Working paper, April 1998

Control Generation for Embedded Systems
Based on Composition of Modal Processes *

Pai Chou, Ken Hines, Kurt Partridge, and Gaetano Borriello

Department of Computer Science and Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350 USA
{chou,hineskj,kepart,gaetano }@cs.washington.edu

Abstract make fixed assumptions about what control interface it

. o . wishes to have, it must anticipate the control interactions of
In traditional distributed embedded system designs, controlany other process it is composed with. If its interface does

information is often replicgted across several processes anqmt match what is expected by other processes, it cannot be
kept coherent by appllcatlon-spemflc. mechanisms. Co,nse'composed with them. Instead, it or some of the other pro-

qL.lenf[Iy, Processes cannot'be reused in a ne\{v system _W'thoufzesses must be modified, or an application-specific transla-
tallqungthe code to deal with the new sygtems cqntrol infor- tion process must be inserted between them. Modification

mation. Thqnodal process framewopkowdes a h|gh.-level is sometimes impossible for intellectual property reasons.

way to specify the coherence of replicated control informa- ranqjation processes are inefficient. Moreover, both tech-

tion independently of the behavior of the processes. Thus ;g a5 require an intimate understanding of what control is

multiple processes can be composed without internal tailor- .o - -4 \wvhen it is shared. and how it is shared. thus poten-
'ng a.n,d W!thoutsuffermg from errors common in lower-level tially introducing new coherency maintenance errors every

specification styles. This paper serves two purposes: to de'time supposedly “reusable” processes are composed.

tsr?”tbe t.hei §ynthest|s ?f t:reod?'manar?elthe runtldn:e gode ib Our modal process frameworladdresses these prob-
al maintains contro’ information coNErence and to describ€ s 141, All control information is represented us-

the semantics of modal process interaction. ing booleanmodesthat guard run-to-completion handlers.
. Rather than keeping modes coherent by communicating their
1 Introduction values at the application level, the designer specifims-

To handle the ever-increasing complexity of distributed em- Straintsbetween modes of different modal processes. A run-

bedded systems, modern design methodologies must SuppOHme mode managfems.ures.that the constraints are main-
systemcomposability For this reason, most distributed em- tained by communicating with other processes as necessary.
bedded systems are modeled as communicatingesses Because the constraints handle all the synchronization of
Process composition has been particularbcassful in data- control information through the moc}g manager, the modal
dominated applications because a set of dataflow processegrocesses are free to focus on specific modular, reusable be-

can be composed as long as they agree on the protocol an aviors. Modql processes also enhamiargetabllltybe- 3
data format of their communication. cause the runtime system can be synthesized for a specific

However, the process model is less suitable for applica- dis'Fributed target architepture (potentiallywith'different aI'Ic.>-
tions that require distributed control information. Under the cation O.f processes to different processqrs) .W'thO.Ut requiring
process model, control information shared among multiple the d§5|gner to Wr|t.e low-level synghronlzatlon primitives.
processes must be encoded as data and communicated us- This paper descrlbes.the semantics of modal processes and
ing messages. Transmissions, receipts, and tests of controfl® Process of synthesizing modal process mode managers.
information must then be “sprinkled” throughout the data- FOF Synthesis, the coherence requirements are expanded into
processing code. This approach is error-prone. For example,bas'c_ constraint primitives and checked fgr consistency. De-
an update may beccidentally oritted and deadlock or other ~P€Nding on the constraint topology, various optimizations
synchronization problems may occur. Furthermore, although &€ Possible for greater run-time efficiency in terms of both
processes with control information are composable, they areSPace and time.
not very modular. Any change involving shared control in-
formation requires changing multiple processes [3]. 2 The modal process model

Thus, code is rarely reused as is. Since a process must .
A modal process contains a set of code segments called

*This work is supported by PYI| handlers which can be triggered bgvents Examples of

Working paper, April 1998

events are notifications of elapsed times and message ar- Primitive Force Constraints

rivals. The handlers execute with run-to-completion seman- constraint meaning (when unguarded)
tics, such that once a handler begins execution, no other han- | AA,(m;, ms) | if (my, A) € V thenC’(ms) :== A
dler in that process may execute until it completes. In addi- | AD,(m, ms) | if (my, A) € V thenC’(ms) :=
tion, a modal process also has a numbenotleghat govern DA, (m1, ms) | if (m1, D) € V thenC'(ms) := A
the behavior of the process. Each mode can be in one of two | DD, (my,m>) | if (my, D) € V thenC’(m») :=

statesactiveorinactive Which state a mode is in is referred
to as itsstatus Each mode also defines a binding relation Table 1: The primitive force constraints assign status of a
between events and handlers. When an event occurs, all hanmodem; the new configuratiod” based upon the vote
dlers bound to that event by an active mode are invoked. A for moderm;.

vector that represents the active/inactive status of all modes
is known as aonfiguration Associated with each configu-

ration is ascheduling policyhat manages the processing of I?r|m|t|ve Guarding Constramts

events. constraint meaning
ABlockC,(m, ¢) | if C(m) = A, block constraint

2.1 overview of a configuration change DBlockGy(m,) | if C'(m) = D, block constraint
APermitG,(m, ¢) | if C'(m) = A, permit constraint

At any given time, each modal process hasiaent configu- DPermitG (m,¢) | if C(m) =D, permit constraint

ration. The current configurationis changed only afterahan- | ABlockV,(m,v) | if C'(m) = A, block votev

dler finishes executing. Because the system mayibeing DBlockV,(m,v) | if C'(m) = D, block votev

on a distributed architecture, changes to the configurationon | APermitV, (m,v) | if C'(m) = A, permit votev

one modal process may affect the configuration of another | DPermitV, (m,v) | if C'(m) = D, permit votev

modal process. Hence configuration changes are negotiated

using a mechanism calledvate When a handler finishes Table 2: The primitive guarding constraints
execution, it may return a new vote. In a single-processor

architecture system, the vote may be processed immediately,

but in an distributed architecture, multiple votes may be re-
guested simultaneously, and they must be resolved before
being processed.

A vote contains a set of pairs, each of which names a mode
in the handler's modal process, and the desired new value
for the mode. Formally, a vot& is defined to be a subset
of M x {A, D} whereA indicates that the mode should be
activated, and) indicates that it should beedctivated. M

and abstract control typegACTSs), which allow common
patterns of primitive and transitive constraints to be defined
and applied.

Primitive constraints are the only constraints understood
by the runtime mode manager. There are two kinds: primi-
tive force constraints and primitive guard constraints.

Primitive force constraintsletermine what status a mode

is the set of modes of the modal process in which the handlerWiII have in the new configuration based upon the status of
resides. Any modes in the modal process unmentioned byanother mode in the current vote. Table 1 lists the different

he v retr “don’t cares.” However, as we shall rimitive force cons.tr.aints. Primitive force constra}ints can
the vote are treated as “don’t cares.” However, as we sha seee[ée one of four polarities, AA, AD, DA, or DD. The first let-

later, these modes as well as modes of other modal process
P ter (thesource polarity signifies that the constraint applies

may still be affected by this vote throughnstraints when & vote contains the pdin,, z) wheres is the source
polarity. The second letter (thaestination polaritydeter-
mines the status to be assignedig in the next configura-
Mode constraintgor simply constrainty completely define tion.

how modes are coordinated within and between modal pro- A primitive force constraint does not indicate a persis-
cesses. When a modal process is designed, constraints wiltent relationship; even ifn; remains active and the con-
be established that govern its internal behavior. New con- straint AA,(m1, m») is imposedyn, may be made inactive
straints can also be imposed within the modal process andby some other vote. Nor does a primitive force constraint
between other modal processes according to the requiredindicate a transitive relationship: if both Afn,, m,) and
ments of the application. AA,(my, mg) are present, then a vote for; will not nec-

To simplify both the implementation of the mode manager essarily turn onns. Under some circumstances, transitive
and the specification of the system, a customizable, higher-behavior might not be desirable, hence itis left to the control
level language is transformed into a more primitive set of of the transitive constraints.
constraints. Two features distinguish the higher-level lan- Primitive guarding constraintsestrict the application of
guage from the primitive constraintsansitive constraints primitive force constraints or votes by testing the current sta-
whose transitive closure expands into primitive constraints, tus of another mode:. A blockingguarding constraint in-

2.2 mode constraints

Working paper, April 1998

hibits the behavior of another constrainor votewv. If in-

hibited, the constraint or vote has no effect on the next con- PCep (1M1, m2) I* parent/child */
figuration. Since a vote is a paim,), x € {A, D}, ac- AA,(mg, my), DD, (my, m2)
tivation and deactivation can be inhibited independently. If ~ AA¢(m2,m1), DDy(m1, m2)
n multiple blocking constraints are imposed @or v, then ~ MuteX;(m1, m2) /* mutally exclusive */
if any one of them has the appropriate value for their source AD;(1m1, m2), AD; (m2, m1)
modem, thenc or v is blocked. Apermitconstraint is the AD;(m1, m2), AD¢(mz, m1)
dual: if its modem has the correct value, theror v is per- unify (mq, ms) /* merge states */
mitted, otherwise it is blocked. I permit constraints are Py (m1, m2), PGy (m2, m1)
imposed, then if any of their source modeshas the appro- dseqgni, ma, ..., my) /* deactivation sequence */
priate value¢ or v is enabled. (Vi, 1 <i < k) DA, (M, M(i41) mod k)
Kill(ms, my, ms, ..., my) [* m« preempts each; */
2.2.1 transitive force constraints (Vi) : AD, (mx, m;)

Unlike the primitive constraints, transitive force constraints

are not understood by the runtime mode manager. Instead, Table 3: Examples of abstract control types (ACTSs).
they are used to add primitive force constraints according to

transitive closure rules. Each primitive force constraint has a

corresponding transitive force constraint denoted by substi- active, thenm; will be activated as well. 1fn; is voted

tuting the ‘p” subscript with ‘" (e.g. AA;). Two transitive inactive, themm, will be deactivated. Since the transitive
force constraints can lieansitively composei their “mid- constraints are also present, any other constraint that acti-
dle” modes and status match. For example, transitive forcevatesm, will also activatem,, and similarly for deactivation
constraints AA(my, ms) and AA(ms, ms) can be transi- of m;. Note that ifm; is voted inactive o is voted ac-
tively composed. tive, no change is made to the other mode. This fundamental
It is possible for constraints toonflict e.g. if both AA, relationship can be used as a building block for many other

and AD, constraints are present. Because constraints canACTSs.

be built from higher level structures (see next section), such mutex;, andunify,, are two other fundamental ACT's.
situations can arise inadvertently. Consequently, each con-They express the relationships (respectively) that two modes
straint has econstraint priority Any conflict is resolved may not be simultaneously active, and that two modes must

in favor of the constraint with the higher priority. Primi- ajways have the same valugify ., is constructed from the
tive force constraints are not added when they conflict with aocT PCip.

higher priority constraints, and existing primitive force con- For more details on ACTs, please see the expanded ver-
straints are removed if implied higher priority constraints are sion of this paper [5]. '

added. Two conflicting constraints that have the same pri-
ority is an illegal situation and is detected statically. This

check is conservative because two equal-priority conflicting
constraints may never conflict in any execution trace of the
system (for example, one may be blocked whenever the othe
applies).

3 Constraint transformations

rThe constraints on modes do not have execution semantics
per se but the handlers supply the actual execution and the
constraints effectively “steer” the requested votes by restrict-
ing the allowed configurations of the system. Itis possible to
Even with the benefit of transitive force constraints, spec- translate the combined handlers, modes, and their constraints
ifying all the constraints in an application would be very into an equivalent (flat, parallel, or hierarchical) FSM. How-
tedious. Therefore, we allow patterns of constraints to be €Vver, it is much more compact to interpret the constraints at
named and applied much in the way macros are expandedun time with amode manageiThe interpretation algorithm,
in traditional programming languages. These patterns arewhich is described in the next section, can be implemented
called Abstract Control Types (ACT’s). ACTs can also be Very efficiently and offers the flexibility for extensions to dis-
used to guarantee that transitive force constraints are alwaygributed architectures.
paired with primitive force constraints. This section presents the steps in transforming a
Some simple ACTs are defined in Table 3, although in specification-level system of constraints into one suitable for
general much more complicated control patterns could be the mode manager. We formulate constraint transformation

2.3 abstract control types

defined. as a graph problem. The two goals of the transformation
Thepc;, constraint establishes a fundamental relationship steps are to express all constraints in terms of the basic prim-
betweenm; andm, called “parent-child.” Ifm, is voted itives and to statically detect and resolve conflicts.

Working paper, April 1998

3.1 h f lati 2> 2
graph formulation mered y ~
. . congtraints /4 » ,g%"
The system of constraints can be represented using a graph- o2” D

like data structureG(M, E) consists of a set of verticed,

which corresponds to the set of modes being constrained, and

the edged’ represent constraint&: can have more thanone iR Fw, 1
directed edge between a given pair of vertices, although they"v =2
must have distinct and compatible labels.

Each edge is labeled with a constraint of the fowp, (
i,j,p). The fieldopis one of the force or guard constraints.
After transformations, albp's must be primitive constraints.
The vertexi € M represents the mode that exerts the con- modes
straint; the vertey, on the other hand, can actually be either
a vertex or another edge. jfis a vertex therop must be bumper
either a force or a vote guard. ifis an edge theop must be AA —> AD —>»0O DA O—> DD O—>0
an edge guard, and we currently requite represent a force
constraint. Finallyp is an integer priority of the constraint. ~ Figure 1: example of ACT expansion on the bumper and

Additionally, the system assumes that the graphs are re-wheels processes
duced such that all modes connected by explicit unify con-
straints or equivalent combinations of primitive constraints

priority =1

into singlesupermodes dren of mode B of the wheels process. These constraints are
merged in as shown at the top.
3.2 ACT expansion The second phase of ACT expansion computesrtesi-

tive closureon the graph output by the first phase. The edges

An ACT acts as a constraint macro that adds a new set ofcan be divided into two sets, force and transitive edges. Var-
edges to the constraint graph. However, unlike a macro, con-jous ACTs mark the edges to be either transitive or intransi-
straints are not added all at once. Instead, the expansion isive. All transitive edges are transitive, but force edges can be
divided in two phases. The first phase expands constraintsejther. Transitive closure is performed on the transitive sub-
by applying the ACTs independently. The second phase isgraph so that constraints instantiated by different ACTs can
“post-processing” to take into account the interactions be- relate to each other. After the transitive closure is evaluated,
tween the constraints. the transitive edges are removed.

In the first phase, each ACT is expanded bilirng its
definition routine to add constraints either explicitly enumer- 3 3 post-processing
ated or algorithmically. Each ACT may actually be defined
in terms of other ACTs, and they are expanded recursively This “post-processing” algorithm is invoked after all ACTs
into force and guard constraints. In addition, an ACT may have been applied, so that interactions between ACTs can
perform structural modifications to the constraint graph. For be processed. The algorithm (3.1) is divided into two parts.
example, even though a unify ACT can be expressed in termsThe first part computes the transitive closure on the force
of symmetric AA and DD constraints, an efficient alternative constraints, and the second part adds the induced guard con-
is to merge the modes into a supermode. An ACT may also straints on the newly transitive edges added by the first part.
introduce additional modes and handlers that are associated The transitive closure of a graph can be computed using
with either new modes or existing modes. For example, a a modified version of the Floyd-Warshall algorithm [6]. Ex-
parent-child ACT may either expand constraints transitively tensions are necessary for several reasons: to handle multi-
such that hierarchical transitions can be performed in a singleple edges between a pair of vertices, to handle vertex-to-edge
step, or implement the transitivity with a synthesized helper edges, to adapt the special transitivity rules for this problem,
handler that invokes a mode’s parent or child. All such trans- and to statically resolve constraints that conflict. An edge
formations are abstracted from the end user, although ad-e has been slightly augmented with several attributes. First,
vanced designers may wish to be exposed to such knowledgen iteration-numbenattribute, I[¢], to record in which iter-
in order to better evaluate implementation tradeoffs. ation it was added. An edge with an iteration number of 0

As an example, consider the composition of the bumper means it is one of the original constraint edges before transi-
and wheels processes in Fig. 1. The bumper process is intertive closure is applied. The algorithm should either produce
nally constrained as a composition of a dseq(F, R, W, T) at a graph that is free of conflicts, or report to the designer that
priority 1 and kill(R, F, W, T) at priority 2. It is possible to the constraints are ill-posed.
apply ACTs across the processes, such as the pc constraint The guard induction is applied to all those constraints
that designates R and W of the bumper process as the chilwhose causality is dominated by a guarded vote or edge. One

Working paper, April 1998

Algorithm 3.1 The post-processing algorithm for transitive
closure and guard induction

/I apply transitive closure to force constraints

n:=0
foreach (k € M)
n:=n+1
foreach (forcee;; € transitive IN]) Figure 2. (a) shows the constraint graph of the bumper
ein = (< w, x>, 0,k pix), I[eix] < n process, (b) after transitive closure, with conflicting edges
foreach (forceey,; € transitive OUTE]|| <. _>) shown in dashed arrows and removed, and (3) inducing the
enj = (< @,y >, 4k, prj), Ilexj] < guard constraint on the transitive edge.

eij = (< w,s >, 1,7, pij)
if (eij ¢ E) then

" . , 4 Centralized mode manager
addeij - (< w, s >, Za]apkj)y

setlfe;;] :=n; Following the transformation of ACTs and constraints into
elseif(z # 2) { their runtime form, the mode manager code that implements
/I contradiction: need to resolve thru priority the constraints must be produced. The implementation de-
if (pi; < px;) { /] ill-posed constraints pends significantly on whether the target architecture is a
throw malformed exceptiorg;, e ;); uniprocessor or a distributed architecture. The discussion of
} 11 else skip closure distributed architecture implementations is postponed to the
} /1l expand guard constraints on transitive force edgesnext section.
foreach (guarde;; = (< z,9 >, i, j)) The centralized mode manager has a notion of a discrete
if (j € forcek) step which defines a sequential boundary for a set of votes
foreach (forceey = (< y, 2 >, k,1), I[ex] > 0) to be accumulated and resolved as a single externally visible
if (j dominateg from k) change of configuration. We support two possible step se-
add guard = (< z,9 >4, ex) mantics: event-triggered and time-triggered. Both share the
else if(j represents a vote) same engine that computes the next configuration.
foreach (forceey; = (< y, 2z >, k,1), I[er:] = 0)
add guard = (< 2,9 >4, exr) 4.1 computing a new configuration

else throwexception % is a guard edge”

Algorithm 4.1 Centralized mode manager configuration se-
lection.
foreachvoteV = {(m;, s;) € M x {A, D}}
foreach ((m;, s;) € V)
if (m!™! = undefinecand voteGuardfn;) = true) then

vertex or edgé dominates a vertex from a source: if all foreach (e;; € OUT[m;] [|s:)

paths froma to ¢ require voting or going through. We if (edgeGuardy; = true))
therefore extend guards to all transitive constraints that are let (s;, u;) = constraint label of;;
dominated by the guard. m; 1 setf))

foreach (m! that is undefined)

Fig. 2 shows a subset of the robot example in the form of m;*! set(nt)
the constraint graph through the transitive closure process.
The left (a) shows the graph assuming all ACTs have been
expanded. For simplicity, we assume all edges are marked
transitive. When a transitive edge is added, it is assigned Algorithm 4.1 shows how the next configuration is com-
the same priority as that of its incoming edge. For example, puted. At the end of a step, the mode manager is given
in the middle (b) figure, DD(F, T) has priority 2 because it an ordered set of requests, or votes, to change either part
acquires it from AD(R, T), while DA(F, T) has priority 1 be- or all of the configuration. Each vote is a set of tuples
cause itis connected through DA(W, T). DD(F, T) and DA(F, V = {(m;,s;) € M x {A, D}}, wherem; is the specific
T) are incompatible and is resolved in favor of DD(F, T). To mode to change, andg indicates whether it should be acti-
induce the guard constraint by G, we enumerate all transi- vated or deactivated. These are ordered such that a higher
tive edges dominated by the edge(s) it guards. In this case,priority vote is ordered earlier and effectively locks in its
DA(R, W) dominates the transitive constraint DD(F, W) and value, so that a lower priority vote cannot override it if the
therefore we induce a new guard from G to this edge. same mode it wishes to change has been set. Otherwise, a

Working paper, April 1998

4.2 voting steps

The execution of a modal process system with centralized
control can be viewed as a sequence of discrete steps. All
events generated during a step are consumed during a later,
A though not ecessarily the next, step. Furthermore, no han-
ABlock — dler execution crosses a step boundary. Several handlers may
be invoked in a given step. If they requests mode changes,
Figure 3: Example for computing the next configuration. All the requests are queued until the end of the step when they
edges are primitive. are processed collectively for the next step. We provide
the mechanism for defining a variety of steps, ranging from
event-driven steps to dataflow and time-triggered steps.
modem; can be transitioned te; € {A, D}, and its con- The simplest step is defined by an event occurrence. That
straints must be fulfilled. is, the designer may assume no simultaneous events and that
a mode change request is serviced right after dispatching an
event to a set of handlers. Discrete event models are more
general in that events are not only completely ordered but can
also be simultaneous, such that vote processing is performed
after all (logically) simultaneous events have triggered their
handlers.

To fulfill the constraints exercised by mode on chang-
ing to s;, the algorithm iterates over all outgoing force con-
straints fromm; that match the source polarity. In other
words, ifs; = A (namely to activaten;), then constraint
edges of typegAA, AD } are used; or it; = D then{DA,
DD} edges are used. Each constraint indicates whether Another way of defining steps is to mark certain event

should be activated oredctivated, aftough the force con- tneg a5 step-delimiting events. For synchronous dataflow
straint may be guarded by another mode. The change iSspry models, a reasonable step would be to process votes
made only if the guarding condition is satisfied. Guard eval- after an entire iteration of the dataflow graph has been in-

uation can be as efficient as a single conditional test, becausg,,, 4. This allows the dataflow graph to be invoked accord-
as individual modes change configurations, they can updaté 14 5 static schedule without using the more expensive
the guarding condition by incrementing or decrementing the ¢ ent gispatch mechanism. Although dataflow models are
number of permitting or blocking modes. untimed, dispatching according to a static schedule can be
extended for real-time systems by replacing dataflow events
with timer events. In general, statically scheduled, time-
Example triggered systems offer the best determinism and can make
the strongest guarantee in meeting hard real-time constraints.

To illustrate the operation of the mode manager algorithm, L.
we consider an example based on the bumper process of the@ Distributed mode manager

robot (Fig. 3). Note that the mode manager maintains the \when mapping a design to a distributed architecture, con-
configurations without using the knowledge about what pro- 14| may be implemented in a centralized or a distributed
cesses the modes belong to. Therefore, the mechanism fokyje |t the designer desires a centralized control process,
managing modes within a process is exactly the same as thajhe centralized mode manager described in the previous sec-
for a set of processes. For illustration purposes, we addedijon, can be used, with slight extension to communicate votes
a vote-blocking constraint from H to T and a edge-blocking gy pjicitly in a message. However, such an organization is not
constraint from G to W, and reversed a few constraint polar- yery efficient and defeats the very advantages offered by dis-
ities. tributed architectures, because the centralized mode manager
Assume the current configuration {sF, W, G }, and a must handle and generate communication to all processes
handlers requests for activation of R. The algorithm iterates even if most are not affected by a localized mode change.

over all outgoing edges of R labeled Afr AD, in an at- To exploit the architectural distribution, we suppdis-
tempt to apply force constraints. These edges arg(RDF), tributed mode managersvhich maintain consistent mode
AA,(R, T), and AD (R, W) — but DA, (R, W) is not appli- configurations between processes residing on different

cable because the vote is for activation, not deactivation. F processors—without centralized control. With distributed

is deactivated, since its guard is trivially true. T is also acti- mode managers, each processor in the system is given its
vated, even though H appears to be blockingeTduse the own mode manager and each of these coordinate activation
block applies to votes for T, not on force constraints entering and deactivations between themselves. In this case, however,

T. On the other hand, since G is true, G blocks, AR, W) there is no single notion of step. In fact, the rate of step pro-
and therefore W does not change. The resulting configura-gression may be different for each specific mode manager.
tion is thereforgl R, T, W, G}. To avoid overspecification, the modal process model does

Working paper, April 1998

not impose specifisynchronysemantics on the interactions the requester receives acknowledgments from all subsystems
between mode managers; instead, several synchrony optionsver all parts of the vote, it performs the action locally (pro-
can be supported, as described in [2]. This section focuses orvided there were no conflicts received befordtigg all ac-
one on synchrony option calledode synchronouseman- knowledgments) and sendesmmitmessages to all relevant
tics, where a mode change blocks progress of only those pro-subsystems. If it received a conflict in the mean time, and
cesses whose modes are affected until their mode managerg decided that the conflict had higher priority, then it sends
agree to it. abortmessages to each of the participants.

The synthesis steps for a distributed mode manager can

be divided into graph partitioning, control communication é@) é@

synthesis, and local mode-manager synthesis. Local mode-

managers are centralized mode managers whose inputs are

their respective partitioned graphs. This section reviews the ®

graph partitioning algorithm that has been described previ-) reduced system constaint graph s partonng tep: modes ao ratare

ously and addresses the extensions to the mode managers e

needed for distributed control coordination. 1 Foa o] TP e
Yo} CI0) @ét,u,' 00

5.1 mode manager partitioning Yo

In distributed implementations of a modal process system, 0@ 0@

it isn’'t necessary for all parts of the system to maintain the) second parttoning step: shadow modes d) control communication s added between

complete constraint graph. In fact, each subsystem needs e adea e exemalconstantsowees (hbbtygﬂh""hllgtm:ngﬁf‘mhdf

only a projection of the constraint graph containing the por- Sibstoms) .

tions relevant to the processes in that subsystem. Specifi- . . o

cally, these are the the modes that occur within these pro-Figure 4: Shown are the steps involved in partitioning the
cesses (the local modes), and the modes that appear as thgPnstraint graph for individual mode managers (based on
source end of a primitive constraint that terminates a local & Preexisting process partition), and in synthesizing control

mode (see Figurel) andc)). For more information, see[4]. communication.

5.2 control communication (@@, A)}
B

Upon completion of the partitioning step, the mode manager
residing on each subsystem is aware of whiokedactiva-
tions and deactivations of modes need to be trattsdto the

rest of the system. Using mode synchronous semantics, the
requesting subsystem is not able to perform the changes until

{(a A)}

Cc

. a) high level: reduced mode graph @
each of the relevant subsystems acknowledges this request. processing vote (a.)} partition showing inital control

b
Assuming reliable communication between all mode man-) communication for vote
agers, there is a three phase handshake (request, acknowl- . v- /‘ vmm.«aﬁ» ”
edge, commit) such that the requester transmits the desired § acks {2) ”
activations and inactivations as a special vote to all relevant c % 5
mode managers and it waits for the remote subsystems to ¢) spaceftime diagram showing control communication
acknowledge the requests.

The receiving subsystem mode managers include this voteFigure 5: a) shows a system constraint graph, b) shows the
in calculating the next configuration (based on this subsys- mapping of nodes from this to processes in a distributed im-
tems own version of steps). In considering this sort of vote plementation and c) shows the control communication re-
local mode manager must determine whether there were anyqjuired to insure mode synchrony.
internally generated conflicting votes—and if there were and
they had higher priority than the special vote, it must send a To insure consistent choices in the event of several con-
request of its own to the original requester before acknowl- current requests, there should be system wide total ordering
edging the original request. of priorities that allow all subsystems to independently but

If it finds no such conflict, it simply acknowledges the re- consistently choose from among conflicting requests.
guest and places itself into a provisional state until it receives Identification of the required control communication is
the correspondingommitmessage. From the perspective of straightforward given the partitioning step. Any constraint
the requester, the actual transition to a new configuration issuch that the source mode is on one subsystem, and the ter-
blocked until all requests have been acknowledged. Whenminal mode is on another implies a communication.

>

Working paper, April 1998

. fad) — posed state machines. ActivityCharts are forced to encode

@0 1610 control into messages the same way the process model does.
{(c.A} Frglund’s synchronizers[7] are more similar to our

(@A) modal processes because they customize the behavior of the

reusable code without requiring the designer to alter it. How-

c ever, synchronizers are designed, not surprisingly, to assist

o R P g @ ‘ synchronization. Consequently, they only support block-

and (6A4). {(c. 4) has higher B oo vote ing of method invocation, and treat dispatching, scheduling,

priority so it should win.

and real-time issues as orthogonal problems. Synchroniz-

(¢, 4)
A ack{(c,4)} >
T / J’A»\'/”T ers also assume a shared-memory computation model, while
ok f(ad)) g our model is focused on a specific appliation domain, namely
¢ * . that of distributed real-time embedded systems.
c) space/time diagram showing control communication D [9] iS a distributed programming Iangauge framework

) . o build on aspect-oriented programming, a general mechanism
Figure 6: This shows the control communication between .+ jncludes support for collecting code that would other-
the processes in Figure S in the presence of an inter-proces§yise pe scattered about a program. D also supports reusable
vote conflict. synchronization, but like synchronizers, D also assumes a

shared-memory computation model.

All subsystem mode managers are essentially centralized
mode managers, and can be synthesized as demonstrated ip Conclusions
the previous section, with some minor modifications.
Control composition is an important problem in modeling
5.3 Examples and synthesis of complex embedded systems. Existing ap-

In Figure 4 we show a system constraint graph, and the Stepé;)roaches hinder reuse of cqntrol behavior. If the behawlor
Is structured as communicating processes, control handling

required to build consistent distributed mode managers for . . o
this. First the mode graph is partitioned across the subsys:-IS sprinkled everywhere and must be modified iraahhoc

tems and then the control communication is synthesized. manner when u;ed in Qiﬁerent applicgtions. If the behavior
Next we subject this system to votes various conditions is captured as hlerarchlcal state mac;hlnes, control fay com-

that might occur in choosing a new consistent configuration pose better but th'ere 'S o quularlty and they are difficult

(shown in Figures 5 and 6). In Figure 5 the system hosts to retarget over different architectures. The modal process

a single request for mode activation, and this is easily re- model shows promise in addressing these problems. It al-

solved. In Figure 6 case, there are two concurrent requestsIows designers to effectively constrain the state space within

for activation, where one request has a higher priority than and between processes using high-level primitives, called

the the other. In this case, each of the requesting managers‘:’l bstract control typeshat subsume hierarchical state ma-

must evaluate the relative priority of the requests, and inde- chines and can better match designer's intuitionsimilar to the
pendently (but consistently) choose the winner. The subsys-SUbs.u 'mptlon a}rchltectureBy s?paratlng out .composmon-

tem that requested the losing activation (subsystem A in thisSpemflc behavior and synthesizing the r“”‘“f“e system, we
case) is then responsible for sending abort messages to alfan make the modules more reusable over different applica-

. - ions.
subsystems that received the original request. L .
y g g The usefulness of a specification model can be dimin-

6 Related Work ished if i't does not lend it;elf to efficient implementation
on a variety of target architectures. We have shown that
Esterel [1] is an imperative langauge for composing control the basic primitives, namelfprce andguard constraints, do
hierarchically. However, Esterel's control state is encoded lend themselves to very efficient implementations and re-
by the program counter and cannot easily be used to sched-quires only as much time as the actual number of modes that
ule and selectively activate handlers the way modal processchange in a given configuration. Although we provided al-
modes can. Coordination in Esterel is handled by emitting gorithms for a software implementation of the synthesized
events, which is similar in style to message passing, and alsocontrol, called themode managerthe simplicity and the
suffers from code sprinkling, fixed assumptions about the in- parallel nature will lend them to efficient hardware imple-
terface client, and error-prone maintenance problems. mentations as well. More importantly, modal processes can
Statemate, based on Statecharts [8], uses a process modéle mapped onto arbitrary distributed architectures through
on the activity chart level, and supports composition with synthesis of distributed mode managers. By automating the
a process using statecharts. Like Esterel, however, statehighly error-prone low-level tasks of managing synchroniza-
charts use events to define the interface between two com-ion and control communication, designers can better spend

Working paper, April 1998

their time with global design issues.

References

[1] G. Berry and G. Gonthier. ThedgEREL synchronous
programming language: design, semantics, implementa-
tion. Science of Computer Programmiri(2):87-152,
November 1992.

[2] P. Chou and G. Borriello. An analysis-based approach to
composition of distributed embedded systemsPioc.
International Workshop on Hardware/Software Code-
sign (CODES/CACHE)998.

[3] P. Chou and G. Borriello. Functional encapsulation vs.
state encapsulation in the specification of reactive sys-
tems. InSubmitted to the 1998 ACM SIGPLAN Work-
shop on Languages, Compilers, and Tools for Embedded
SystemsJune 1998.

[4] P. Chou and G. Borriello. Modal processes: Towards
enhanced retargetability through control composition of
distributed embedded systems.Hroc. Design Automa-
tion ConferenceJune 1998.

[5] P. Chou, K. Hines, K. Partridge, and G. Borriello. Con-
trol generation for embedded systems based on compo-
sition of modal processes (extended version). Techni-
cal Report UW-CSE-98-04-01, University of Washing-
ton, 1998.

[6] T. H. Corman, C. E. Leiserson, and R. L. Rivedh-
troduction to AlgorithmsThe MIT Press/McGraw-Hill,
1990.

[7]1 S. Frglund and G. Agha. A language framework for
multi-object coordination. liBeventh European Confer-
ence on Object-Oriented Programming (ECOOR)m-
ber LNCS 707. Springer-Verlag, July 1993.

[8] D. Harel. StateCharts: a visual formalism for complex
systems.Science of Programmin@(3):231-274, June
1987.

[9] C. V. Lopes and G. Kiczales. D: Atguage framework
for distributed programming. Technical Report SPL97-
008 P9710042, Xerox Corporation, February 1997.

