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ABSTRACT
Indoor localization techniques proposed to date have assumed
costly resources in terms of computation, power, or sensing modal-
ity for many wearable end-devices in the Internet of �ings (IoT).
To make localization a universal feature for IoT devices, we propose
EcoLoc, an indoor localization system using collaborative version of
Conditional Random Fields (CCRF) integrated with our encounter
model to generate the most probable locations. We have imple-
mented EcoLoc on the Android tablet and the Broadcom WICED
Sense IoT platformwith a lower-power MCU, miniature inertial sen-
sors, and Bluetooth Low-Energy (BLE) radio. Experimental results
show that while operating without the aid of beacons, compared
to the non-collaborative CRF, EcoLoc can shorten the convergence
distance by up to 40% on tablet, and up to 50% on the WICED-Sense
while incurring an extra current consumption of 15 mA.
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1 INTRODUCTION
�e knowledge of location is fundamental to enabling devices in
the Internet of �ings (IoT) to behave in an intelligent way. While
outdoor localization is relatively well understood based on a combi-
nation of GPS and cellular tower triangulation, indoor localization
remains a challenge especially for many IoT devices [15]. Existing
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indoor localization techniques can be categorized into reference-
based vs. self-referential, respectively [23].

Reference-based techniques use geometric relationship with land-
marks to estimate the location by measuring some signal generated
or re�ected by the landmark such as proximity sensing[9], triangu-
lation [7], and �ngerprinting [5]. However, these reference-based
localization techniques rely on measuring reference signals, but
they can su�er from interference in the physical environment even
if the target is not moving. Self-referential localization techniques
measure the device’s own displacement relative to its initial po-
sition to determine its current location. �ey are also generally
called dead reckoning, and they consist of a sensing part and a
computation part. Sensors used in dead reckoning can be inertial
sensors, pedometers, or odometers. In this work, we consider iner-
tial sensors, which usually consist of accelerometers, gyroscopes,
and possibly magnetometers. One advantage is that all sensors are
small, low-power, inexpensive, and self-contained to track the tra-
jectory independent of landmarks. �e computation part estimates
the location based on the sensor data. Mathematical techniques
proposed to date include the Kalman Filter (KF), Hidden Markov
Models (HMMs), and Particle Filters (PF). KF is widely used for not
only noise removal but also to estimate the location over time [4, 18].
HMMs [14, 17] and PFs [12, 19] are based on the Bayesian proba-
bility model to predict the most probable location. However, these
models tend to be computationally intensive for many wearable
IoT devices such as the Broadcom WICED Sense tag.

�is work represents a major step toward enabling location
sensing universally by all mobile IoT devices, not just those higher-
end ones equipped with costly sensors and processors in terms of
size and power consumption. We exploit BLE for proximity sensing
with very low power consumption. �emain novelty with our work
is that upon encounter, the IoT devices exchange their trajectories
to enable fast detection of their respective locations on the map,
without relying on centralized servers and even in the absence of
beacons or landmarks. �e reduced computational complexity is
enabled by our use of collaborative conditional random �elds.

Fig. 1 shows the architecture of EcoLoc. �e trajectory generated
from sensors and the shared trajectories from the encounter events
are merged by our CCRF to estimate the location by running our
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Figure 1: System Architecture of EcoLoc

real-time tracking algorithm with the �oor plans constraints. We
evaluate our algorithm on Broadcom WICED Sense IoT platforms
[3] and Android Nexus 9 tablet.

2 RELATEDWORK
Pedestrian dead reckoning (PDR) is a special version of DR that
tracks displacement in terms of steps taken by a walking person.
Inertial sensors and magnetometer can be used to generate the step
count and heading direction, respectively, for estimating displace-
ment. UPTIME [1] proposes pedestrian models to describe the step
behavior for optimization of accuracy on smartphone. Furthermore,
the �ngerprint techniques using WiFi signal [13] can help improve
the accuracy of PDR. However, PDR can still have the error accumu-
lation problem due to sensor dri� and sensor noise [2]. �e error
keeps accumulating in the new estimated result since it is based on
the previous estimation without correction mechanisms in DR. To
overcome this problem, some mathematical techniques have been
proposed on top of the PDR to improve the accuracy.

Kalman Filter (KF) is one of the popular techniques for estimat-
ing the location while cleaning up sensor data at the same time.
LIDAR [18] use the distance sensor to detect the wall on corridors
to correct the heading of the pedestrian path. �e RSSI of received
wireless signals such as WiFi [10] is also leveraged to measure the
distance between the target devices and the deployed beacons to
correct the error. However, KF cannot provide su�ciently accurate
result since it requires high accuracy in the estimated or measured
data and is limited to fully utilizing the constraints from the �oor
plan. Particle Filter (PF) is another way for location estimation that
is more accurate than KF [20], though at a higher computation cost.
PF represents possible locations of the target using particles, a set
of random samples that capture the probability of the location as
weights. �e particles are spread on the locations where we are
interested in to estimate location. �e main problem of PF is the
high computation cost for small mobile IoT devices to maintain the
weights associated with the particles for su�cient area coverage.
Conditional random �eld (CRF) is considered as an a�ordable so-
lution for devices with lower computation capability [22]. In our
work, EcoLoc integrates the encounter events with CRF to enhance
its robustness for indoor localization. In addition, researchers have
also proposed techniques that use shared information to enhance
localization. �e location can be estimated through the information
exchanged between known location reference nodes like deployed
beacons or other devices [21]. �e centralized design that use
servers to coordinate devices have also been proposed to estimate

the location of devices systematically [8]. However, these tech-
niques involve a third party to manage and process the information
for IoT devices and su�er from the constraints of �exibility and
real-time response [16].

3 DATA AND SENSING COMPONENTS
EcoLoc relies on inertial sensors and PDR to generate the trajec-
tories which describe the step behavior of pedestrians. In EcoLoc,
the BLE RF is used to sense the proximity between users and de�ne
the encounter events to enable the sharing of trajectories as well
as detecting beacons.

3.1 Pedestrian Dead Reckoning
EcoLoc utilizes PDR to generate the user trajectories which con-
tain the information of user movement, including step detection,
heading orientation, and step length. We adopt the peak-and-valley
detection method [11] to monitor pedestrian activities. We �rst
de�ne the acceleration change threshold and the time window. If
the di�erence between the maximum and minimum acceleration
within the time window is larger than the threshold, a step event is
triggered. Meanwhile, the estimation of step length relies on the
accelerometer and is in�uenced by individual factors such as step
frequency, walking speed, etc. Since the step-length estimation is
outside the scope of this work, we assume the step length is �xed
without loss of generality, and a be�er step-length estimator can
be plugged in to improve the accuracy of this work.

�e heading orientation can be estimated by the product of
gravity and magnetic vector provided by the accelerometer and
magnetometer, respectively. In addition, the angular speed pro-
vided by gyroscope can also be used to calculate the rotated angle
by multiplying the sensor output with the time interval. Consid-
ering the accelerometer and magnetometer su�er from the sensor
noise, the low-pass �lter is applied that the short time variance is
eliminated and take the more accurate data over long time period.
In contrast, the heading orientation estimated from gyroscope in
short time period is more accurate so that the high-pass �lter is
applied to get the angle change in short time period. �erefore, the
noise interference on those inertial sensors can be removed and
more accurate data is provided by fusing the sensor data.

3.2 Encounter Model
�is work exploits encounter events among multiple devices to
enhance the e�ciency of indoor localization by enabling sharing
of trajectories. EcoLoc utilizes the pairing process to implement
the proximity feature based on Bluetooth 4.1, in which the BLE
stack supports simultaneously advertising and scanning. During
the pairing process, a device, which acts as a scanner, periodically
scans the advertising packets sent from other BLE devices, which
act as advertisers. �e scanner can estimate the distance between
itself and the advertiser based on the RSSI. �e encounter event
is triggered if the packets from advertisers are scanned in certain
range. However, due to the use of omnidirectional antenna in most
BLE-based systems, it is di�cult to determine the direction. �us, in
our system design, the encounter event happens only if the distance
between scanner and advertiser is within the step length.
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log10 D =
A − RSSI [dbm]

10n (1)

Eq. (1) is used to measure the distance between two devices. �e
value of distance is set as the step length, which is the maximum
distance between encountered users, and then the RSSI is measured
to �nd the proximity threshold, the minimum RSSI value that two
nodes can measure from the received packets within a step length.

We extend the proximity sensing with trajectory exchange for
the purpose of enabling collaborative localization. BLE allows data
to be piggy-backed onto its advertising payload. �is way, it is
unnecessary to send the trajectory data in a separate transaction or
to go through a connection procedure. However, due to the limited
size of the payload, a node sends only a portion of its trajectory
instead of the entirety. �e original size of the orientation data
is 32 bits �oating point format. To represent the trajectory in a
compact format, we assume that the subject takes one step at a time
and can move in only one of eight possible directions (i.e., in 45◦
increments). �is enables us to encode the state transition using
only 3 bits using only about 1/10 the original trajectory size. �is
translates into about 42 steps of trajectory in BLE 4.0 and 4.1, and
BLE 4.2 increases the payload size by nearly an order of magnitude.

4 COLLABORATIVE INDOOR LOCALIZATION
In EcoLoc, we utilize CRF to manage the trajectories and propose a
real-time algorithm to estimate the location of users.

4.1 Conditional Random Field
CRF can be represented by various feature functions [22] accompa-
nied by weight λi formulated as:

p( ®S | ®Z ) ∝
n∏
j=1

exp
( m∑
i=1
(λi fi (sj−1, sj , ®Z , j)

)
(2)

where j denotes the position in the observation sequence andm is
the number of feature functions.

CRF is capable of realizing the probability of state transition
by de�ning complex features such that CRF can take context into
account in training and testing phase to enhance the accuracy of
estimation. �e feature functions fi represent the constraints pro-
vided by the collected observations such as �oor map or trajectory.
In EcoLoc, CRF consists of feature functions that describe the possi-
bility of location transition by using the corresponding observation.
�e step detection decides if the CRF estimation is enabled. �e
heading orientation is used as observation, Zθt , to de�ne our fea-
ture function. We assume the heading orientation is a log-normally
distributed random variable so that probability density of the log-
normal distribution is leveraged to formulate our feature function
as follows:

f1 = ln
©­­«

1√
2πσ 2

θ

ª®®¬ −
(Zθt − θ (St−1, St ))

2

2σ 2
θ

(3)

where σ 2
θ is the heading variance of observationsZθt and θ (St−1, St )

is the heading orientation between the last state St−1 and the state
St that we estimate for the current step.

Figure 2: Collaborative Conditional Random Fields

�e second feature function is formulated using the RSSI obser-
vation. It is optional and is considered only when the beacon signal
is available in the indoor environment. Similar to our �rst feature
function, we use the RSSI observation to calculate the distance,
Zdt , between the user and the beacon Bi to formulate the feature
function as follows:

f2 = ln
©­­«

1√
2πσ 2

d

ª®®¬ −
(Zdt − D(Bi , St ))

2

2σ 2
d

(4)

where the σ 2
d is the distance variance of the observations Zdt and

D(Bi , St ) is the distance between the beacon and the estimated
state.

4.2 Collaborative Conditional Random Field
Our CCRF merges the shared trajectory with our own trajectory to
improve the convergence distance of localization.

Our CCRF is illustrated in Fig. 2. It extends the current trajectory
with the acquired trajectory from the encounter events. Suppose
the length of the acquired trajectory is k steps and our trajectory is t
steps, the merged trajectory may not be used to estimate the current
location since the estimated location is at step (t + k) instead of at
step t . �erefore, our CCRF reverses the acquired trajectory and
estimate the location at step (t + 2k). �e CCRF can be formulated
as follows:

p( ®S | ®Z ) ∝
t+2k∏
j=1

exp
( m∑
i=1
(λi fi (sj−1, sj , ®Z , j)

)
(5)

4.3 Our Real-Time Tracking Algorithm
Algorithm 1 shows our real-time tracking algorithm based on
Viterbi’s [6]. It provides real-time update for IoT devices without
estimating from scratch.

At every step, each state will get a score that represents the
probability of walking to it from other possible states. Given the
observation ®z at step j, the score of sx transferred from state sy is
calculated through the following equations:

score(sx , j) = score(sy , j − 1) × Ψj (sx |sy , ®z) (6)

Ψj (sx |sy , ®z) = exp
( m∑
i=1
(λi fi (sy , sx , ®Z , j)

)
(7)
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Algorithm 1: Real-time tracking algorithm
Input: �e length of output T , observation ®Z , state ®S
Output: �e most likely hidden states sequences ®X

1 Function HeuristicRealtime (T , ®Z , ®S )
2 begin

// Calculate the score

3 foreach sx ∈ ®S do
4 score[sx , j] ← max

y∈Valid
(score[sy, j − 1] × Ψj (sx |sy, ®Z )) ;

// Estimate the score of states at step j

5 path[sx , j] ← argmax
y∈Valid

(score[sy, j − 1] × Ψj (sx |sy, ®Z )) ; // Store

the path of states at step j

6 max state← argmax
si

score[si , T ] ; // Find the highest score of

state at step T

7 for i = 0; i < T ; i + + do
8 Xi ← path[max state, i] ; // Output the path

9 return X ;

Suppose there are possible states S = {s0, s1, ..., sn } and the length
of observation isT . �e sequence of the highest score at each step is
the trajectory we want. Compared to the exhaustive Viterbi search,
the time complexity of our tracking algorithm is O(|S |2T ) instead
of O(|S |T ). Furthermore, because only eight states per transition
are possible, the time complexity per step is optimized toO(|S | × 8)
= O(|S |).

Our algorithm works as follows. First, each state is assigned a
score, which is the highest score among eight calculated results,
by using the observation and the score of neighbor states at the
previous step (Lines 3-5). �e current location is then determined
as the state with the highest score (Line 6) and the trajectory is
generated as well (Line 8).

5 EXPERIMENTAL VALIDATION
To show the applicability of our proposed technique to a wide
range of hardware, we implemented our proposed technique on two
platforms: a tablet and a sensor tag. �e tablet we use is the Nexus
9, which contains inertial sensors (accelerometer, gyroscope, and
magnetometer) as most tablets do and runs Android 6 Marshmallow
OS with Bluetooth 4.1 (dual-mode) support. On the lower end, we
use the Broadcom WICED Sense Bluetooth Smart Sensor Tag [3] to
validates that EcoLoc is applicable for resource-limited IoT devices.

Several evaluation points in Fig. 3 are decided on the �oor plan,
and the untrained participants can choose any route they like to
reach the evaluation points. �e tablet-based devices are tested in
two di�erent places, but the sensor tags are tested only with the
smaller �oor plan due to the bu�er limitation on physical memory
for storing the map information. We also implemented a num-
ber of previous techniques for the purpose of comparison with
our proposed CCRF. Table 1 shows the technologies used in the
experiments.

6 EVALUATION
We evaluate convergence distance, accuracy and algorithm over-
head of EcoLoc with other implemented techniques. �e experi-
mental results demonstarte the improvement from the collaborative
conditional random �eld.

De�nition
CRF Ordinary Conditional Random Fields
PF Particle Filter

CCRF Encounter-Based Collaborative Conditional Random Fields
CPF Encounter-Based Collaborative Particle Filter

Table 1: �e Acronyms of Implemented Techniques For
Evaluation

6.1 Convergence Distance
�e convergence distance we present here is the displacement re-
quired in the estimation to provide a location within a 5-meter
radius from the ground truth. A short convergence distance means
EcoLoc can operate either without beacons or can operate well
while requiring much lower density of deployed beacons.

Fig. 4 shows the convergence distance is signi�cantly shortened
by up to 50% compared to the non-encounter CRF in �rst three
evaluation points. �is is because the indoor space is limited and
the evaluation points we put are closer to the middle of hallway.
�e two participants walk from either end of the corridor to reach
the evaluation points. �e convergence distance measured from
the rest of two evaluation points did not get improved signi�cantly
because of the small indoor space such that the shorter distance is
enough to estimate location. We show the convergence distance
can bene�t from the trajectories exchanged upon encounter and
the applicability of EcoLoc on the IoT devices.

�e experimental results on the tablet conducted on the 1st and
5th �oor of the campus Building are shown in Fig. 5. We compare
the results of implemented techniques listed in Table 1. �e conver-
gence distances on 5th �oor of all four localization techniques are
less than 50 meters, which are all shorter than the results on 1st
�oor, because the trajectory on the 5th �oor are more constrained
by the �oor plan by a turn in the corner. In addition, both CRF
and CCRF have shorter convergence distances than PF and CPF
do. �is is because CRF captures the constraints and is able to
provide the most probable location immediately based on the pre-
built states; in contrast, PF iteratively generates the new particles
to explore the possible locations. In summary, the CRF-based sys-
tems need shorter convergence distance than the PF-based systems.
Meanwhile, the encounter mechanism signi�cantly help CRF-based
localization to reduce the convergence distance.

6.2 Accuracy
We quantify accuracy by measuring how close to the ground truth
location each technique can estimate. Our experiments are con-
ducted in di�erent indoor environments with multiple participants
to evaluate the accuracy of CRF-based and PF-based localization.

�e results we provided for IoT device are shown in Fig. 6. �e
results provided by CCRF and CRF are close, where the error di�er-
ence is within one step length. �e accuracy of CCRF is sometimes
worse than CRF, primarily due to the noisy sensor data. �e com-
plex computation is required to �lter the noise out of sensor data for
DR. However, the error cannot be removed by the exchanged tra-
jectories. In addition, the RSSI from the encounter may be unstable,
which makes it di�cult to estimate the actual distance accurately.
Another source of error is the assumption of constant step length,
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(a) O�ce Floor Plan (b) Lab Floor Plan

(c) 1st Floor Plan (d) 5th Floor Plan

Figure 3: Floor Plans for Our Experiments.

Figure 4: �e Comparison of Convergence Distance for
WICED-Sense among Five Evaluation Points

Figure 5: �e Comparison of Average Convergence Distance
for Tablet on 1st and 5th Floor
but in reality the step length is not constant and can vary among
participants.

Fig. 7 compares the average accuracy of these localization tech-
niques on the tablet on the 1st and 5th �oor of the campus Building.
Overall, the CCRF and CRF can provide the same accurate results.
�e CRF-based systems are also more accurate than the PF-based
systems since the map is preprocessed and divided into several
states which provide extra constraints for CRF-based systems.

Figure 6: �e Comparison of Accuracy for WICED-Sense
among Five Evaluation Points.

Figure 7: �eComparison of Average Accuracy for Tablet on
1st and 5th Floor without Beacon

6.3 Algorithm Overhead
�e overhead is evaluated by measuring the power consumption
of our implementation since the APIs for timing measurement are
not open source and we are unable to hook up system so�ware.
Fig. 8 provides the power consumption comparison of enabling and
disabling the encounter event feature. Once the system becomes
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Figure 8: Overhead of Power Consumption for WICED-
Sense.

Figure 9: Time Complexity between CCRF and CPF
stable, the di�erence of current is about 15mA. With 3V input
voltage, the extra power consumption is about 45mW.

We observe in the �rst 400 seconds, the power consumption
is caused by the pairing behavior (scanning and advertising). In
the last half part, the power overhead comes from the sensor data
processing, trajectories exchange, and CCRF trajectories fusion.
Note that we put the devices together for a longer period of time
to get the precise power data. �at is why we can see the device
keep high power consuming for such a long time. In our normal
operation, the operation period is far fewer than this testing period.

We compare the time complexity of CRF-based system and CPF
system running on the tablet. �e CPF requires 35.36 ms for the
processing in each steps, while the CCRF only spends 4.56 ms. Fig. 9
shows that the execution time when the encounter events occur.
Although the CPF can execute the process within 20 ms, which is
much lower than CCRF (215.44 ms), it sacri�ces the accuracy and
convergence distance that we evaluate in the previous sections to
acquire the lower time complexity.
7 CONCLUSIONS
To make location knowledge a universal right of all IoT devices,
we propose EcoLoc, which requires only low-end processing ca-
pabilities and low-power inertial sensors. It exploits sharing of
trajectories between devices upon encounter as a way to estimate
the location on the map while requiring up to 50% shorter conver-
gence distance than previous techniques. �e computation e�ort
is also reduced signi�cantly, thanks to the use of our CCRF model.

�e use of BLE makes it practical because it uses the existing RF
interface for not only communication but also proximity sensing
and encounter exchange. �e overhead we measured on IoT device
in terms of current consumption is 15 mA.
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