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Abstract

A multiple-processor system can potentially achieve
higher energy savings than a single processor, because
the reduced workload on each processor creates new op-
portunities for dynamic voltage scaling (DVS). However,
as the cost of communication starts to match or surpass
that of computation, many new challenges arise in making
DVS effective in a distributed system under communication-
intensive workload. This paper discusses implementation
issues for supporting DVS on distributed embedded pro-
cessors. We implemented and evaluated four distributed
schemes: (1) DVS during I/O, (2) partitioning, (3) power-
failure recovery, and (4) node rotation. We validated the re-
sults on a distributed embedded system with the Itsy pocket
computers connected by serial links. Our experiments con-
firmed that a distributed system can create new DVS op-
portunities and achieve further energy savings. However,
a surprising result was that aggregate energy savings do
not translate directly into a longer battery life. In fact, the
best partitioning scheme, which distributed the workload
onto two nodes and enabled the most power-efficient CPU
speeds at 30–50%, resulted in only 15% improvement in
battery lifetime. Of the four techniques evaluated, node ro-
tation showed the most measurable improvement to battery
lifetime at 45% by balancing the discharge rates among the
nodes.

1 Introduction

Dynamic voltage scaling (DVS) is one of the most stud-
ied topics in low-power embedded systems. Based on
CMOS characteristics, the power consumption is propor-
tional to V 2; while the supply voltage V is linearly propor-
tional to the clock frequency. To fully exploit such quadratic
power vs. voltage scaling effects, previous studies have ex-
tensively explored DVS with real-time and non-real-time

scheduling techniques. As DVS reaches its limit on a single
processor, researchers turn to multiple processors to create
additional opportunities for DVS.

Multiple processors can potentially achieve higher en-
ergy savings than a single processor. By partitioning the
workload onto multiple processors, each processor is now
responsible for only a fraction of the workload and can op-
erate at a lower voltage/frquency level with quadratic power
saving. Meanwhile, the lost performance can be compen-
sated by the increased parallelism. Another advantage with
a distributed scheme is that heterogeneous hardware such as
DSP and other accelerators can further improve power effi-
ciency of various stages of the computation through special-
ization. Although a tightly-coupled, shared-memory multi-
processor architecture may have more power/performance
advantages, they are not as scalable as distributed, message-
passing schemes.

While distributed systems have many attractive proper-
ties, they pay a higher price for message-passing communi-
cations. Each node now must handle not only I/O with the
external world, but also I/O on the internal network. Pro-
gramming for distributed systems is also inherently more
difficult than for single processors. Although higher-level
abstractions have been proposed to facilitate distributed
programming, these abstraction layers generate even more
inter-processor communication traffic behind the scenes.
While this may be appropriate for high-performance clus-
ter computers with multi-tier, multi-gigabit switches like
Myrinet or Gigabit Ethernet, such high-speed, high-power
communication media are not realistic for battery-powered
embedded systems. Instead, the low-power requirement
have constrained the communication interfaces to much
slower, often serial interfaces such as I2C and CAN. As a
result, even if the actual data workload is not large on an
absolute scale, it appears expensive relatively to the com-
putation performance that can be delivered by today’s low-
power embedded microprocessors.

The effect of I/O on embedded systems has not been
well studied in existing DVS works. Many existing DVS



techniques have shown impressive power savings on a sin-
gle processor. However, few results have been fully qual-
ified in the context of an entire system. Even fewer have
been validated on actual hardware. One common simplify-
ing assumption is to ignore I/O. Embedded systems (includ-
ing single-processor systems) that perform no I/O are not
realistic. I/O can actually enhance computation by creat-
ing opportunities for DVS through parallelism. At the same
time, I/O can also compete with computation for time and
power budgets, thereby lowering the limit on power savings
achievable by DVS. The effects of I/O on DVS is not yet
well understood, and the problem is further complicated by
the trend towards DVS in distributed systems.

The contributions of this paper are two-fold. First,
we demonstrate the gap between CPU-centric DVS claims
and actual attainable power savings by implementing
a full-featured distributed embedded system running a
communication-bound, communication-intensive workload
with expensive I/O. This work also contrasts with sensor
networks, which may be distributed, networked, and low-
power, but they are 99% idle, perform very little computa-
tion and communication, and are soft real-time. Our case
study considers much higher computation workload under
tight timing constraints. Without much slack, DVS cannot
be very effective, but the expensive I/O turns out to be a new
source of opportunities for DVS.

Our second contribution is the set of principles and pit-
falls in global power optimization. Our findings confirmed
that parallelism can indeed create new opportunities for
DVS to achieve further energy savings; however, one must
avoid many pitfalls in order to achieve these savings on a
distributed architecture powered by separate batteries. A
single battery failure can be disastrous to the entire sys-
tem. We observed that global energy optimization can often
contradict the goal to maximize the uptime of a distributed,
battery-powered system. This is due to the fact that global
optimization does not guarantee a locally near-optimal con-
figuration for each distributed node. An ill-configured node
operating at an energy-inefficient point can drain its battery
quickly and bring down the whole system. Our experiments
indicated load balancing is one of the key factors in decid-
ing the uptime of the first faulting node. Special considera-
tions, including partitioning, scheduling, synchronization,
load balancing and power failure detection and recovery,
must be carefully coordinated with DVS, or else the same
DVS techniques will be counterproductive.

This paper first reviews DVS techniques, the application
example, and the experimental platform. We chose the Itsy
pocket computer as our experimental platform: it supports
a rich, well-documented set of DVS routines, and it is also
available to other researchers who wish to reproduce these
results. Because Itsy runs Linux, it is easy to port full-
fledged, distributed programs and experimental tools to it.

We also use Itsy’s on-board power instrumentation features
to collect data for the power characteristics. Our results
confirmed that the distributed DVS scheme combined with
efficient load balancing by rotating the nodes achieved the
highest measured energy saving and extended the battery
life by 45%.

2 Related Work

Real-time scheduling has been extended to DVS
scheduling on variable-voltage processors. The initial
scheduling model was introduced by Yao et al [10], then ex-
tended and refined by Yasuura [6], Quan [7] and many stud-
ies in variations for real-time scheduling problems. Since
power is a quadratic function of the supplying voltage, low-
ering the voltage can result in significant savings while
still enabling the processor to continue making progress
such that the tasks can be completed before their deadlines.
These techniques often focus on the energy reduction to the
processor only; while the power consumption of other com-
ponents, including memory, I/O, is ignored. The results are
rarely validated on real hardware.

DVS has been applied to benchmark applications such
as JPEG and MPEG in embedded systems. Im et al [4] pro-
poses to buffer the incoming tasks such that the idle period
between task arrivals can be utilized by DVS. Shin et al [8]
introduces an intra-task DVS scheme that maximally uti-
lizes the slack time within one task. Choi et al [2] presents
a DVS scheme in an MPEG decoder by taking advantage of
the different types of frames in the MPEG stream. These
techniques can be validated with measurement on real or
emulated platforms. However, they are also computation-
oriented such that the processor performs only very little, if
any I/O. The impact of I/O still remains under-studied.

DVS has recently been extended to multi-processor sys-
tems. Weglarz [9] proposes partitioning the computation
onto a multi-processor architecture that consumes signif-
icantly less power than a single processor. There is a
fundamental difference in applying techniques for multi-
processors to distributed systems. Minimizing the global
energy consumption will extend the battery life only if the
whole system is assumed to be powered by a single battery
unit. In a distributed environment, each node is power by
a dedicated battery. Even a globally optimal solution may
cause poor battery efficiency locally and result in shortened
system uptime as well as loss of battery capacities. Maleki
et al [5] analyzes the energy efficiency of routing proto-
cols in an ad-hoc network and shows that the global optimal
schemes often contradicts the goal to extend the lifetime of
a distributed system.
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3 Motivating Example

We select an image processing algorithm, automatic tar-
get recognition (ATR) as our motivating example to evalu-
ate a realistic application under I/O pressure. Its block di-
agram is shown in Fig. 1. The algorithm is able to detect
pre-defined targets on an input image. For each target, a
region of interest is extracted and filtered by templates. Fi-
nally, the distance of each target is computed. A throughput
constraint is imposed such that the image frames must be
processed at a fixed rate.

We evaluate a few DVS schemes on one or more em-
bedded processors that perform the ATR algorithm. Un-
like many DVS studies that ignore I/O, we assume that all
nodes in our system are connected to a communication net-
work. This network carries data from external sources (e.g.,
a camera, sensor, etc.) internal communications between
the nodes, and to an external destination (e.g., a PC). This
study assumes only one image and one target are processed
at a time, although a multi-frame, multi-target version of the
algorithm is also available.

We refer to each embedded processor as a node. A node
is a full-fledged computer system with a voltage-scalable
processor, I/O devices, and memory. Each node performs
a computation task PROC and two communication tasks
RECV and SEND. RECV receives data from the external
source or another node. The data is processed by PROC,
which consists of one or more functional blocks of the ATR
algorithm. The result is transmitted by task SEND to an-
other node or the destination. Due to data dependencies,
tasks RECV , PROC, and SEND must be fully serialized for
each node. In addition, they must complete within a time
period called the frame delay D, which is defined as the per-
formance constraint. Fig. 2 illustrates the timing vs. power
diagram of a node.
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Figure 3. The timing vs. power diagram of two
nodes.

When multiple nodes are configured as a distributed sys-
tem, we organize them in a pipeline for the ATR algorithm.
Fig. 3 shows the timing vs. power diagram of two pipelined
nodes performing the ATR algorithm. Node1 maps first two
function blocks, and Node2 performs the other two blocks.
Node1 receives one frame from the data source, and it pro-
cesses the data and sends the intermediate result to Node2
in D seconds. After Node2 starts receiving from Node1, it
finishes its share of computation and sends the final result
to the destination within D seconds. Fig. 3 shows that if the
data source keeps producing one frame every D seconds,
and both Node1 and Node2 can send their results also in D
seconds, then the distributed pipeline is able to provide one
result in every D seconds to the destination.

We use generic TCP/IP sockets to implement reliable
communication, although it could be further optimized. We
believe this is reasonable and is much lighter weight than
middleware such as CORBA, which some researchers advo-
cate even on small devices. We also assume the workload of
the algorithm is fixed such that DVS opportunities are lim-
ited by I/O and timing constraints. Our purpose in this study
is to explore the computation-I/O interaction and their im-
pact on DVS, but not to specifically optimize for either I/O
power or computation power. Other techniques that reduce
communication or computation power under variable work-
load can be readily brought into the context of this study.
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Figure 4. The block diagram of Itsy [1].

4 Experimental Platform

We use the Itsy pocket computers as distributed nodes,
connected by a TCP/IP network over serial links. We
present the performance and power profiles of the ATR al-
gorithm running on Itsy computers and define the metrics
for our experiments.

4.1 The Itsy Pocket Computer

The Itsy pocket computer is a full-fledged miniaturized
computer system developed by Compaq Western Digital
Lab [1, 3]. It supports DVS on the StrongARM SA-1100
processor with 11 frequency levels from 59 – 206.4 MHz
over 43 different voltage levels. Itsy also has 32MB flash
memory for off-line storage and 32MB DRAM as the main
memory and a RAM disk. The power supply is a 4V
lithium-ion battery pack. Due to the power density con-
straint of the battery, Itsy currently does not support high-
speed I/O such as Ethernet or USB. The applicable I/O ports
are a serial port and an infra-red port. Itsy runs Linux with
networking support. Its block diagram is shown in Fig. 4.

4.2 Network Configuration

We currently use the serial port as the network interface.
We set up a separate host computer as both the external
source and destination. It connects the Itsy nodes through
multiple serial ports established by USB/serial adaptors. We
setup individual PPP (point-to-point protocol) connections
between each Itsy node and the host computer. Therefore
the host computer acts as the hub for multiple PPP net-
works, and it assigns a unique IP address to each Itsy node.
Finally, we start the IP forwarding service on the host com-
puter to allow Itsy nodes to communicate with each other

Itsy Itsy Itsy

Host

USB Hub

USB/Serial
converter

USB/Serial
converter

USB/Serial
converter

PPP0 PPP1 PPP2

serial serial serial

USB

IP forwarding
over PPP

Figure 5. Networking multiple Itsy units with
a host computer.

transparently as if they were on the same TCP/IP network.
The network configuration is shown in Fig. 5.

The serial link might not be the best choice for inter-
connect, but it is often used in real life due to power con-
straints. A high-speed network interface requires several
Watts of power, which is too high for battery-powered em-
bedded systems such as Itsy.

In this paper, our primary goal is to investigate the
new opportunities for DVS-enabled power vs. performance
trade-offs in distributed embedded systems with intensive
I/O. Given the limitations of serial ports, we do not intend
to propose our experimental platform as a prototype of a
new distributed network architecture. We chose this net-
work platform primarily because it represents the state of
the art in power management capabilities. It is also consis-
tent with the relatively expensive communication, both in
terms of time and energy, seen by such systems. We ex-
pect that our findings in this paper can be applied to many
communication-intensive applications on other network ar-
chitectures, where communication is a key factor for both
performance and power management.

4.3 Performance Profile of the ATR Algorithm

Each single iteration of the entire ATR algorithm takes
1.1 seconds to complete on one Itsy node running at the
peak clock rate of 206.4 MHz. When the clock rate is re-
duced, the performance degrades linearly with the clock
rate. The PPP connection on the serial port has a maximum
data rate of 115.2 Kbps, though our measured data rate is
roughly 80 Kbps. In addition, the startup time for establish-
ing a single communication transaction takes 50–100 ms.
The computation and communication behaviors are profiled
and summarized in Fig. 6. The functional blocks can be all
combined into one node or distributed onto multiple nodes
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in a pipeline. In the single node case there are no communi-
cations between adjacent nodes, although the node still has
to communicate with the host computer.

4.4 Power Profile of the ATR Algorithm

Fig. 6 shows the net current draw of one Itsy node. The
horizontal axis represents the frequency and correspond-
ing voltage levels. The data are collected by Itsy’s built-in
power monitor. During all experiments the LCD screen and
the speaker are turned off to reduce unnecessary power con-
sumption. The execution of the ATR algorithm on Itsy has
three modes of operations: idle, communication and com-
putation. In idle mode, the Itsy node has neither I/O nor any
computation workload. In communication mode, it is either
sending or receiving data through the serial port. In com-
putation mode, it executes the ATR algorithm. Fig. 6 shows
the three curves range from 30 mA to 130 mA, indicating a
power range from 0.1W to 0.5W. The computation always
dominates the power consumption. However, due to the
slow data rate of the serial port, communication tasks have

long delays thus consume a significant amount of energy,
although the communication power level is not the highest.
As a result, I/O energy becomes a primary target to optimize
in addition to DVS on computation.

4.5 Metrics

We evaluate several DVS techniques by a series of ex-
periments with one or more Itsy nodes. A baseline config-
uration is a single Itsy node running the entire ATR algo-
rithm at the highest clock rate. It is able to produce one
result in every D seconds. For all experiments, we fix this
frame delay D as the performance constraint and keep the
Itsy node(s) running until the battery is fully discharged.
The energy metric can be measured by the battery life T (N)
when N nodes with N batteries are being used. The com-
pleted workload F(N) is the number of frames completed
before the battery exhaustion. The battery life in the base-
line configuration is T (1). Since the frame delay D is fixed,
the host computer will transmit one frame to the first Itsy
node in every D seconds. The Itsy node(s) are also able to
complete and send one result back to the host in every D
seconds. In an N-node pipeline, there is a pipeline startup
delay (N − 1)×D before the first result can be produced.
Therefore, T (N) = F(N)×D +(N − 1)×D. Since F(N)
is at least a few thousand frames in our experiments while
N = 2, the pipeline startup overhead is ignored such that
T (N) = F(N)×D.

The battery life T (N) is also called the absolute battery
life. We also define the normalized battery life Tnorm(N) =
T (N)/N to quantify the energy savings for fair compar-
isons. The rationale behind this distinction is that, the to-
tal lifetime of N batteries should be at least N times that of
a single battery, or else they are less energy efficient. For
example, a two-node system with two batteries should last
at least twice as long as a single node does. To make com-
parisons easier, we define the normalized battery life ratio
Rnorm(N) = Tnorm(N)/T (1). In the baseline configuration,
Tnorm(1) = T (1), Rnorm(1) = 100%.

5 Techniques under Evaluation

We first define the baseline configuration as a reference
to compare experimental results. We briefly review the DVS
techniques to be evaluated by our experiments.

5.1 Baseline Configuration

The baseline configuration is a single Itsy node perform-
ing the entire ATR algorithm. It operates at the highest CPU
clock rate of 206.4 MHz. The processing task PROC re-
quires 1.1 seconds to complete. The node also needs 1.1 and
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Figure 8. Three partitioning schemes.

0.1 seconds to receive and send data, respectively. There-
fore the total time to process one frame is D = 2.3 seconds.
Based on the metrics we defined in Section 4.5, we fix this
frame delay D = 2.3 seconds in all experiments.

5.2 DVS during I/O

The first technique is to perform DVS during the I/O pe-
riod. Since the application is tightly constrained on timing
with expensive I/O delay, there is not much opportunity for
DVS on computation without a performance penalty. On the
other hand, since the Itsy node spends a long time on com-
munication, it is possible to apply DVS during I/O. Based
on the power characteristics shown in Fig. 7, I/O can operate
at a significantly low-power level at the slowest frequency
of 59 MHz.

5.3 Distributed DVS by Partitioning

Partitioning the algorithm onto multiple nodes can cre-
ate more time per slot for DVS on each distributed node.
However, since the application is already I/O-bound, addi-
tional communication between nodes can further increase
the I/O pressure. A few concerns must be taking into ac-
count to correctly balance computation and I/O. First, each
node must be able to complete its tasks RECV , PROC, and
SEND within D = 2.3 seconds. With an unbalanced parti-
tioning, a node can be overloaded with either excessive I/O
or heavy computation, such that it cannot finish its work on
time and then the whole pipeline will fail to meet the perfor-
mance constraint. Second, additional communication can
potentially saturate the network such that none of the nodes
can guarantee to finish their workload on time. Finally, the
distributed system should deliver an extended battery life in
the normalized term, not just a longer absolute uptime.

We experiment with two Itsy nodes, although the results
do generalize to more nodes. Based on the block diagram
in Fig. 6, three partitioning schemes are available and il-
lustrated in Fig. 8. The first scheme, where Node1 is only
responsible for target detection and Node2 performs the re-
maining three functional blocks, is clearly the best among
all three solutions. Due to the least amount of I/O, both

nodes are allowed to run at much lower clock rates. The
second and third schemes have excessive internal commu-
nication. Therefore computation must run faster, otherwise
they cannot produce the results in D = 2.3 seconds. Espe-
cially in the third scheme, Node1 is not capable of complet-
ing its work on time unless clocked at 380 MHz, which ex-
ceeds the maximum clock rate. We choose the first scheme
for all distributed DVS experiments, although the compu-
tation workload is still unbalanced. However, it is the op-
timal partitioning between computation and I/O in a sense
that Node1 also takes more than 90% of the total commu-
nication payload in addition to its 10% share of the total
computation load.

5.4 Distributed DVS with Power Failure Recovery

In general, it is impossible to evenly distribute the work-
load to each node in a distributed system. In many cases
even the optimal partitioning scheme yields very unbal-
anced workload distribution. In our experiments, Node2
with more workload will have to run faster thus its battery
will exhaust sooner. After one node fails, the distributed
pipeline will simply stall although the remaining nodes still
have sufficient battery capacity to keep working. This will
result in unnecessary loss of battery capacity.

One potential solution is to recover from the power fail-
ure on one node by detecting the faulting node dynami-
cally and migrating its computation to neighboring nodes.
Such techniques normally require additional control mes-
sages between nodes, thereby increasing I/O pressure on the
already I/O-bound applications. Since these messages will
also cost time, they will force an increase of computation
speed such that the node will fail even sooner.

As a proof of concept, we implement a fault recovery
scheme as follows. Each sending transaction must be ac-
knowledged by the receiver. A timeout mechanism is used
on each node to detect the failure of the neighboring nodes.
The computation share of the failed node will then migrate
to one of its neighboring nodes. The message reporting
a faulting node can be encapsulated into the sending data
stream and the acknowledgment. Therefore, the informa-
tion can be propagated to all nodes in the system. As men-
tioned in Section 4.3, the acknowledgment signal requires
a separate transaction, which typically costs 50–100 ms in
addition to the extended I/O delay. Since the frame delay
D is fixed, the processor must run faster to meet the tim-
ing constraint due to the increased I/O delay to support the
power failure recovery mechanism.

5.5 Distributed DVS with Node Rotation

As an alternative to the power failure recovery scheme
in Section 5.4, we balance the load on each node more ef-
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ficiently with a new technique. If all nodes are evenly bal-
anced, after the first battery fails, then the other batteries
will also exhaust shortly. There is not much battery capacity
to enable the remaining nodes to continue making progress,
even if a recovery scheme allows them to. Therefore, power
failure recovery is not necessary and its expensive overhead
can be avoided, while the battery capacity can be still uti-
lized efficiently.

We designed a new load balancing technique called node
rotation. The idea is that if we can shuffle the workload on
all nodes, such that the lightly-loaded nodes will have more
workload and the heavily-loaded nodes can “rest,” then the
workload on each node will be evened out after a few shuf-
fles. However, reconfiguring the nodes in a pipeline gener-
ally requires a pipeline stall (or flush) followed by a restart,
which will incur both performance and energy penalties.
Our node rotation scheme involves minimal overhead, and
it works as follows. At a given moment, each node in the
pipeline will perform the following procedure.

After Nodei, for i = 1,2, . . . ,N − 1, finishes the pro-
cessing task PROCi, it will not send the result to the
next node Nodei+1. Instead Nodei reconfigures itself to
Nodei+1. That is, it continues performing the processing
task PROCi+1 of Nodei+1, with the input data already avail-
able from the result of PROCi. After each Nodei finishes
PROCi+1, then it sends the result to Nodei+1 (that has been
reconfigured as Nodei+2) except for node NodeN−1 (that
has been reconfigured as the last node NodeN) that will send
the final result to the host. Afterwards, each node Nodei will
just act as Nodei+1.

The last node NodeN will reconfigure itself as the first
node Node1, and will start receiving from the host, process-
ing the data with PROC1 and sending the result to the next
node. During such a procedure, the last node is rotated to
the front of the pipeline. If rotation is performed once in
every certain number of frames, after N rotations, the work-
load on each node is evenly balanced.

Fig. 9 illustrates this procedure. After Node1 finishes
PROC1 for the Ith frame, it will continue on PROC2 then
send the Ith result to the host. Then it “becomes” Node2.
Meanwhile Node2 becomes Node1 such that it will receive
the (I + 1)th frame from the host, process it by PROC1 and
pass the intermediate result to Node1 (that has already be-
come Node2). During the transition period, Node1 elim-
inates one SEND transaction and so does Node2 a RECV
transaction. This extra idle time slot is previously allocated
for a long-delay communication transaction. It should be
sufficient for both nodes to load the new code into memory
and reconfigure themselves as each other. There is no per-
formance loss since the host can still send one frame and
receive one result in every D seconds, thus the throughput
of the pipeline remains the same. Both nodes must consume
some energy to refresh their code memory but they have al-

ready saved communication energy by eliminating a pair of
communication transactions. Therefore the energy cost of
the transition is also minimal, if not zero. For brevity the
illustration is omitted for N > 2.

6 Experimental Results

We evaluate the DVS techniques described in Section 5
by experiments then analyze the results in the context of a
distributed, I/O-bound system.

6.1 (0A, 0B) Initial Evaluation without I/O

Before experimenting DVS with I/O, we first perform
two simple experiments on a single Itsy node to explore the
potential of DVS without I/O. The single Itsy node reads
local copies of the raw images and it only computes the re-
sults, instead of receiving images from the host and send-
ing the results back. Therefore there is no communication
delay or energy consumption involved. (0A): We use one
Itsy node to keep running the entire ATR algorithm at the
full speed 206.4 MHz. Its battery will exhaust in 3.4 hours
with 11.5K frames completed. (0B): We setup the second
Itsy node to execute at the half speed 103.2 MHz. Then
it is able to continue operating for 12.9 hours by finishing
22.5K frames. At the half clock rate, the Itsy computer can
complete twice workload as much as it can do at the full
speed.

We overload the metrics notation we defined in Sec-
tion 4.5 as follows: T maps the experiment label to the
total battery life, and F maps the experiment label to the
number of frames processed. Here, T (0A) = 3.4 (hours),
F(0A) = 11500. T (0A) = 12.9, F(0B) = 22500. Note that
these results are not to be compared with other experiments,
since there is no communication and no performance con-
straint.

The results are promising for having more nodes as a
distributed system. By using two Itsy nodes running at the
half speed, the system should be able to deliver the same
performance as one Itsy node at the full speed does, while
completing four times the workload by using two batteries.
However, such an upperbound can only be achieved without
the presence of I/O.

6.2 (1) Baseline configuration

We defined the baseline configuration in Section 5.1.
The single Itsy node running at 206.4 MHz can last for 6.13
hours and finish 9.6K frames before the battery dies. That
is T (1) = Tnorm(1) = 6.13, F(1) = 9600, Rnorm(1) = 100%.
Compared with experiment (0A) without I/O, the completed
workload is 17% less since the node must spend a long time
during I/O.
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Figure 9. Node rotation on two nodes.

6.3 (1A) DVS during I/O

As Section 5.2 suggests, we apply DVS to I/O periods,
such that during sending and receiving the Itsy node oper-
ates at 59 MHz, while in computation it still runs at 206.4
MHz. From our measurement communication delay does
not increase at a lower clock rate. Thus the performance re-
mains the same as D = 2.3 seconds. Through DVS during
I/O, the battery life is extended to 7.6 hours and it is able
to finish 11.9K frames. That is T (1A) = Tnorm(1A) = 7.6,
F(1A) = 11900, Rnorm(1A) = 124%, indicating a 24% in-
crease in battery life.

Note that F(1A) > F(0A) = 11500. Even though the
Itsy node is communicating a large amount of data with the
host computer, it completes more workload than it does in
experiment (0A) without I/O. This is due to the recovery ef-
fect of batteries. Recovery effect indicates that if a battery
continues experiencing a high discharge current, it capacity
will exhaust sooner, as the results of (0A) and (1) show. On
the other hand, if the discharge current can drop to a lower
level, the lost capacity can be partially recovered. In this
experiment (1A), the current level is reduced from 110 mA
to 40 mA (Fig. 7) for 1.2 second in every 2.3 seconds. This
allows the battery to “rest” after heavy discharge on com-
putation and recover its capacity. As a result, the battery
regains its capacity by 24%.

6.4 (2) Distributed DVS by Partitioning

Since there is no further opportunities for DVS with the
single node, from now we evaluate distributed configura-
tions with two Itsy nodes in a pipeline. In Section 5.3 we se-
lected the best partitioning scheme, in which two Itsy nodes
operate at 59 MHz and 103.2 MHz, respectively. The dis-
tributed two-node pipeline is able to complete 22.1K frames
in 14.1 hours. That is, T (2) = 14.1, F(2) = 22100. Com-
pared to experiment (1), the battery life is more than dou-
bled. However, after normalizing the results for two batter-
ies, Tnorm(2) = 7.05, Rnorm(2) = 115%, meaning the battery
life is only effectively extended by 15%. Distributed DVS
is even less efficient than (1A), in which DVS during I/O
can extend 24% of the battery capacity.

There are a few reasons behind the results. First, when
Node2 fails, the pipeline simply stalls while plenty of en-
ergy still remains on the battery of Node1. Second, Node2
always fails first because the workload on the two nodes is
not balanced very well. Node2 has much more computation
load and it has to run at 103.2 MHz; while Node1 has very
little computation such that it operates at 59 MHz. How-
ever, this partitioning scheme has already been optimal with
the maximally balanced load. If we choose other partition-
ing schemes, the system will fail even sooner as analyzed in
Section 5.3.
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6.5 (2A) Distributed DVS during I/O

DVS during I/O (1A) can extend 24% battery life for a
single node. We expect the distributed pipeline can also
benefit from the same technique by applying DVS during
I/O for distributed nodes. Among the two Itsy nodes, Node1
is already configured to the lowest clock rate. Therefore,
we can only reduce the clock rate of Node2 to 59 MHz
during its I/O period and leave it at 103.2 MHz for com-
putation. The result is T (2A) = 14.44, F(2A) = 22600,
Tnorm(2A) = 7.22 and Rnorm(2A) = 118%. Only 3% more
battery capacity is observed comparing with experiment (2).

Distributed DVS during I/O is not as effective as DVS
during I/O for a single node. According to the power profile
in Fig. 7, from (1) to (1A) the discharge current drops from
110 mA to 40 mA during I/O periods, which take the half
of the execution time of the single node. However, from (2)
to (2A), we only optimize for Node2 that has already op-
erated at a low-power level during I/O (55 mA). By DVS
during its I/O periods, the discharge current decreases to
40 mA. Thus, the 15 mA reduction is not as considerable
compared with the 70 mA saving in experiment (1A). In ad-
dition, Node2 does not spend a long time during I/O. It only
communicates 700 Bytes in very short periods. Therefore,
the small reduction to a small portion of power use con-
tributes trivially to the system. On the other hand, Node1
has heavy I/O load. However, since it runs at the lowest
power level, there is no chance to further optimize its I/O
power.

From experiments (2) and (2A) we learn a few lessons.
Although there are more distributed DVS opportunities
whereas not available on a single processor, the energy sav-
ing is no longer decided merely by the processor speed. In a
single processor, minimizing energy directly optimizes the
life time of its single battery. However in a distributed sys-
tem, batteries are also distributed. Minimizing global en-
ergy does not guarantee to extend the lifetime for all bat-
teries. In our experiments, the load pattern of both commu-
nication and computation decides the shortest battery life,
which often determines the uptime of the whole system.

6.6 (2B) Distributed DVS with Power Failure Re-
covery

In experiments (2) and (2A), the whole distributed sys-
tem fails after Node2 fails, although Node1 is still capable
of carrying on the entire algorithm. We attempt to enable
the system to detect the failure of Node2 and reconfigure
the remaining Node1 to continue operating. Our approach
is described in Section 5.4. We use the same partition-
ing scheme in (2) and (2A). Due to the additional com-
munication transactions for control messages, both nodes
have to run faster. As a result, Node1 must operate at

73.7 MHz, and Node2 at 118 MHz. We also perform DVS
during I/O for both nodes. The result is, T (2B) = 15.72,
F(2B) = 24500, Tnorm(2B) = 7.86 and Rnorm(2B) = 128%.

With our recovery scheme, the system can last longer
than (2) and (2A). However there is no significant im-
provement compared to the simple DVS during I/O scheme
(1A). Since both nodes must run faster, Node2 will fail
more quickly after completing 19.5K frames and Node1 can
pick up another 5K frames until all batteries have exhausted.
Power failure recovery allows the system to continue func-
tioning with failed nodes. However it is expensive in a sense
that it must be supported with additional, expensive energy
consumption.

6.7 (2C) Distributed DVS with Node Rotation

Up to now the distributed DVS approaches do not seem
effective enough. In experiment (2) and (2A), the failure of
Node2 shuts down the whole system. Experiment (2B) al-
lows the remaining Node1 to continue. However the power
failure recovery scheme also consumes energy before it can
save energy. What prevents a longer battery life is the un-
balanced load between Node1 and Node2. In this new ex-
periment we implemented our node rotation technique pre-
sented in Section 5.5, combined with DVS during I/O. Since
there is no performance penalty, two nodes can still operate
at at 59 MHz and 103.2 MHz. By node rotation in every 100
frames, the battery life can be extended to T (2C) = 17.82,
F(2C) = 27900, Tnorm(2C) = 8.91 and Rnorm(2C) = 145%.

This is the best result among all techniques we have eval-
uated. Node rotation allows the workload to be evenly dis-
tributed over the network thus maximally utilizes the dis-
tributed battery capacity. There is also an additional benefit.
Since both nodes alternate their frequency between 103.2
MHz and 59 MHz, both batteries can take advantage of the
recovery effect to further extend their capacity.

To summarize, our experimental results are presented in
Fig. 10. Both absolute and normalized battery lives are il-
lustrated, with normalized ratios annotated. The results of
experiments (0A) and (0B) without communication are not
included since it is not proper to compare them with I/O-
bound results. It should be noted that the effectiveness of
these techniques is application-dependent. Although exper-
iment (2) and (2A) do not show much improvement in this
case study, the corresponding techniques can still be effec-
tive to other applications.

7 Conclusion

This paper evaluates DVS techniques for distributed low-
power embedded systems. DVS has been suggested an ef-
fective technique for energy reduction in a single processor.
As DVS opportunities diminish in communication-bound,
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Figure 10. Experiment results.

time-constrained applications, a distributed system can ex-
pose richer parallelism that allows further optimization for
both performance and DVS opportunities. However, the de-
signers must be aware of many tricky and often counter-
intuitive issues, such as additional I/O, partitioning, power
failure recovery and load balancing, as indicated by our
study. We presented a case study of a distributed embed-
ded application under various DVS techniques. We per-
formed a series of experiments and measurements on actual
hardware with DVS under I/O-intensive workload, which is
typically ignored by many DVS studies. We also proposed
a new load balancing technique that enables more aggres-
sive distributed DVS that maximizes the uptime of battery-
powered, distributed embedded systems.
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