit HCS12 MCUs with Fast
Ethernet running a TCP/IP stack. The Tapper approach achieves
evolvability and interactive access using substantially less resource
than the closest alternatives based on multiple software layers. Our
scripting engine occupies less than 5K bytes of space with low
interpretation overhead ranging from under 20 cycles to 3000 de-
pending on the syntax complexity of the specific command. How-
ever, existing approaches cannot achieve the same advantages of in-
teractivity, portability, small code size, and high level control while
still fitting in the same small memories. Overhead due to com-
munication can be amortized over larger volumes of data provided
sufficient buffering space is available. Our future work includes
enhancing the memory management scheme and developing a Tap-
per network by extending the Tapper concept to a whole distributed
sensor network.
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