
Working paper, April 1998

Control Generation for Embedded Systems
Based on Composition of Modal Processes �

Pai Chou, Ken Hines, Kurt Partridge, and Gaetano Borriello

Department of Computer Science and Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350 USA

fchou,hineskj,kepart,gaetano g@cs.washington.edu

Abstract

In traditional distributed embedded system designs, control
information is often replicated across several processes and
kept coherent by application-specific mechanisms. Conse-
quently, processes cannot be reused in a new system without
tailoring the code to deal with the new system’s control infor-
mation. Themodal process frameworkprovides a high-level
way to specify the coherence of replicated control informa-
tion independently of the behavior of the processes. Thus
multiple processes can be composed without internal tailor-
ing and without suffering from errors common in lower-level
specification styles. This paper serves two purposes: to de-
scribe the synthesis of themode manager, the runtime code
that maintains control information coherence and to describe
the semantics of modal process interaction.

1 Introduction

To handle the ever-increasing complexity of distributed em-
bedded systems, modern design methodologies must support
systemcomposability. For this reason, most distributed em-
bedded systems are modeled as communicatingprocesses.
Process composition has been particularly successful in data-
dominated applications because a set of dataflow processes
can be composed as long as they agree on the protocol and
data format of their communication.

However, the process model is less suitable for applica-
tions that require distributed control information. Under the
process model, control information shared among multiple
processes must be encoded as data and communicated us-
ing messages. Transmissions, receipts, and tests of control
information must then be “sprinkled” throughout the data-
processing code. This approach is error-prone. For example,
an update may beaccidentally omitted and deadlock or other
synchronization problems may occur. Furthermore, although
processes with control information are composable, they are
not very modular. Any change involving shared control in-
formation requires changing multiple processes [3].

Thus, code is rarely reused as is. Since a process must

�This work is supported by PYI

make fixed assumptions about what control interface it
wishes to have, it must anticipate the control interactions of
any other process it is composed with. If its interface does
not match what is expected by other processes, it cannot be
composed with them. Instead, it or some of the other pro-
cesses must be modified, or an application-specific transla-
tion process must be inserted between them. Modification
is sometimes impossible for intellectual property reasons.
Translation processes are inefficient. Moreover, both tech-
niques require an intimate understanding of what control is
shared, when it is shared, and how it is shared, thus poten-
tially introducing new coherency maintenance errors every
time supposedly “reusable” processes are composed.

Our modal process frameworkaddresses these prob-
lems [4]. All control information is represented us-
ing booleanmodesthat guard run-to-completion handlers.
Rather than keeping modes coherent by communicating their
values at the application level, the designer specifiescon-
straintsbetween modes of different modal processes. A run-
time mode managerinsures that the constraints are main-
tained by communicating with other processes as necessary.
Because the constraints handle all the synchronization of
control information through the mode manager, the modal
processes are free to focus on specific modular, reusable be-
haviors. Modal processes also enhanceretargetabilitybe-
cause the runtime system can be synthesized for a specific
distributed target architecture (potentiallywith different allo-
cation of processes to different processors) without requiring
the designer to write low-level synchronization primitives.

This paper describes the semantics of modal processes and
the process of synthesizing modal process mode managers.
For synthesis, the coherence requirements are expanded into
basic constraint primitives and checked for consistency. De-
pending on the constraint topology, various optimizations
are possible for greater run-time efficiency in terms of both
space and time.

2 The modal process model

A modal process contains a set of code segments called
handlers, which can be triggered byevents. Examples of

Working paper, April 1998

events are notifications of elapsed times and message ar-
rivals. The handlers execute with run-to-completion seman-
tics, such that once a handler begins execution, no other han-
dler in that process may execute until it completes. In addi-
tion, a modal process also has a number ofmodesthat govern
the behavior of the process. Each mode can be in one of two
states,activeor inactive. Which state a mode is in is referred
to as itsstatus. Each mode also defines a binding relation
between events and handlers. When an event occurs, all han-
dlers bound to that event by an active mode are invoked. A
vector that represents the active/inactive status of all modes
is known as aconfiguration. Associated with each configu-
ration is ascheduling policythat manages the processing of
events.

2.1 overview of a configuration change

At any given time, each modal process has acurrent configu-
ration. The current configuration is changed only after a han-
dler finishes executing. Because the system may be running
on a distributed architecture, changes to the configuration on
one modal process may affect the configuration of another
modal process. Hence configuration changes are negotiated
using a mechanism called avote. When a handler finishes
execution, it may return a new vote. In a single-processor
architecture system, the vote may be processed immediately,
but in an distributed architecture, multiple votes may be re-
quested simultaneously, and they must be resolved before
being processed.

A vote contains a set of pairs, each of which names a mode
in the handler’s modal process, and the desired new value
for the mode. Formally, a voteV is defined to be a subset
of M � fA;Dg whereA indicates that the mode should be
activated, andD indicates that it should be deactivated.M
is the set of modes of the modal process in which the handler
resides. Any modes in the modal process unmentioned by
the vote are treated as “don’t cares.” However, as we shall see
later, these modes as well as modes of other modal processes
may still be affected by this vote throughconstraints.

2.2 mode constraints

Mode constraints(or simplyconstraints) completely define
how modes are coordinated within and between modal pro-
cesses. When a modal process is designed, constraints will
be established that govern its internal behavior. New con-
straints can also be imposed within the modal process and
between other modal processes according to the require-
ments of the application.

To simplify both the implementation of the mode manager
and the specification of the system, a customizable, higher-
level language is transformed into a more primitive set of
constraints. Two features distinguish the higher-level lan-
guage from the primitive constraints:transitive constraints,
whose transitive closure expands into primitive constraints,

Primitive Force Constraints
constraint meaning (when unguarded)

AAp(m1;m2) if (m1; A) 2 V thenC 0(m2) := A

ADp(m1;m2) if (m1; A) 2 V thenC 0(m2) := D

DAp(m1;m2) if (m1; D) 2 V thenC 0(m2) := A

DDp(m1;m2) if (m1; D) 2 V thenC 0(m2) := D

Table 1: The primitive force constraints assign status of a
modem2 the new configurationC 0 based upon the voteV
for modem1.

Primitive Guarding Constraints
constraint meaning

ABlockCp(m; c) if C(m) = A, block constraintc
DBlockCp(m; c) if C(m) = D, block constraintc
APermitCp(m; c) if C(m) = A, permit constraintc
DPermitCp(m; c) if C(m) = D, permit constraintc
ABlockVp(m; v) if C(m) = A, block votev
DBlockVp(m; v) if C(m) = D, block votev
APermitVp(m; v) if C(m) = A, permit votev
DPermitVp(m; v) if C(m) = D, permit votev

Table 2: The primitive guarding constraints

and abstract control types(ACTs), which allow common
patterns of primitive and transitive constraints to be defined
and applied.

Primitive constraints are the only constraints understood
by the runtime mode manager. There are two kinds: primi-
tive force constraints and primitive guard constraints.

Primitive force constraintsdetermine what status a mode
will have in the new configuration based upon the status of
another mode in the current vote. Table 1 lists the different
primitive force constraints. Primitive force constraints can
be one of four polarities, AA, AD, DA, or DD. The first let-
ter (thesource polarity) signifies that the constraint applies
when a vote contains the pair(m1; x) wherex is the source
polarity. The second letter (thedestination polaritydeter-
mines the status to be assigned tom2 in the next configura-
tion.

A primitive force constraint does not indicate a persis-
tent relationship; even ifm1 remains active and the con-
straint AAp(m1;m2) is imposed,m2 may be made inactive
by some other vote. Nor does a primitive force constraint
indicate a transitive relationship: if both AAp(m1;m2) and
AAp(m2;m3) are present, then a vote form1 will not nec-
essarily turn onm3. Under some circumstances, transitive
behavior might not be desirable, hence it is left to the control
of the transitive constraints.

Primitive guarding constraintsrestrict the application of
primitive force constraints or votes by testing the current sta-
tus of another modem. A blockingguarding constraint in-

2

Working paper, April 1998

hibits the behavior of another constraintc or votev. If in-
hibited, the constraint or vote has no effect on the next con-
figuration. Since a vote is a pair(m;x); x 2 fA;Dg, ac-
tivation and deactivation can be inhibited independently. If
n multiple blocking constraints are imposed onc or v, then
if any one of them has the appropriate value for their source
modem, thenc or v is blocked. Apermit constraint is the
dual: if its modem has the correct value, thenc or v is per-
mitted, otherwise it is blocked. Ifn permit constraints are
imposed, then if any of their source modesm has the appro-
priate value,c or v is enabled.

2.2.1 transitive force constraints

Unlike the primitive constraints, transitive force constraints
are not understood by the runtime mode manager. Instead,
they are used to add primitive force constraints according to
transitive closure rules. Each primitive force constraint has a
corresponding transitive force constraint denoted by substi-
tuting the “p” subscript with “t” (e.g. AAt). Two transitive
force constraints can betransitively composedif their “mid-
dle” modes and status match. For example, transitive force
constraints AAt(m1;m2) and AAt(m2;m3) can be transi-
tively composed.

It is possible for constraints toconflict, e.g. if both AAp
and ADp constraints are present. Because constraints can
be built from higher level structures (see next section), such
situations can arise inadvertently. Consequently, each con-
straint has aconstraint priority. Any conflict is resolved
in favor of the constraint with the higher priority. Primi-
tive force constraints are not added when they conflict with
higher priority constraints, and existing primitive force con-
straints are removed if implied higher priority constraints are
added. Two conflicting constraints that have the same pri-
ority is an illegal situation and is detected statically. This
check is conservative because two equal-priority conflicting
constraints may never conflict in any execution trace of the
system (for example, one may be blocked whenever the other
applies).

2.3 abstract control types

Even with the benefit of transitive force constraints, spec-
ifying all the constraints in an application would be very
tedious. Therefore, we allow patterns of constraints to be
named and applied much in the way macros are expanded
in traditional programming languages. These patterns are
called Abstract Control Types (ACT’s). ACTs can also be
used to guarantee that transitive force constraints are always
paired with primitive force constraints.

Some simple ACTs are defined in Table 3, although in
general much more complicated control patterns could be
defined.

Thepctp constraint establishes a fundamental relationship
betweenm1 andm2 called “parent-child.” Ifm2 is voted

pctp(m1;m2) /* parent/child */
AAp(m2;m1), DDp(m1;m2)
AA t(m2;m1), DDt(m1;m2)

mutextp(m1;m2) /* mutally exclusive */
ADp(m1;m2), ADp(m2;m1)
ADt(m1;m2), ADt(m2;m1)

unify tp(m1;m2) /* merge states */
pctp(m1;m2), pctp(m2;m1)

dseq(m1;m2; :::;mk) /* deactivation sequence */
(8i; 1 < i < k) : DAp(mi, m(i+1) mod k)

kill(m* ;m1;m2; :::;mk) /* m* preempts eachmi */
(8i) : ADp(m* ;mi)

Table 3: Examples of abstract control types (ACTs).

active, thenm1 will be activated as well. Ifm1 is voted
inactive, themm2 will be deactivated. Since the transitive
constraints are also present, any other constraint that acti-
vatesm2 will also activatem1, and similarly for deactivation
of m1. Note that ifm1 is voted inactive orm2 is voted ac-
tive, no change is made to the other mode. This fundamental
relationship can be used as a building block for many other
ACTs.

mutextp and unify tp are two other fundamental ACT’s.
They express the relationships (respectively) that two modes
may not be simultaneously active, and that two modes must
always have the same value.unify tp is constructed from the
ACT pctp.

For more details on ACTs, please see the expanded ver-
sion of this paper [5].

3 Constraint transformations

The constraints on modes do not have execution semantics
per se, but the handlers supply the actual execution and the
constraints effectively “steer” the requested votes by restrict-
ing the allowed configurations of the system. It is possible to
translate the combined handlers, modes, and their constraints
into an equivalent (flat, parallel, or hierarchical) FSM. How-
ever, it is much more compact to interpret the constraints at
run time with amode manager. The interpretation algorithm,
which is described in the next section, can be implemented
very efficiently and offers the flexibility for extensions to dis-
tributed architectures.

This section presents the steps in transforming a
specification-level system of constraints into one suitable for
the mode manager. We formulate constraint transformation
as a graph problem. The two goals of the transformation
steps are to express all constraints in terms of the basic prim-
itives and to statically detect and resolve conflicts.

3

Working paper, April 1998

3.1 graph formulation

The system of constraints can be represented using a graph-
like data structure.G(M;E) consists of a set of verticesM ,
which corresponds to the set of modes being constrained, and
the edgesE represent constraints.G can have more than one
directed edge between a given pair of vertices, although they
must have distinct and compatible labels.

Each edge is labeled with a constraint of the form (op,
i; j; p). The fieldop is one of the force or guard constraints.
After transformations, allop’s must be primitive constraints.
The vertexi 2 M represents the mode that exerts the con-
straint; the vertexj, on the other hand, can actually be either
a vertex or another edge. Ifj is a vertex thenop must be
either a force or a vote guard. Ifj is an edge thenopmust be
an edge guard, and we currently requirej to represent a force
constraint. Finally,p is an integer priority of the constraint.

Additionally, the system assumes that the graphs are re-
duced such that all modes connected by explicit unify con-
straints or equivalent combinations of primitive constraints
into singlesupermodes.

3.2 ACT expansion

An ACT acts as a constraint macro that adds a new set of
edges to the constraint graph. However, unlike a macro, con-
straints are not added all at once. Instead, the expansion is
divided in two phases. The first phase expands constraints
by applying the ACTs independently. The second phase is
“post-processing” to take into account the interactions be-
tween the constraints.

In the first phase, each ACT is expanded by calling its
definition routine to add constraints either explicitly enumer-
ated or algorithmically. Each ACT may actually be defined
in terms of other ACTs, and they are expanded recursively
into force and guard constraints. In addition, an ACT may
perform structural modifications to the constraint graph. For
example, even though a unify ACT can be expressed in terms
of symmetric AA and DD constraints, an efficient alternative
is to merge the modes into a supermode. An ACT may also
introduce additional modes and handlers that are associated
with either new modes or existing modes. For example, a
parent-child ACT may either expand constraints transitively
such that hierarchical transitions can be performed in a single
step, or implement the transitivity with a synthesized helper
handler that invokes a mode’s parent or child. All such trans-
formations are abstracted from the end user, although ad-
vanced designers may wish to be exposed to such knowledge
in order to better evaluate implementation tradeoffs.

As an example, consider the composition of the bumper
and wheels processes in Fig. 1. The bumper process is inter-
nally constrained as a composition of a dseq(F, R, W, T) at
priority 1 and kill(R, F, W, T) at priority 2. It is possible to
apply ACTs across the processes, such as the pc constraint
that designates R and W of the bumper process as the chil-

F R

WT

F R

WT

AA AD DA DD

F R

WT

modes

bumper

N B

HT

wheels

dseq(F, R, W, T)
priority = 1

pc(B, R, W)
priority = 3

kill(R, F, W, T)
priority = 2

merged
constraints

B

F R

WT

R

B

W

Figure 1: example of ACT expansion on the bumper and
wheels processes

dren of mode B of the wheels process. These constraints are
merged in as shown at the top.

The second phase of ACT expansion computes thetransi-
tive closureon the graph output by the first phase. The edges
can be divided into two sets, force and transitive edges. Var-
ious ACTs mark the edges to be either transitive or intransi-
tive. All transitive edges are transitive, but force edges can be
either. Transitive closure is performed on the transitive sub-
graph so that constraints instantiated by different ACTs can
relate to each other. After the transitive closure is evaluated,
the transitive edges are removed.

3.3 post-processing

This “post-processing” algorithm is invoked after all ACTs
have been applied, so that interactions between ACTs can
be processed. The algorithm (3.1) is divided into two parts.
The first part computes the transitive closure on the force
constraints, and the second part adds the induced guard con-
straints on the newly transitive edges added by the first part.

The transitive closure of a graph can be computed using
a modified version of the Floyd-Warshall algorithm [6]. Ex-
tensions are necessary for several reasons: to handle multi-
ple edges between a pair of vertices, to handle vertex-to-edge
edges, to adapt the special transitivity rules for this problem,
and to statically resolve constraints that conflict. An edge
e has been slightly augmented with several attributes. First,
an iteration-numberattribute,I[e], to record in which iter-
ation it was added. An edge with an iteration number of 0
means it is one of the original constraint edges before transi-
tive closure is applied. The algorithm should either produce
a graph that is free of conflicts, or report to the designer that
the constraints are ill-posed.

The guard induction is applied to all those constraints
whose causality is dominated by a guarded vote or edge. One

4

Working paper, April 1998

Algorithm 3.1 The post-processing algorithm for transitive
closure and guard induction

// apply transitive closure to force constraints
n := 0
foreach (k 2M)
n := n+ 1
foreach (forceeik 2 transitive IN[k])
eik = (< w; x >, i; k; pik), I[eik] < n

foreach (forceekj 2 transitive OUT[k]k<x; >)
ekj = (< x; y >, j; k; pkj), I[ekj] < n

eij = (< w; s >, i; j; pij)
if (eij 62 E) then

addeij = (< w; s >, i; j; pkj);
setI[eij] := n;

else if(x 6= z) f
// contradiction: need to resolve thru priority
if (pij � pkj) f // ill-posed constraints

throw malformed exception(eij ; ekj);
g // else skip closure

g // expand guard constraints on transitive force edges
foreach (guardeij = (< x; g >; i; j))

if (j 2 forceE)
foreach (forceekl = (< y; z >; k; l); I[ekl] > 0)

if (j dominatesl from k)
add guarde = (< x; g >; i; ekl)

else if(j represents a vote)
foreach (forceekl = (< y; z >; k; l); I[ekl] = 0)

add guarde = (< x; g >; i; ekl)
else throwexception “j is a guard edge”

vertex or edgeb dominates a vertexc from a sourcea if all
paths froma to c require voting or going throughb. We
therefore extend guards to all transitive constraints that are
dominated by the guard.

Fig. 2 shows a subset of the robot example in the form of
the constraint graph through the transitive closure process.
The left (a) shows the graph assuming all ACTs have been
expanded. For simplicity, we assume all edges are marked
transitive. When a transitive edge is added, it is assigned
the same priority as that of its incoming edge. For example,
in the middle (b) figure, DD(F, T) has priority 2 because it
acquires it from AD(R, T), while DA(F, T) has priority 1 be-
cause it is connected through DA(W, T). DD(F, T) and DA(F,
T) are incompatible and is resolved in favor of DD(F, T). To
induce the guard constraint by G, we enumerate all transi-
tive edges dominated by the edge(s) it guards. In this case,
DA(R, W) dominates the transitive constraint DD(F, W) and
therefore we induce a new guard from G to this edge.

F R

WT

G

F R

WT

G

F R

WT

G

(a) (b) (c)

Figure 2: (a) shows the constraint graph of the bumper
process, (b) after transitive closure, with conflicting edges
shown in dashed arrows and removed, and (3) inducing the
guard constraint on the transitive edge.

4 Centralized mode manager

Following the transformation of ACTs and constraints into
their runtime form, the mode manager code that implements
the constraints must be produced. The implementation de-
pends significantly on whether the target architecture is a
uniprocessor or a distributed architecture. The discussion of
distributed architecture implementations is postponed to the
next section.

The centralized mode manager has a notion of a discrete
step, which defines a sequential boundary for a set of votes
to be accumulated and resolved as a single externally visible
change of configuration. We support two possible step se-
mantics: event-triggered and time-triggered. Both share the
same engine that computes the next configuration.

4.1 computing a new configuration

Algorithm 4.1 Centralized mode manager configuration se-
lection.
foreach voteV = f(mi; si) 2 M � fA;Dgg

foreach ((mi; si) 2 V)
if (mt+1

i = undefinedand voteGuard(mi) = true) then
foreach (eij 2 OUT[mi] ksi)

if (edgeGuard(eij = true))
let hsi; uji = constraint label ofeij
mt+1

i .set(uj)
foreach (mt

i that is undefined)
mt+1

i .set(mt
i)

Algorithm 4.1 shows how the next configuration is com-
puted. At the end of a step, the mode manager is given
an ordered set of requests, or votes, to change either part
or all of the configuration. Each vote is a set of tuples
V = f(mi; si) 2 M � fA;Dgg, wheremi is the specific
mode to change, andsi indicates whether it should be acti-
vated or deactivated. These are ordered such that a higher
priority vote is ordered earlier and effectively locks in its
value, so that a lower priority vote cannot override it if the
same mode it wishes to change has been set. Otherwise, a

5

Working paper, April 1998

F R

W

G

T

H

F R

W

G

T

H

AA AD DA DD

ABlock

Figure 3: Example for computing the next configuration. All
edges are primitive.

modemi can be transitioned tosi 2 fA, Dg, and its con-
straints must be fulfilled.

To fulfill the constraints exercised by modemi on chang-
ing to si, the algorithm iterates over all outgoing force con-
straints frommi that match the source polarity. In other
words, if si = A (namely to activatemi), then constraint
edges of typesfAA, ADg are used; or ifsi = D thenfDA,
DDg edges are used. Each constraint indicates whethermj

should be activated or deactivated, although the force con-
straint may be guarded by another mode. The change is
made only if the guarding condition is satisfied. Guard eval-
uation can be as efficient as a single conditional test, because
as individual modes change configurations, they can update
the guarding condition by incrementing or decrementing the
number of permitting or blocking modes.

Example

To illustrate the operation of the mode manager algorithm,
we consider an example based on the bumper process of the
robot (Fig. 3). Note that the mode manager maintains the
configurations without using the knowledge about what pro-
cesses the modes belong to. Therefore, the mechanism for
managing modes within a process is exactly the same as that
for a set of processes. For illustration purposes, we added
a vote-blocking constraint from H to T and a edge-blocking
constraint from G to W, and reversed a few constraint polar-
ities.

Assume the current configuration isf F, W, G g, and a
handlers requests for activation of R. The algorithm iterates
over all outgoing edges of R labeled AAp or ADp in an at-
tempt to apply force constraints. These edges are ADp(R, F),
AAp(R, T), and ADp(R, W) – but DAp(R, W) is not appli-
cable because the vote is for activation, not deactivation. F
is deactivated, since its guard is trivially true. T is also acti-
vated, even though H appears to be blocking T because the
block applies to votes for T, not on force constraints entering
T. On the other hand, since G is true, G blocks ADp(R, W)
and therefore W does not change. The resulting configura-
tion is thereforef R, T, W, Gg.

4.2 voting steps

The execution of a modal process system with centralized
control can be viewed as a sequence of discrete steps. All
events generated during a step are consumed during a later,
though not necessarily the next, step. Furthermore, no han-
dler execution crosses a step boundary. Several handlers may
be invoked in a given step. If they requests mode changes,
the requests are queued until the end of the step when they
are processed collectively for the next step. We provide
the mechanism for defining a variety of steps, ranging from
event-driven steps to dataflow and time-triggered steps.

The simplest step is defined by an event occurrence. That
is, the designer may assume no simultaneous events and that
a mode change request is serviced right after dispatching an
event to a set of handlers. Discrete event models are more
general in that events are not only completely ordered but can
also be simultaneous, such that vote processing is performed
after all (logically) simultaneous events have triggered their
handlers.

Another way of defining steps is to mark certain event
types as step-delimiting events. For synchronous dataflow
(SDF) models, a reasonable step would be to process votes
after an entire iteration of the dataflow graph has been in-
voked. This allows the dataflow graph to be invoked accord-
ing to a static schedule without using the more expensive
event dispatch mechanism. Although dataflow models are
untimed, dispatching according to a static schedule can be
extended for real-time systems by replacing dataflow events
with timer events. In general, statically scheduled, time-
triggered systems offer the best determinism and can make
the strongest guarantee in meeting hard real-time constraints.

5 Distributed mode manager

When mapping a design to a distributed architecture, con-
trol may be implemented in a centralized or a distributed
style. If the designer desires a centralized control process,
the centralized mode manager described in the previous sec-
tion can be used, with slight extension to communicate votes
explicitly in a message. However, such an organization is not
very efficient and defeats the very advantages offered by dis-
tributed architectures, because the centralized mode manager
must handle and generate communication to all processes
even if most are not affected by a localized mode change.

To exploit the architectural distribution, we supportdis-
tributed mode managers, which maintain consistent mode
configurations between processes residing on different
processors—without centralized control. With distributed
mode managers, each processor in the system is given its
own mode manager and each of these coordinate activation
and deactivations between themselves. In this case, however,
there is no single notion of step. In fact, the rate of step pro-
gression may be different for each specific mode manager.
To avoid overspecification, the modal process model does

6

Working paper, April 1998

not impose specificsynchronysemantics on the interactions
between mode managers; instead, several synchrony options
can be supported, as described in [2]. This section focuses on
one on synchrony option calledmode synchronousseman-
tics, where a mode change blocks progress of only those pro-
cesses whose modes are affected until their mode managers
agree to it.

The synthesis steps for a distributed mode manager can
be divided into graph partitioning, control communication
synthesis, and local mode-manager synthesis. Local mode-
managers are centralized mode managers whose inputs are
their respective partitioned graphs. This section reviews the
graph partitioning algorithm that has been described previ-
ously and addresses the extensions to the mode managers
needed for distributed control coordination.

5.1 mode manager partitioning

In distributed implementations of a modal process system,
it isn’t necessary for all parts of the system to maintain the
complete constraint graph. In fact, each subsystem needs
only a projection of the constraint graph containing the por-
tions relevant to the processes in that subsystem. Specifi-
cally, these are the the modes that occur within these pro-
cesses (the local modes), and the modes that appear as the
source end of a primitive constraint that terminates a local
mode (see Figure 4b) andc)). For more information, see [4].

5.2 control communication

Upon completion of the partitioning step, the mode manager
residing on each subsystem is aware of whichvotedactiva-
tions and deactivations of modes need to be transmitted to the
rest of the system. Using mode synchronous semantics, the
requesting subsystem is not able to perform the changes until
each of the relevant subsystems acknowledges this request.
Assuming reliable communication between all mode man-
agers, there is a three phase handshake (request, acknowl-
edge, commit) such that the requester transmits the desired
activations and inactivations as a special vote to all relevant
mode managers and it waits for the remote subsystems to
acknowledge the requests.

The receiving subsystem mode managers include this vote
in calculating the next configuration (based on this subsys-
tems own version of steps). In considering this sort of vote
local mode manager must determine whether there were any
internally generated conflicting votes—and if there were and
they had higher priority than the special vote, it must send a
request of its own to the original requester before acknowl-
edging the original request.

If it finds no such conflict, it simply acknowledges the re-
quest and places itself into a provisional state until it receives
the correspondingcommitmessage. From the perspective of
the requester, the actual transition to a new configuration is
blocked until all requests have been acknowledged. When

the requester receives acknowledgments from all subsystems
over all parts of the vote, it performs the action locally (pro-
vided there were no conflicts received before getting all ac-
knowledgments) and sendscommitmessages to all relevant
subsystems. If it received a conflict in the mean time, and
it decided that the conflict had higher priority, then it sends
abortmessages to each of the participants.

e

c a

bd

A B

C

a b d

e

c

A B

C

a b d

e

c
c

a

a

A B

C

a b d

e

c
c

a

a

Figure 4: Shown are the steps involved in partitioning the
constraint graph for individual mode managers (based on
a preexisting process partition), and in synthesizing control
communication.

A B

C

A

B

C

acks {(a, A)}

commit {(a, A)}

{(a, A)}

}

{(a, A)}

e

c a
a b d

bd

e

c

{(a, A)}

Figure 5: a) shows a system constraint graph, b) shows the
mapping of nodes from this to processes in a distributed im-
plementation and c) shows the control communication re-
quired to insure mode synchrony.

To insure consistent choices in the event of several con-
current requests, there should be system wide total ordering
of priorities that allow all subsystems to independently but
consistently choose from among conflicting requests.

Identification of the required control communication is
straightforward given the partitioning step. Any constraint
such that the source mode is on one subsystem, and the ter-
minal mode is on another implies a communication.

7

Working paper, April 1998

A

B

C
ack

abort
{(a,A)}

ack
commit

A B

C

{(a,A)}

c,A

{(a,A)}

e

c a
a b d

bd

e

c

{(c,A)}

Figure 6: This shows the control communication between
the processes in Figure 5 in the presence of an inter-process
vote conflict.

All subsystem mode managers are essentially centralized
mode managers, and can be synthesized as demonstrated in
the previous section, with some minor modifications.

5.3 Examples

In Figure 4 we show a system constraint graph, and the steps
required to build consistent distributed mode managers for
this. First the mode graph is partitioned across the subsys-
tems and then the control communication is synthesized.

Next we subject this system to votes various conditions
that might occur in choosing a new consistent configuration
(shown in Figures 5 and 6). In Figure 5 the system hosts
a single request for mode activation, and this is easily re-
solved. In Figure 6 case, there are two concurrent requests
for activation, where one request has a higher priority than
the the other. In this case, each of the requesting managers
must evaluate the relative priority of the requests, and inde-
pendently (but consistently) choose the winner. The subsys-
tem that requested the losing activation (subsystem A in this
case) is then responsible for sending abort messages to all
subsystems that received the original request.

6 Related Work

Esterel [1] is an imperative langauge for composing control
hierarchically. However, Esterel’s control state is encoded
by the program counter and cannot easily be used to sched-
ule and selectively activate handlers the way modal process
modes can. Coordination in Esterel is handled by emitting
events, which is similar in style to message passing, and also
suffers from code sprinkling, fixed assumptions about the in-
terface client, and error-prone maintenance problems.

Statemate, based on Statecharts [8], uses a process model
on the activity chart level, and supports composition with
a process using statecharts. Like Esterel, however, state-
charts use events to define the interface between two com-

posed state machines. ActivityCharts are forced to encode
control into messages the same way the process model does.

Frølund’s synchronizers[7] are more similar to our
modal processes because they customize the behavior of the
reusable code without requiring the designer to alter it. How-
ever, synchronizers are designed, not surprisingly, to assist
synchronization. Consequently, they only support block-
ing of method invocation, and treat dispatching, scheduling,
and real-time issues as orthogonal problems. Synchroniz-
ers also assume a shared-memory computation model, while
our model is focused on a specific appliation domain, namely
that of distributed real-time embedded systems.

D [9] is a distributed programming langauge framework
build on aspect-oriented programming, a general mechanism
that includes support for collecting code that would other-
wise be scattered about a program. D also supports reusable
synchronization, but like synchronizers, D also assumes a
shared-memory computation model.

7 Conclusions

Control composition is an important problem in modeling
and synthesis of complex embedded systems. Existing ap-
proaches hinder reuse of control behavior. If the behavior
is structured as communicating processes, control handling
is sprinkled everywhere and must be modified in anad hoc
manner when used in different applications. If the behavior
is captured as hierarchical state machines, control may com-
pose better but there is no modularity and they are difficult
to retarget over different architectures. The modal process
model shows promise in addressing these problems. It al-
lows designers to effectively constrain the state space within
and between processes using high-level primitives, called
abstract control typesthat subsume hierarchical state ma-
chines and can better match designer’s intuitionsimilar to the
subsumption architecture. By separating out composition-
specific behavior and synthesizing the run-time system, we
can make the modules more reusable over different applica-
tions.

The usefulness of a specification model can be dimin-
ished if it does not lend itself to efficient implementation
on a variety of target architectures. We have shown that
the basic primitives, namelyforceandguardconstraints, do
lend themselves to very efficient implementations and re-
quires only as much time as the actual number of modes that
change in a given configuration. Although we provided al-
gorithms for a software implementation of the synthesized
control, called themode manager, the simplicity and the
parallel nature will lend them to efficient hardware imple-
mentations as well. More importantly, modal processes can
be mapped onto arbitrary distributed architectures through
synthesis of distributed mode managers. By automating the
highly error-prone low-level tasks of managing synchroniza-
tion and control communication, designers can better spend

8

Working paper, April 1998

their time with global design issues.

References

[1] G. Berry and G. Gonthier. The ESTEREL synchronous
programming language: design, semantics, implementa-
tion. Science of Computer Programming, 19(2):87–152,
November 1992.

[2] P. Chou and G. Borriello. An analysis-based approach to
composition of distributed embedded systems. InProc.
International Workshop on Hardware/Software Code-
sign (CODES/CACHE), 1998.

[3] P. Chou and G. Borriello. Functional encapsulation vs.
state encapsulation in the specification of reactive sys-
tems. InSubmitted to the 1998 ACM SIGPLAN Work-
shop on Languages, Compilers, and Tools for Embedded
Systems, June 1998.

[4] P. Chou and G. Borriello. Modal processes: Towards
enhanced retargetability through control composition of
distributed embedded systems. InProc. Design Automa-
tion Conference, June 1998.

[5] P. Chou, K. Hines, K. Partridge, and G. Borriello. Con-
trol generation for embedded systems based on compo-
sition of modal processes (extended version). Techni-
cal Report UW-CSE-98-04-01, University of Washing-
ton, 1998.

[6] T. H. Corman, C. E. Leiserson, and R. L. Rivest.In-
troduction to Algorithms. The MIT Press/McGraw-Hill,
1990.

[7] S. Frølund and G. Agha. A language framework for
multi-object coordination. InSeventh European Confer-
ence on Object-Oriented Programming (ECOOP), num-
ber LNCS 707. Springer-Verlag, July 1993.

[8] D. Harel. StateCharts: a visual formalism for complex
systems.Science of Programming, 8(3):231–274, June
1987.

[9] C. V. Lopes and G. Kiczales. D: A language framework
for distributed programming. Technical Report SPL97-
008 P9710042, Xerox Corporation, February 1997.

9

