
Synthesis of the Hardware/Software Interface in
Microcontroller-Based Systems�

Pai Chou Ross Ortega Gaetano Borriello

Department of Computer Science and Engineering
University of Washington, Seattle, WA 98195

Abstract

Microcontroller-based systems require the design of a
hardware/software interface that enables software running
on the microcontroller to control external devices. This
interface consists of the sequential logic that physically
connects the devices to the microcontroller and the soft-
ware drivers that allow code to access the device functions.
This paper presents a method for automatically synthesiz-
ing this hardware/software interface using a recursive al-
gorithm. Practical examples are used to demonstrate the
utility of the method and results indicate that the synthe-
sized circuit and driver code are comparable to that gen-
erated by human designers. This new tool will be used by
higher-level synthesis tools to evaluate partitionings of a
system between hardware and software components.

1 Introduction

Microcontrollers are microprocessors with integrated
general-purpose interfacing logic to facilitate the control of
peripheral devices. This logic is encapsulated in I/O ports
(i.e., collections of I/O pins and related interface logic) that
can be written to or read from by program code. Micro-
controllers are commonly used to implement digital con-
trol systems because they require minimal interfacing hard-
ware. Peripheral devices range from user input and display
units to memories and communication interfaces.

Designers of microcontroller-based systems must al-
locate devices to ports and customize subroutines to ac-
cess the devices under the specific port assignment chosen.
There are several issues in performing this task. Most im-
portantly, additional hardware must be minimized so as to
maintain the benefits of using a microcontroller, namely
reducing part count. If there are more device pins than port
pins, then the ports need to be time-multiplexed with the

�This work was supported by NSF under Grant MIP-8858782,
DARPA under contract N00014-J-91-4041 , and Patricia Roberts Harris
Fellowship.

corresponding de-multiplexing performed in external hard-
ware. Another important goal is to minimize code size. Ex-
ploiting the grouping of signals can reduce the number of
instructions needed in the driver routines. In certain cases,
memory-mapped I/O techniques are used to access the de-
vices with the processor’s address and data bus thereby by-
passing most of the port interface logic. Since the address
and data busses also use I/O pins to reach the devices, this
further complicates the port assignment problem.

In this paper, we describe a tool that automates the syn-
thesis of the hardware/software interface between a micro-
controller and the devices it controls. Optimizations of the
synthesis process focus primarily on the minimization of
interface hardware and also the code size of the device
driver routines. Section 2 specifies this interface synthe-
sis problem. Section 3 describes the data structures used to
represent the microcontroller, devices, and hardware and
software primitives. Section 4 presents the port allocation
algorithm. Section 5 highlights the features of this inter-
face synthesis tool with two practical examples. Section 6
concludes the paper with an evaluation and discussion of
future work.

2 Problem Specification

The input to the port allocation tool consists of a behav-
ioral description of the system, peripheral device descrip-
tions, and a microcontroller description. The ouput of the
tool is a netlist, customized driver routines, and any neces-
sary interface components.

The behavioral description is a high-level, imperative
language program written by the user describing the nec-
essary components of the circuit and its functionality. This
program has a declarative section and an operational sec-
tion. The declarative section allocates static storage for
data and instantiates peripheral devices. The operational
section computes functions and communicates with the pe-
ripheral devices via driver calls. We assume that the user
program is single-threaded. This eliminates synchroniza-

tion as an issue and simplifies code generation.
The peripheral device description contains a list of de-

vice ports (collections of pins) and driver routines. The
device ports must be connected directly or indirectly to ei-
ther a microcontroller port or a power rail. The driver rou-
tines describe a sequence of microcontroller-independent
actions required to communicate with the device. In this
paper, we only consider communication protocols that rely
solely on sequencing rather than exact timing relationships
between signalling events. By only considering sequenc-
ing we can modify driver routines to set up interface hard-
ware while preserving the correctness of the communica-
tion protocol.

The microcontroller description contains a list of con-
troller ports and a set of port instructions. The only means
the microcontroller has of communicating with peripheral
devices is through its ports. The port instructions define the
semantics of these external communications. A port may
be input only, output only, or bidirectional. A port may
also be partially addressable. For example, an 8-bit port
may be written in either byte-mode or bit-mode if such in-
structions are available. A single instruction may alter the
values of several ports. For example, a memory access will
not only place data on a port, but also drive the address port
and read/write enable ports.

The tool outputs a netlist which includes the micro-
controller, devices, and any necessary interface hardware.
Also, the tool automatically specializes the device access
routines for the port assignment selected.

3 Representation: Data Structures

The information regarding the interface capabilities of
the microcontroller and the interface requirements of the
devices are stored in a class-instance data structure. An
object-oriented management system creates and maintains
the attributes for classes and instances of devices, con-
trollers, and interface logic.

3.1 Device Representation

The device class attributes are stored in the device li-
brary. The attributes include the device port list, static
pin rules (SPRs), and sequences (SEQs). The device port
list contains all of the device ports that must be connected
to controller ports. The SPRs represent hardware and the
SEQs represent software. Figure 1 shows the representa-
tion for an LCD.

The SPRs capture the activation conditions for the de-
vice ports. They are essentiallyguarded commandsin the
formX ! Y [3]. X is the guard, or a Boolean expression
in terms of device ports. The Boolean terms may include
edge-triggered conditions. For example,x+ means “rising

deviceLcd-device(db, rs, rw, e)
inout [7:0] db;
input rs, rw, e

f // *** Registers for SPRs ***
reg [7:0] lcdReg;
// *** SPRs ***
!rw & e -> lcdReg := db;
rw & e -> db := lcdReg;
// *** SEQs ***
seqLcd-init ()
f e:= 0;

par f rs := 1; rw := 0; db := 0x30;g
e := 1; e := 0;

g
seqLcd-write (data)

input [7:0] data;
f par f rs := 1; rw := 0; db := data;g

e := 1; e := 0;
g

g

Figure 1: Example Device Representation (LCD)

D Q

CLK

CLK+ ! reg := D
TRUE! Q := reg

D-register

a

y

e

logn f

g n

e ^ (a=i) ! y[i] := 1
(a6=i) ! y[i] := 0
: e ! y := 0

Decoder

Figure 2: SPR examples for common components

x,” and x� means “fallingx.” Y is a list of assignment
statements which are activated wheneverX is true.

The SPRs express the direction and enabling character-
istics of the pins. Direction is captured since data flows
from the right to the left of the assignment. The guard ex-
pression may represent theclock in a flipflop, theenable
of a tristate, or theselect lines for a decoder or a multi-
plexor. An SPR with a guard that is always true represents
a wire, a continuous input, or a continuous output. Two
SPR examples are shown in Figure 2.

A SEQ represents the skeleton of a device-driver rou-
tine. It specifies the series of steps that the controller must
take to communicate with the device. A SEQ is essentially
a textual representation of the timing diagram, except that
SEQs can also include parameters from the driver calls.

The SEQs consist of assignment statements involving
the ports and parameters. SEQs contain no control con-
structs, like loops or conditionals. These constructs are
expressed at the level of the behavioral description. There-
fore, a SEQ can be viewed as a basic block implementing a

seq LCD write (data)
 input [7:0] data;
{ par {
 rs := 1; rw := 0;
 db := data;
 }
 e := 1; e := 0;
}

db

e

rw

rs

Figure 3: A sample SEQ and its timing diagram.

primitive operation that would normally be written directly
in assembly language. Apar construct lists signals that
may be asserted in any order. The behavioral description
will eventually be compiled and linked with these low-level
basic blocks. Figure 3 shows a SEQ example.

3.2 Microcontroller Representation

The microcontroller attributes are stored in the con-
troller library. These attributes include a controller port
list, a set of communication instructions, and a specialized
functions list. Figure 4 shows an example specification for
the Intel 87C51 microcontroller.

Thecontroller port listcontains information abouteach
port’s name, size, and direction. The direction may be
input-only, output-only, or bidirectional. The size of a port
is the maximum number of bits that can be written to or
read from in parallel during one communication instruc-
tion. Ports can have multiple communication instructions
representing the different ways the controller can access
them.

Thecommunication instructionsdefine the semantics of
reading and writing the controller ports. Each instruction
has a list of typed formal parameters. There are two cat-
egories of types: data-types and port-types. A data-type
defines the width of a parameter. A port-type is defined
by a list of ports and their addressability. Every port in-
struction contains at least one parameter of some port-type.
Each parameter may also be input, output, or bidirectional.
The direction of a data-type indicates whether a parameter
value is passed into or returned from a SEQ. The direction
of a port-type indicates whether a value is written out to or
read in from a port.

Many microcontrollers include specific interface fea-
tures that directly support connections to certain types of
devices. Examples of this are built-in serial line controllers
(UARTs) that support serial communication using common
protocols. These highly specialized interface features are
not easily discernible in a behavioral specification or in
a low-level description of the controller’s interface logic.
Therefore, they are treated as special cases.

The specialized-functions-listcontains devices that ei-
ther have predesigned interface parts or are replaceable by

processorIntel87c51 (p0, p1, p2, p3, ale, psen)
inout [7:0] p0, p1, p2, p3;
output ale; input psen;

f // port type definitions
byte-port = (p0, p1, p2, p3);
bit-port = Index-op (byte-port, 0, 7);
// communication instructions
instruction write-byte(data, port)

input [7:0]data;
output byte-port port;

f port := data;g
instruction read-bit(variable, port)

output variable;
input bit-port port;

f variable := port;g
....
// specialized functions
specialuart ()
f substitute (p3.0, RxD); substitute (p3.1, TxD);g

specialram (addressWidth, dataWidth)
input int addressWidth, dataWidth;

f devicerefaddrLatch, RAM;
addrLatch := instantiate(latch);
RAM := instantiate(ram,addressWidth,dataWidth);
connect (RAM.dataBus, p0);
connect (RAM.hiAddress, p2);
connect (RAM.loAddress, addrLatch.Q);
connect (p0, addrLatch.D);
connect (ale, addrLatch.CLK);
connect (RAM.we, p3.6);
connect (RAM.oe, p3.7);

g
g

Figure 4: Example Microcontroller Representation

a built-in function. In the first case, the list contains the in-
terface parts and the netlist for the predefined connections.
An example of this is a RAM for the Intel 87C51 which
requires a latch for the lower order address byte, so that
port p0 may also be used for data. Such a connection is
shown in Figure 6. In the second case, the list contains
the controller ports which replace an external device. For
example, the 87C51 has a built-in UART. The portsp3.0
and p3.1 may be configured asRxD and TxD for serial
communication. Such a connection is shown in Figure 7.

3.3 Interface Parts Representation

The interface parts library contains hardware and soft-
ware templates. The hardware templates include registers,
tristates, multiplexors, decoders, and registered-decoders
(i.e. a decoder whose outputs are latched). They are rep-
resented with SPRs similar to the other devices. The soft-
ware templates are the SEQs required to communicate with
these hardware components.

The port-allocation process introduces the interface
parts to allow sharing or encoding of the controller ports.
Sharing, or time-multiplexing, means a controller port is
connected to more than one device port. Encoding, in the
context of this paper, means any transformation betweenn

one-hot signals and itslogn-bit representation using either
a multiplexor, an encoder, or a decoder.

4 Main Algorithm

The port-allocation algorithm described in this section
makes a pass over the list of device ports that must be con-
nected to microcontroller ports. It proceeds linearly but
may need to backtrack when it discovers an early decision
that prevents later optimizations. The backtracking depth
is bounded by a constant, the number of controller ports.
Therefore, the algorithm isO(n2) in the worst-case (which
rarely occurs) wheren is the number of device ports.

The first step of the algorithm initializes the internal
data structures. Thenetlist, which contains all point-to-
point connections between ports, is initialized to the empty
set. Thebinding-list, which contains all connections in-
volving a controller port, is initialized to the empty set.
The free-list, which keeps track of unconnected controller
ports, is initialized to the set of all microcontroller ports.
Thedevice-list, which contains the attributes of all instan-
tiated devices, is initialized to all of the devices that the
user program instantiates. Thedport-list, which contains
all of the device ports requiring a connection, is initialized
to all of the device ports of thedevice-listsorted by width.

The second step of the algorithm isspecialized func-
tion mapping. It exploits special built-in functions of the

MainAlgo()
f initialize data structures;

special functions mapping;
Recurse(fiveLists);
if (FAIL) MemoryMappedIO(fiveLists);

g
Recurse(fiveLists)
f while (dportList 6= EMPTY) f

D := Dequeue(dportList);
CList := SelectControllerPort(D);
NormalAlloc(CList,D,C);
if(SUCCESS) f

if(C is 1st dedicated controller port of its size)f
Bind(fiveLists);
DriverLinkAndUpdate(fiveLists);
L := Recurse(fiveLists);

// *** this is the backtracking point ***
if (not FAIL) return L;

g
g
if (FAIL) ForcedSharing(fiveLists);
if (FAIL) EncodingTransform(fiveLists);
if (FAIL) return FAIL ;
Bind(fiveLists);
DriverLinkAndUpdate(fiveLists);

g
return netlist + drivers + interface parts;

g

Figure 5: Main Algorithm

microcontroller or connects devices with predesigned in-
terfaces. It checks if any member of thedport-listis also in
thespecialized-functions-list. In order of decreasing width,
the algorithm attempts to allocate the specialized controller
port to the device port. Upon success, the five lists are up-
dated.

The third step of the algorithm is a recursive call (sec-
tion 4.1) which attempts to allocate a controller port for
every device port from thedport-list in order of decreas-
ing width. If this step fails then the algorithm attempts
memory-mapped I/O(section 4.7). If successful the algo-
rithm returns thenetlist, specialized driver routines, and
any necessary interface hardware. This output can be used
to synthesize software and hardware. A compiler can gen-
erate code with the user program and the SEQs as input.
A technology-mapping system can use the SPRs to synthe-
size the necessary interface hardware components.

4.1 Recurse

The procedureRecurse allocates controller ports
to device ports using three methods:NormalAlloc ,

ForcedSharing , andEncodingTransform . It it-
erates over membersD of dport-list and callsSelect-
ControllerPort to return a list of suitable controller
portsCList. NormalAlloc (section 4.3) attempts to con-
nectD to a member ofCListwithout modifying any SEQs.
If successful, it decides whether or not to store the back-
tracking point.

Backtracking is a method for the algorithm to return to
an earlier branching point after making an infeasible allo-
cation decision. It allows the algorithm to explore progres-
sively more expensive but potentially feasible solutions.
As a heuristic, this algorithm marks a backtracking point
when it allocates the first dedicated controller port of a
particular width. The intuition is that it is considered a
luxury for a device port to own a dedicated controller port.
To mark a backtracking point, the algorithm recurses so
that the activation record saves the program state on the
stack. If the recursive call is successful then a feasible
solution has been found, and all recursive calls return to
Main-Algo .

If either NormalAlloc fails or if Recurse back-
tracks, thenForcedSharing (section 4.4) is attempted.
If this fails, thenEncodingTransform (section 4.5) is
attempted. If this still fails thenRecurse backtracks. If
there are no more backtrack points, thenMain-Algo at-
tempts memory-mapped I/O.

If any of the methods is successful, thenBind and
DriverLinkAndUpdate are executed to reflect the al-
location decision. Whendport-list is empty, all device
ports have been successfully connected directly or indi-
rectly to the microcontroller.

4.2 Controller Port Selection

SelectControllerPort chooses a controller port
C for the device portD if it meets the following two con-
ditions. First,C must have a width greater than or equal to
that ofD. We assume that the width of every device port
not on thespecialized-functions-listis less than or equal to
the width of the largest controller port. If a port is too wide,
then it must be converted into smaller ports with a higher
level transformation, which involves de-multiplexors and
changes to the device SEQs. Second, the directionality
of C must be compatible with that ofD. The list of el-
igible controller portsCList is sorted by allocated/free
ports. This allowsNormalAlloc to evaluate all poten-
tial sharing possibilities before sacrificing any yet unused
controller ports.

4.3 Normal Allocation

NormalAlloc decides which controller portC should
be used to communicate with the given device portD. It
iterates over sorted members ofCList from the previous

step. If a memberC of CList passes theinterference
check, then it can be allocated toD without modifying any
SEQs.

Interference checkdetermines whether a device portD

can be connected to a controller portC without bus con-
tentionorsequence clash. Bus contentionoccurs when two
or more device ports connected to the same controller port
areactiveat the same time. A device port isactive if it is
inputting or outputting a value. Asequence clashoccurs
when two ports of the same device are bothactive in the
same SEQ, and they are both connected, directly or indi-
rectly, to the same controller port.

Bus contention is detected by examining the SPR guards
of each device port connected to the same controller port.
A guard defines the conditions under which the device port
is active. The steps of bus contention check areweakest
guard extraction, post-sequence condition evaluation, and
contention evaluation.

A weakest guardis defined as the minimum cover of
a disjunctive (sum of products) expression. For example,
supposeS1 equalsabc+ ae + af . Then the weakest guard
is a. As another example, letS2 equalabc+ bd+ e. Then
the weakest guard isb + e. The weakest guard can be
thought of as a master enable for the remaining signals in
the set of SPRs. Using the weakest guard provides more
sharing opportunities for controller ports.

Thepost-sequence condition(PSC) is defined as the set
of values that a device port retains after the execution of
any SEQ that references it. Note that we are only interested
in the PSCs of those device ports that are weakest guards.
The PSC of a guardG is the union of the last assignment
toG in all SEQs.

Contention evaluationdetermines whether any two de-
vice ports from different devices connected to the same
controller port are mutually exclusive. That is, only one
may beactiveat a time. To check if a portD is active out-
side of a SEQ call, the PSC set is substituted into theweak-
est guardset. If any of the guard expressions evaluates
to true, thenD remains active after that particular SEQ.
Therefore, connectingD toC will result in contention.

Thesequence clash checkdetermines whether two de-
vice ports from the same device connected to the same
controller port are mutually exclusive. In addition to the
point-to-point connections, thesequence clash checkmust
also examine those device ports indirectly connected to the
same controller port. This knowledge can be inferred from
thenetlist. If two such ports appear in the same SEQ, then
they have a sequence clash.

4.4 Forced Sharing

ForcedSharing eliminates bus con-
tention by strengthening the guard for the device port to

be shared. Guard strengthening is accomplished by intro-
ducing interface hardware in some combination of tristates
and D-registers.

A controller port is a candidate forforced sharingif it
has an existing connection and a width greater than one.
Among the candidates, a shared port is preferred over a
dedicated port for forced sharing. The justification is that
a shared port is already guarded and requires at most one
interface component. On the other hand, a dedicated port
may not be guarded and may require two interface parts.

Based upon the directionality ofD, ForcedSharing
generates suitable interface hardware. For an input-only
device port, a D-register is chosen. For an output only de-
vice port, a tristate is chosen. For a bidirectional device
port, a bidirectional latch is chosen. Once the interface
component is selected, it is added to thedevice-list. Both
the controller port and the device port are connected to this
component. In thebinding step described below, every-
where a SEQ references this device port is replaced with
an interface routine call.

4.5 Encoding Transformations

The algorithm uses threeencoding transformationtech-
niques to encode single-bit device ports. They are decoder,
registered-decoder, and multiplexor. These techniques en-
coden single-bit device ports inlogn bits of a controller
port. The example in section 5.2 applies both decoder and
registered-decoder transformations.

The decoder transformation technique encodes a set of
single-bit, one-hot, input-only ports. The encoded con-
troller ports are connected to the input of an enabled de-
coder. Each device port is connected to an output of the
decoder. In addition, a separate enable port is required to
prevent glitching. This enable port is added to thedport-
list for later allocation.

To determine if a set of device ports is one-hot, the al-
gorithm evaluates the PSCs for each port. If the port has a
constant PSC, then it can be one-hot encoded. If the can-
didate ports have different constant values, then polarity
conversion will be necessary.

The registered-decoder transformation technique en-
codes a set ofn single-bit, input-only device ports which
are not one-hot. Note that registered-decoders are more ex-
pensive in both software and hardware than plain decoders.
The logn encoded controller ports are input to an enabled
decoder. The outputs of the decoder are connected to the
latch enable inputs ofn D-registers. Each device port is
connected to a register output. A single data bit from the
controller is fanned out to each register’s input. To prevent
glitching of the register enables, a decoder enable port is
required. The data port and the decoder enable port are
added to thedport-list for later allocation.

The multiplexor transformation technique encodes a set
of n single-bit output-only ports. Unlike the input-only
case, the algorithm cannot determine if the outputs of de-
vice ports are one-hot. Each of then device ports are con-
nected to the multiplexor’s input. Thelogn encoded con-
troller ports are connected to select one of thesen device
ports.

4.6 Bind, Link, and Update

Pairs of (controller portC, device portD) are passed
to Bind upon successful allocation. The binding step up-
dates the five lists to reflect the connection decisions.

After thebindingstep, the same(C;D) pairs are passed
to DriverLinkAndUpdate . The linking step is simi-
lar to linking in program compilation, where all references
are bound to addresses. In the driver’s case, device port
references in the SEQs are bound to the controller port ref-
erences in the SEQs and the SPRs. If interface hardware
H is introduced forD, then theupdatestep will replace all
assignments involvingD with the SEQ calls toH.

4.7 Memory-Mapped I/O

Memory-mapped I/O is attempted when all other trans-
formations have failed. It is expensive in terms of hardware
and performance, because it involves complex, controller
specific memory sequencing and a consistent allocation of
the memory space. We are currently developing a more
general algorithm.

A memory transaction includes an address cycle fol-
lowed by a data cycle. A read or write signal is asserted to
signify the data cycle. We assume that the address is held
throughout the data cycle. The address bits are decoded
to control the interface hardware introduced for memory-
mapping.

Transformations for input-only and output-only device
ports are analogous to the encoding transformations de-
scribed above. In the bidirectional case, the device port
must be isolated from the controller’s data bus with an I/O
latch such as that used in Figure 7.

5 Examples

This section presents practical examples to illustrate the
utility of the algorithm. Results indicate that the synthe-
sized systems are comparable to implementations designed
by humans. The first example is an electronic phonebook.
The second example is a software/hardware interface for
an interactive tester.

5.1 Electronic Phonebook

This example is a phonebook with a dialer. Names and
phone numbers are downloaded into RAM via the serial

/
8

from p2.6
from P2.0

LCD:E

87C51

ALE

P2/

A[8:15]

AD[0:7]

P0/
P1

P3.7/~RD
P3.6/~WR

P3.1/TxD
P3.0/RxD

by Algorithm

SPEAKER

8

/

RxD

/
6

D

SPKR

TP5087

A[13:8]
A[7:0]

D[7:0]

~WE~OE

RAM

373

CLK

D Q

SLM21602(LCD)

db[7:0] RSERW

/
8

B1
B2
B3

B0

from p2.1

374

Q D

CLK

MUX

S1
S0
D

A[13:8]
A[7:0]

D[7:0]

~WE~OE

RAM

/
6

~WR~RD

373

CLK

D Q
8
//

88
/ /

8

RxD
SPEAKER

D

SPKR

TP5087

B0
B1
B2
B3

by Human Design

87C51

ALE

P2/

A[8:15]

AD[0:7]

P0/
P1

P3.7/~RD
P3.6/~WR

P3.1/TxD
P3.0/RxD

RW E RSdb[7:0]

SLM21602(LCD)

Figure 6: Electronic Phonebook

port. Required components include a TP5087 dial-tone
generator, four switches, an SLM 21602 LCD, a 16K RAM
and a UART all controlled by an Intel 87C51 microcon-
troller.

The 87C51 is a microcontroller with 32 single-bit I/O
ports. They can be addressed individually, or in groups of
eight. The groups arep0, p1, p2, andp3. When addressed
individually, they are referenced by their group name fol-
lowed by an index. For example,p0.0 or p3.7.

The LCD has four ports: an 8-bit bidirectional data port
namedDB, and three input-onlyportsRW, RS, andE. RW
selects the direction ofDB for reading or writing.RS se-
lects between the instruction register and the data register
in the LCD.E signals the start of a read or a write opera-
tion. The TP5087 has an 8-bit input only data port. Each
of the four switches has an output only port. The RAM has
a 14-bit address port, an 8-bit data port, a read enable port,
and a write enable port. The UART has a data-in port and
a data-out port.

The specialized-functions-listof the Intel 87C51 con-
tains a RAM and a UART. The RAM has a predesigned
interface consisting of a level-sensitive latch to isolate the
lower address bits from the data bits. Unlike the RAM
which is an external device, the UART is a built-in func-
tion of the 87C51. Therefore, no physical UART device
is instantiated. The portsp3.0 andp3.1 correspond to the
RxD andTxD ports of the UART.

The dialtone generator is not sharable so it is allo-

cated its own controller port. TheDB port of the LCD
is sharable, therefore it is assigned the same controller port
as the RAM. TheE port of the LCD is not sharable.RS
andRW are sharable since they are both guarded byE. The
four switches are not sharable, so they are allocated their
own controller ports.

The solution generated by the algorithm has compa-
rable performance to the human design while using two
fewer hardware components. The algorithm detected a
subtle sharing opportunity between the RAM’s data port
and the LCD’s data port. This sharing decision enables the
switches to be connected directly to the controller. The hu-
man design forces the tone generator and the LCD to share
p1 using a register. The register’sCLK requires a dedicated
controller port leaving only three free ports. A multiplexor
is required to connect the four switches.

5.2 Hardware/Software Interface for Interactive
Tester

This example allows a logic simulator or tester program
running on a personal computer to read and write values to
256 physical pins connected to an actual circuit. The com-
puter sends commands to the microcontroller via the serial
port. The controller then samples or sets the pins accord-
ingly. The pins are organized in 32 groups of eight. The
controller communicates with 32 8-bit bidirectional latches
connected to these pins. The required components include
an 87C51, 32 8-bit bidirectional latches, and a UART.

Each bidirectional latch has two 8-bit bidirectional data
ports and three 1-bit control ports. The data portD is read
or written by the controller. The data portB connects to the
pins of the device under test. The three control ports are
write, enable, andread. Thewrite signal causesD to be
latched internally. Theenable signal causes the internal
latch to output its value onB. Whenenable is low, B is
tristated. Theread signal causesD to be driven with the
value ofB.

All of the D ports are sharable, so they are all connected
to p0. The remaining 96read, write, andenable ports
are not sharable. Theread and write signals have con-
stant PSCs and no sequence clashes. Therefore the algo-
rithm uses a 6:64 enabled decoder to address them. Since
enable has a variable PSC, the algorithm uses an enabled
5:32 registered-decoder.

The solution generated by the algorithm after technol-
ogy mapping with similar components uses ten fewer hard-
ware packages than the human design. The extra compo-
nents in the human solution support a sequentialaccess
pattern of the pins which minimizes controller ports re-
quired. It has slightly higher performance because fewer
instructions are needed per access. A higher level trans-
formation would be needed for an interface synthesis algo-

G

377
QD

[32:63] [0:31]

{

{
{

32 x I/O Latches

BD

I/O Latch

READ

ENABLE

WRITE/

Vdd

P3.0/RxD
P3.1/TxD

P3.6/~WR
P3.7/~RD

P1
P0/

AD[0:7]

A[8:15]

P2/

ALE

87C51

4 x 377’s

/

E

A Y

Decoder8

68

/

/

8by Human Designer

TxD

RxD

8x4

[64:67]

64
/

BD

I/O Latch

READ

ENABLE

WRITE

32 x I/O Latches

{
{

{
/

325
/

32 x I/O Latches
/
6

RxD

by Algorithm

E

A Y

Decoder

TxD

P3.0/RxD
P3.1/TxD

P3.6/~WR
P3.7/~RD

P1
P0/

AD[0:7]

A[8:15]

P2/

ALE

87C51
8
/

Y
Decoder

Reg-

E

A

[32:63] [0:31]

Figure 7: Hardware/Software Interface for Interactive
Tester

rithm to exploit such access patterns.

6 Conclusion and Future Work

We have presented an algorithm that interfaces a micro-
controller with its peripheral devices. It synthesizes nec-
essary interface hardware, and outputs specialized driver
software. The solutions generated are comparable to sys-
tems designed by hand as demonstrated by the examples.

Several related problems will be addressed in future
work. We are still developing transformation techniques
for memory-mapped I/O. While the current algorithm is
effective for a wide class of problems, the real-time is-
sues (e.g., timing-constrained sequencing) must still be ad-
dressed. Higher-level transformations are required to meet
performance and real-time constraints as well as optimiz-
ing the use of hardware and software resources. Specif-
ically, the communication patterns suggest possible per-
formance optimizations. This algorithm will be used as a
subroutine by a hardware/software co-synthesis system to
evaluate the various tradeoffs and the many possible trans-
formations.

References

[1] Intel. 8-Bit Embedded Controller Handbook, Intel Cor-
poration, 1990.

[2] A.J. Martin. Programming in VLSI: From Communi-
cating Processes To Delay-Insensitive Circuits, De-
partment of Computer Science, California Institute of
Technology, Caltech-CS-TR-89-1, 1989.

[3] C.A.R. Hoare.Communicating Sequential Processes,
Prentice/Hall International, Englewood Cliffs, NJ,
1985.

[4] M. Srivastava, R. Brodersen. “Rapid Prototyping of
Hardware and Software in a Unified Framework”,
Proc. of the International Conference on Computer-
Aided Design, 1991.

[5] J. Sun, R.W. Brodersen, “Design of System Interface
Modules”, Submitted to ICCAD-92.

[6] F. Vahid, D. Gajski, “Specification Partitioning for
System Design”,29th ACM/IEEE Design Automation
Conference, June 1992.

[7] Shelley & Associates.SLM21602 LCD Data Book,
1990.

