
Energy Optimization of Distributed Embedded Processors
by Combined Data Compression and Functional Partitioning ∗

Jinfeng Liu, Pai H. Chou
Center for Embedded Computer Systems

University of California, Irvine, CA 92697-2625, USA
{jinfengl, phchou}@uci.edu

Abstract

Transmitting compressed data can reduce inter-processor commu-
nication traffic and create new opportunities for DVS (dynamic
voltage scaling) in distributed embedded systems. However, data
compression alone may not be effective unless coordinated with
functional partitioning. This paper presents a dynamic program-
ming technique that combines compression and functional parti-
tioning to minimize energy on multiple voltage-scalable processors
running pipelined data-regular applications under performance con-
straints. Our algorithm computes the optimal functional partition-
ing, CPU speed for each node, and their respective compression ra-
tios. We validate the algorithm’s effectiveness on a real distributed
embedded system running an image processing algorithm.

1 Introduction

Dynamic voltage scaling (DVS) has been studied extensively as a
power-saving technique for applications with slacks. By lowering
the voltage and slowing down the processor to fill the slack, one
can potentially achieve quadratic energy saving in CMOS technolo-
gies. However, if the application does not have much slack to begin
with – that is, if the processor is always around its peak utilization
– then DVS will not achieve any saving alone. Instead, it is well
known that by increasing parallelism, one can afford to slow down
the clock to enable more voltage scaling opportunities without per-
formance loss. By partitioning the workload onto multiple proces-
sors, each processor is now responsible for only a fraction of the
workload and can now afford to slow down by DVS to run at more
power-efficient levels. This, of course, assumes that the application
is parallelizable and that architectural overhead on the parallelism
can be well amortized. In processor-based systems, having multiple
processors means either shared memory or message passing com-
munication. This paper assumes message passing communication
for modularity and scalability reasons.

While distributed systems have many attractive properties, they
pay a higher price for message-passing communication. Each node
now must handle not only I/O with the external world, but also I/O
on the internal network. Common communication interfaces such
as RS-232 or BlueTooth are serial and are relatively slow. As a
result, even if the actual data workload is not large on an absolute
scale, it appears expensive relative to the computation performance
that can be delivered by today’s low-power embedded micropro-
cessors. Since I/O transactions always appear on the critical paths
in that they carry data dependencies between processors, they have
become a limiting factor in exploiting DVS opportunities through
parallelism.

Compression has been applied to saving energy and increasing
effective bandwidth in many areas, ranging from telephone modems
and faxes to caches and memories. By compression and decompres-

∗This research was sponsored in part by DARPA contract F33615-00-1-
1719 and by National Science Foundation under grant CCR-0205712

sion before and after communication transactions, it will be possi-
ble to save significant amounts of energy in communication. This
may sound like an obvious idea, and in fact it has been used from
modem standard to cache and memory. For the multi-processor,
message-passing architecture studied in this paper, however, the
trade-offs are not obvious and may even be counterintuitive. Com-
pression can free up extra time budget by reducing the long com-
munication delays in embedded systems. This extra time can be
utilized towards either higher performance, or as additional DVS
opportunities for energy savings. Different compression algorithms
are available with different compression ratios, and even within an
algorithm, it may be possible to set different target compression
factors for both lossy and lossless algorithms. The compression
algorithm chosen by a sender will not only dictate the receiver’s de-
compression algorithm, but also determine the receiver’s I/O delay
and CPU speed. Thus, it can make a global impact on all commu-
nicating processors on their choices of compression algorithms and
CPU clock rates with DVS. The design space becomes even larger
if we also consider multi-speed communication interfaces.

The main challenge is that the selection of CPU speed, communi-
cation speed, and compression algorithms cannot be performed in-
dependently or greedily, because a local decision can have a global
impact. The CPUs cannot all be run at the slowest, most power-
efficient speeds, because they must compete for the available time
and power with each other and with the communication interfaces.
A high-ratio compression algorithm with time and power overhead
may actually save energy by creating opportunities for voltage scal-
ing the processors. Greedily saving power for communication or
computation may actually result in higher overall energy. At the
same time, functional partitioning must be an integral part of the
optimization loop, because different partitioning schemes can dra-
matically alter the communication and computation workload for
each node. For a given workload on a networked architecture, our
problem statement is to generate a functional partitioning scheme,
select the corresponding compression/decompression algorithms,
and select the speeds of processors to perform computation tasks
and compression/decompression, such that the total energy is min-
imized. In general, this is an extremely difficult optimization prob-
lem. Fortunately, for a class of systems with pipelined commu-
nication patterns under a latency constraint, efficient, exact solu-
tions exist. This paper construct such a system model and formu-
late the energy consumed by communication, computation, com-
pression and decompression within their available time budget. We
present an efficient multi-dimensional dynamic programming solu-
tion to minimize system energy. We demonstrate the effectiveness
of this technique with an image processing algorithm mapped onto
a fully implemented distributed embedded system.

2 Related Work

Besides the well-known DVS techniques, previous studies also ex-
plored compression schemes for caches and memory busses to re-
duce energy in embedded processors. [8, 3] applied compression to

Figure 1: The block diagram of Itsy.

Itsy Itsy Itsy

Host

USB Hub

USB/Serial Adaptor USB/Serial Adaptor USB/Serial Adaptor

PPP0 PPP1 PPP2

serial serial serial

USB

IP forwarding
over PPP

Figure 2: Networking Itsy nodes with a host computer.

reduce the code size and memory accesses for an SoC architecture.
[4, 1] proposed bus encoding schemes to minimize the switching
activities on the memory bus. These techniques often do not target
inter-processor communication for multi-processor systems.

Many power management techniques including DVS have re-
cently been extended to multi-processor systems. [9] extends DVS
to inter-connection networks by tuning the data rate with vari-
ous power levels to reduce communication energy. [11, 10] pro-
posed partitioning the computation onto a voltage scalable multi-
processor architecture that consumes significantly less power than
a single processor. [5] reduces switching activities of both func-
tional units and communication links by partitioning tasks onto
a multi-chip architecture; while [7] maximizes the opportunity to
shut down idle processors through functional partitioning. All these
techniques primarily focus on either computation or communica-
tion aspect without exploring the interaction between them.

3 Motivating Example

Our experimental platform consists of multiple Itsy pocket comput-
ers as distributed processing nodes. Itsy was developed by Com-
paq Western Research Lab [2, 6]. It supports DVS on the Strong-
ARM SA-1100 processor with 11 different frequency levels from
59–206.4MHz. Its block diagram is shown in Fig. 1. We mapped
an automatic target recognition (ATR) image processing algorithm
onto this distributed architecture with multiple Itsy Pocket Com-
puters to evaluate the impact of data compression with different
performance vs. power trade-offs.

We setup a separate host computer with multiple serial ports to
communicate with each Itsy node through PPP connections. The
host computer also provides IP forwarding service to allow Itsy
nodes to communicate with each other transparently on the same
TCP/IP network. The network configuration is shown in Fig. 2.

Target
Detection

IFFT
Compute
Distance

image result

FFT

N[1] N[2] N[3] N[4]

Figure 3: The ATR algorithm.

N[1]
Target

Detection

N[2]
FFT

N[3]
IFFT

N[4]
Compute
Distance

Host

0.17s @ 206.4MHz

10KB raw
1KB gzipped

8KB raw
7KB gzipped

16KB raw,10KB gzipped 0.1KB raw, 0.1KB gzipped

8KB raw
7KB gzipped

0.18s @ 206.4MHz 0.32s @ 206.4MHz 0.53s @ 206.4MHz

Figure 4: Performance profile of ATR on Itsy.

20

40

60

80

100

120

140

160

180

59
0.919

73.7
0.978

88.5
1.067

103.2
1.067

118
1.126

132.7
1.156

147.5
1.156

162.2
1.215

176.9
1.304

191.7
1.363

206.4
1.393

Freq (MHz)
Volt (V)

C
ur

re
nt

 (
m

A
)

PROC DECO COMP
RECV SEND IDLE

Pr

Ps Pidle

Figure 5: Power profile of ATR on Itsy.

3.1 Running ATR on Itsy

The structure of the ATR algorithm is shown in Fig. 4. It per-
forms four sequential processing stages to an image frame. We
constructed a parallel version of the algorithm such that it can be
mapped onto 1, 2, 3, or 4 Itsy nodes with pipelined communication
patterns. Given aframe delay Das the performance constraint, the
host computer provides one image and collects the result in every
D seconds. Pipelining allows each Itsy node to run at a lower fre-
quency while maintaining the same throughput. However, commu-
nication between adjacent nodes costs additional time and power.
Fig. 4 also summarizes the performance profile of ATR on Itsy. The
performance degrades proportionally with the value of the clock
rate. The maximum data rate of the serial port is 115.2Kbps, though
our measured data rate is 70–80Kbps over TCP/IP. Therefore, even
though the raw data size is not large, the communication still takes
long delays (e.g., 1.1s for 8Kbytes). To reduce long communica-
tion delays, we compress data before transmission and decompress
after usinggzip on the host computer (source and sink of images)
and on each of the Itsy nodes (image processing stages). Compres-
sion and decompression take less than 10ms. For brevity they are
omitted in Fig. 4.

Fig. 5 shows the measurement results of the current draw (in mA)
over different speeds of an Itsy node running different tasks. The
horizontal axis represents the frequency and corresponding voltage
levels. Itsy has a 4V lithium-ion battery supply. Therefore, the
curves refer to the actual power consumption ranging from 100mW
to 700mW. We refine the tasks of this multi-node ATR system as

D

RECV SEND

PROC
@200MHz

Time

Power

D
Time

Power

RECV SEND
PROC

@150MHzidle
DE
CO

CO
MP

id
le

D
Time

Power

D
Time

Power

RE
CV

SE
ND

PROC
@120MHz

DE
CO

CO
MP

id
le

RE
CV

SE
ND

PROC
@100MHz

DECO
@200MHz

COMP
@200MHz

(a) no comperssion (b) compression

(c) high-ratio compression (d) compression with speed selection

Figure 6: The impact of data compression to one node.

follows:
Name of task Description
SEND sending communication transaction
RECV receiving communication transaction
PROC execution of the ATR algorithm
COMP data compression before send
DECO data decompression after recv

TasksDECO andCOMP dominate the power consumption. How-
ever, since their execution delays are short, taskPROCis the primary
energy consumer.SENDandRECV also take long delays, but their
power levels are relatively low. We allowPROC, DECO, andCOMP to
operate at any CPU clock rate enabled by DVS. However, during
communication (that is,SENDandRECV), we set the CPU speed to
the lowest power state (0.919V at 59MHz), since there is no perfor-
mance benefit to running the CPU faster during serial communica-
tion. When a node idles, we also set the CPU frequency to 59MHz.
In addition, to avoid extra power draw from other components, we
completely shut down unnecessary peripherals, including the LCD
screen and the speaker during all experiments.

3.2 Data Compression for One Node

Fig. 6 illustrates the trade-offs between compression and DVS for a
single node in a distributed system. The node performs tasksRECV,
DECO, PROC, COMP, SEND in a sequential order. The areas of the
bars represent the energy consumption. The delayD represents the
performance constraint.

Compressed Data vs. Raw Data

Fig. 6(a) shows a node without data compression. Due to the long
communication delays, the processor must run at≥200MHz to fin-
ish all tasks by timeD. In Fig. 6(b), data compression reduces the
communication load at the cost of additional computation work-
load. If the reduced communication delay exceeds the extra com-
pression/decompression delays, then this new slack can be applied
towards DVS at a much lower power level (150MHz). Compres-
sion/decompression could also allow the node to deliver higher per-
formance with a reduced delay on its critical path.

The Impact of Different Compression Algorithms

Different compression algorithms can achieve different compres-
sion ratios over the raw data. Compared with Fig. 6(b), Fig. 6(c)
applies alternative algorithms with higher compression ratios to fur-
ther reduce communication delays. This creates DVS opportuni-
ties for reducing the processor clock to 120MHz. Algorithms with
higher compression ratios typically require more CPU cycles, but
if this overhead can be more than compensated by aggressive DVS,
then (c) will consume less energy than (b).

Compression and CPU Speed Selection

In Fig. 6(c), the idle period cannot be further utilized for DVS.
Many DVS studies indicated the three tasksDECO, PROCandCOMP

must operate at the same CPU speed to achieve minimum energy,
under an assumption that the CPU clock rate can be scaled continu-
ously to fully utilize the slack time (idle period). However it is not
true in reality when the processor can only operate at discrete fre-
quency levels. If the processor further reduces its frequency to the
next level, e.g., 100MHz, it will fail to meet the timing constraint.
The idle period represents the wasted (or, fragmented) time budget,
when DVS can be performed on only a few discrete frequencies.
Fig. 6(d) shows an alternative solution. It runsDECO andCOMP at
higher frequencies to allocate more time budget forPROC. As a re-
sult, taskPROCcan be run with a reduced clock rate at 100MHz to
make better use of the idle time. Although (d) spends more energy
on DECO andCOMP than (c) does, (d) can still be a better solution
if it can save more energy onPROC. To decide if this is possible re-
quires simultaneous selection of the CPU speed and compression
ratio. A different compression ratio can significantly alter the com-
munication delay and the compression/decompression time, which
would result in a different slack available for DVS.

3.3 Data Compression for Pipelined Nodes

Next, we map the ATR algorithm onto multiple pipelined nodes.
Fig. 7 shows a two-node pipeline in which the whole computation
workload is partitioned onto two nodesN′[1],N′[2]. Having two
nodes requires nodeN′[1] to transmit its output toN′[2]. This is an
extra communication transaction not in the single-node case and is
denoted asSEND[1]→ RECV[2]. All stages of the pipeline must have
the same deadlineD such that if nodeN′[1] is fed one image frame
in everyD seconds, nodeN′[2] must always produce one result in
everyD seconds.

The trade-offs between communication and computation with
data compression discussed earlier for the single node are generally
applicable to pipelined multiple nodes, too. With multiple nodes,
network contention tends to have a greater impact on the entire sys-
tem and therefore must be avoided through compression algorithm
selection and partitioning schemes.

Compression Algorithm Selection in the Pipeline

Having a choice of compression algorithms adds a new dimension
of communication-computation trade-offs in multilpe processors.
By selecting a compression algorithm for a sender, it forces the
receiver to choose the corresponding decompression algorithms,
thereby affecting not only the receiver’s communication delay but
also the receiving node’s CPU speed. Then, the choice of the
receiver’s CPU speed could further affect the receiver’s outgoing
compression algorithm and the subsequent nodes in a chain effect.
A locally optimal choice for the first node will not necessarily lead
to a globally optimal solution.

Partitioning with Compression

Data compression also affects the choices of partitioning schemes.
This is primarily because different data do not compress equally
well even by the same algorithm. As an example, Fig. 7(a) shows
the the optimal partitioning scheme without data compression for
two nodes with the minimum internal communication payload
(8KB). However, Fig. 7(a) is no longer optimal with data com-
pression, because the internal data fromN[2] to N[3] cannot be ef-
fectively compressed (8KB down to 7KB), and the relatively long
communication delay limits DVS opportunities. The optimal par-
titioning scheme is shown in Fig. 7(b) by remapping taskN[2] to
processorN′[2]. Although the raw data size fromN[1] to N[2] is
larger, the data here can be compressed very well (10KB down to

SEND
[2]

CO
MP
[2]

DE
CO
[2]

PROC[2]
@100MHZ

D

RECV[1] SEND[1]

PROC[1]
@150MHz

Time

Power

D

RECV[2]SEND
[2]

Time

Power

N'[1] = N[1 : 2]DE
CO
[1]

CO
MP
[1]

CO
MP
[2]

DE
CO
[2]

PROC[2]
@150MHz

N'[2] = N[3 : 4]

D

RECV[1]
SE

ND[1]

PROC[1]
@50MHz

Time

Power

D

RE
CV[2]

SEND
[2]

Time

Power

N'[1] = N[1]
DECO

[1]
COMP

[1]

CO
MP
[2]

DE
CO
[2]

PROC[2]
@100MHZ

N'[2] = N[2 : 4]

(a) optimal partitioning N[1:2], N[3:4] without compression

(b) optimal partitioning N[1], N[2:4] with compression

N[2] to N[3]
8KB raw

7KB gzipped

N[1] to N[2]
10KB raw

1KB gzipped

CO
MP
[2]

DE
CO
[2]

PROC[2]
@150MHz

SEND
[2]

RECV[1]

PROC[1]
@150MHz

DE
CO
[1]

CO
MP
[1]

from
host

to host

RECV[1]

PROC[1]
@50MHz

DECO
[1]

COMP
[1]

from
host

to host

Figure 7: The impact of data compression with partitioning.

D

RECV[1] SEND[1]P
R

O
C

[1
]

@
20

0M
H

z

Time

Power

D

RECV[2] SEND2

Time

Power

(a) potential network contention without compression

D

RECV
[1]

SEND[1]PROC[1]
@150MHz

Time

Power

D

RECV[2] SEND
[2]

Time

Power

DE
CO

CO
MP

CO
MP

DE
CO

PROC[2]
@150MHz

(b) contention-free with compression

SEND[2]

SEND
[2]

P
R

O
C

[2
]

@
20

0M
H

z

P
R

O
C

[2
]

@
20

0M
H

z

network
contention

CO
MP

DE
CO

PROC[2]
@150MHz

same
transaction

from
outside

to outside

N[1]

N[2]

N[1]

N[2]

Figure 8: Data compression eliminates network contention.

1KB) to effectively reduce the communication delay. As a result,
both nodes are able to operate at much lower power levels with
more energy savings, although the computation loads on the two
nodes are more imbalanced compared to Fig. 7(a).

Compression to Reduce Network Contention

Given the assumption of a shared communication medium, all com-
munication transactions should be scheduled into different time
slots. Since a transaction consists of a pair of send and receive
tasks on neighboring nodes, they should be scheduled together. As
an example in Fig. 8(a),SEND[1] andRECV[2] should always occupy
the same time slot. In the case of long communication delays, two
different transactions such asRECV[1] andSEND[2] might overlap in
time slots, causing network contention. If the network utilization
is oversaturated, one way to eliminate network contention is to in-
crease the stage delayD, but this causes performance degradation.
Alternatively, data compression can reduce network utilization and
eliminate the network contention while maintaining the same per-
formance, as shown in Fig. 8(b).

D

RECV SEND
PROC

Time

Power

Pr Ps
Pp

delay:
Tr = Wr / Fr

delay:
Ts = Ws / Fs

delay:
Tp = Wp / Fp

power: Pr
speed: Fr

power: Pp
speed: Fp power: Ps

speed: Fs
idle

DECO
Pd

delay:
Td = Wd / Fd

power: Pd
speed: Fd

COMP
Pc

delay:
Tc = Wc / Fc

power: Pc
speed: Fc power: Pidle

delay:
Tidle

algorithm: Ad

algorithm: Ac

Figure 9: Timing and power diagram of a processing node.

To summarize, this paper exploits communication-computation
trade-offs in the context of a distributed embedded architecture.
These trade-offs include timing budget for both communication and
computation, compression algorithm selection with DVS fragmen-
tation, and compression algorithm selection with functional parti-
tioning. We next formulate a multi-dimensional optimization ap-
proach to effectively minimize energy consumption for both com-
munication and computation on all nodes.

4 System Model

This section defines a system-level performance/energy model of a
distributed embedded system running an application with a natural
pipelined organization. We first define the process-to-architecture
mapping followed by the associated cost functions.

4.1 Node

A nodeis a computer in our system. It consists of a processor, local
memory, one or more communication interfaces, and optional com-
pression and decompression units. Aprocessing jobassigned to a
node is modeled in terms of fivetasks: RECV, DECO, PROC, COMP

andSEND that must be executed serially in this order. A node re-
ceives data byRECV, decompresses the data byDECO if necessary.
Then taskPROCproduces the result that can be compressed byCOMP

if necessary. Finally, the result is sent to the next node bySEND.
Fig. 9 shows the timing vs. power diagram of a node. The total
area of these five tasks represents the energy consumption of the
corresponding node.

Each task has itsworkload W. For the computation tasksPROC,
DECOandCOMP, their workloadWp, Wd andWc refer to the number
of cycles. For communication tasksRECV andSEND, workloadWr
andWs indicate the communication payloads in the number of bits.

Let Tp,Tr ,Ts,Td,Tc denote theexecution timesof tasksPROC,
RECV, SEND, DECO andCOMP, respectively. The performance con-
straint is adelay Dto finish all tasks, that isTr +Td +Tp+Tc+Ts≤
D for the five serialized tasks. There could be an idle periodTidle
during which the node is not performing any of the five tasks.

Tr +Td +Tp +Tc +Ts+Tidle = D (1)

Let Fp denote the CPU clock frequency to perform taskPROC, Fr
andFs the respective bandwidths for receiving and sending, and let
Fd andFc be the processing speeds of decompression and compres-
sion, performed by the processor or other hardware units. LetPp,
Pr , Ps, Pd, andPc denote thepower level of tasks, andEp, Er , Es,
Ed andEc be theenergy consumption of tasks, Pidle andEidle be the
power level and energy consumption of the idle period. Finally, let
EN denote the energy consumption of a node. We have

Tp = Wp

Fp
; Tr = Wr

Fr
; Ts = Ws

Fs
; Td = Wd

Fd
; Tc = Wc

Fc
(2)

Ep = PpTp; Er = PrTr ; Es = PsTs;
Ed = PdTd; Ec = PcTc; Eidle = PidleTidle; (3)

EN = Ep +Er +Es+Ed +Ec +Eidle

(2) is a reasonable estimate for processing units executing data-
dominated tasks, includingPROC, DECO andCOMP, where the total
cyclesW can be analyzed and bounded statically. The communica-
tion bandwidth is normally less than the rated maximum data rate
and can be measured or profiled.

A node can choose from a setαc[1 : C] of compression algo-
rithms. The corresponding set of decompression algorithmsαd[1 :
C] must be used by the receiver to correctly recover the raw data. If
the raw data is compressed by thejth compression algorithmαc[j],
it must be decompressed by thejth decompression algorithmαd[j]
on the receiver. We denote a decompression and a compression al-
gorithm asAd,Ac, which are members of two ordered sets of algo-
rithmsαd andAc ∈ αc, respectively. If the raw data is compressed
by the jth compression algorithmαc[j], it must be decompressed
by the jth decompression algorithmαd[j] on the receiver. Decom-
pression or compression are not necessary if the node receives or
sends uncompressed data. Without loss of generality, we order the
two sets of algorithms such thatαc[1] andαd[1] perform no com-
pression and decompression, and their execution time is zero. That
is, if Ad = αd[1] or Ac = αc[1], thenTd = 0 orTc = 0.

It must be noted that some parameters are functions of other pa-
rameters rather than constant values. For example, communication
workloadWr , Ws and delayTr , Ts are functions ofAd andAc re-
garding different compression algorithms and compression ratios,
which are dependent on the raw data sizesWrraw andWsraw. To be
precise, workloadWd, Wc, Wr , Ws should be denoted as functions of
Ad, Ac and the raw data, e.g.,Wr (Ad,Wrraw) indicating the received
data is a function of the decompression algorithmAd and the raw
incoming data. These functions can usually be analyzed or profiled
as lookup tables.

We assume the CPU frequency can be chosen from a discrete
ordered setφ[1 : S], that isFp ∈ φ[1 : S]. For example, a voltage
scalable processor can operate at a few discrete clock rates. If de-
compression and compression are performed as software routines
on the processors, their speeds are also chosen from the same set,
Fd,Fc ∈ φ[1 : S]. The power levels of tasksPROC, DECO, COMP are
directly related to the CPU frequencies. In addition, the tasks may
consume different power levels even if they run on the same proces-
sor with the same clock rate. Therefore, the power levelsPp,Pd and
Pc are also functions (lookup tables) ofFp,Fd andFc, rather than
constant values. For example, the ATR algorithm’s power profile
on Itsy (Fig. 5) consists of multiple lookup tables. In this paper we
omit the details of lookup tables to keep the notation concise.

4.2 M-node Pipeline

We consider a specialized organization, called anM-node pipeline,
of such a distributed embedded system. It consists ofM pipelined
nodesN[1 : M]. Each nodeN[i] receives data from the previous
nodeN[i−1] (except the first nodeN[1] that receives from an out-
side source), followed by decompression (if necessary), processing,
compression (if necessary), and finally sends the result to the next
nodeN[i + 1] (except the last nodeN[M] that sends the result to
an external destination). Each pair of tasksSEND[i]→ RECV[i + 1]
refers to the same communication transaction with the same data
on both end. We assumeSEND[i] and RECV[i + 1] take the same
communication delay, and they start and finish at the same time.
That is,Ws[i] = Wr [i +1],Fs[i] = Fr [i +1],Ts[i] = Tr [i +1]. In each
pair of tasksCOMP[i]→ DECO[i + 1], the decompression side must
choose the correct algorithm to correctly recover the data. That is,
if Ac[i] = αc[j],Ad[i +1] = αd[j]. All nodes have the same delayD,
and each node acts as a pipeline stage with delayD. Fig. 10 shows
an example of a three-node pipeline. Fig. 10(b) shows the pipelined
timing diagram by folding the tasks in Fig. 10(a) into a common in-
terval with durationD, which is the delay of each pipeline stage.
During each time interval with a durationD, the first node of the

D

RE
CV

SE
ND

PROC

Time

Tr[1] Ts[1]= Tr[2]

D

RE
CV

SE
NDPROC

Time

Ts[2] = Tr[3]

D

RECV SE
ND

PROC

Time

Ts[3]

(a) serialized timing diagram

(b) pipelined timing diagram

N1

N2

N3

DE
CO

CO
MP

DE
CO

CO
MP

DE
CO

CO
MP

D

RE
CV

SE
ND

PROC

Time

Tr[1]
Ts[1]= Tr[2]

D

RE
CV

SE
NDPROC

Time

Ts[2] = Tr[3]

RECV SE
ND

PROC

Time

Ts[3]

N1

N2

N3

DE
CO

CO
MP

DE
CO

CO
MP

DE
CO

CO
MP

SE
NDPROC

DE
CO

CO
MP

D

RECV SE
ND

PROC
DE
CO

CO
MP

SE
ND

PROC
CO
MP

Figure 10: A three-node pipeline.

pipeline will be fed with one set of incoming data; meanwhile one
set of resulting data will be produced by the last node. The pipeline
timing diagram can easily identify conditions of network contention
on the shared communication media.

The total energy consumption of a pipeline Esys is defined as
follows,

Esys=
M

∑
i=1

Ei (4)

An M-node pipelineN[1 : M] can be partitioned intoM′ seg-
ments and mapped onto anM′-node pipelineN′[1 : M′](M′ ≤ M)
by merging adjacent nodesN[i : j](i ≤ j) into a new nodeN′[k].
The new nodeN′[k] combines all computation workloads. Com-
munication transactions within a node become local data accesses,
and the corresponding compression/decompression tasks are elimi-
nated. That is,W′p[k] = ∑ j

l=i Wp[l],W′r [k] =Wr [i],W′s[k] =Ws[j], and
W′d[k] = Wd[i],W′c[k] = Wc[j]. The newM′-node pipeline is called a
partitioningof the initialM-node pipeline.

5 Problem Formulation

In this section we formulate three energy minimization problems
by: (1) compression algorithm and CPU speed selection for one
node, (2) compression algorithm and CPU speed selection for a
pipeline with a fixed partitioning scheme, and (3) combined com-
pression algorithm and CPU speed selection with functional par-
titioning for the pipeline. For all three problems, we assume the
power and delay functions of all tasks are known as either func-
tions of look-up tables and the details are omitted.

Problem 1. Optimal Compression Algorithm and CPU Speed Se-
lection for One Node

Given

(a) a nodeN with processing loadWp, communication
payloadWrraw,Wsraw in raw data, and

OPT-1(Wrraw,Wsraw,Wp,αd[1 :C],αc[1 :C],φ[1 : S],D)
1 Eopt← ∞
2 for i← 1 to C do
3 computeEr with Ad := αd[i]
4 for j ← i to C do
5 computeEs with Ac← αc[j]
6 for k← 1 to Sdo
7 computeEd with Ad← αd[i], Fd← φ[k]
8 for l ← 1 to Sdo
9 computeEc with Ac← αc[j], Fc← φ[l]
10 deriveEp,Eidle
11 computeEnode
12 if Enode< Eopt then Eopt← Enode
13 return Eopt

Figure 11: Algorithm for Compression and CPU speed selection
for one node.

(b) C compression algorithmsαc[1 :C], and the corre-
sponding decompression algorithmsαd[1 :C],

(c) SCPU frequenciesφ[1 : S],
(d) the delayD to finish all tasks,

Find

(1) the optimal partitioningN′[1 : M′], with
(2) decompression algorithmsAd, compression algo-

rithmsAc, and
(3) CPU speedsFp, Fd andFc for tasksPROC, DECO,

andCOMP to minimize total energyEN.

Jinfeng – I have problems with the following paragraph. I
think the data sizes at the different stages anddata nature
(how compressable it is) should also be listed as determining
factors for various energies.

The choice of decompression algorithmAd and the incoming data
size determine the energy consumptionEr for RECV. Similarly the
choice of compression algorithmAc and the outgoing data size
decide the energyEs for SEND. For DECO and COMP, algorithm
Ad and CPU speedFd decideEd for DECO; andAc andFc decide
Ec. For PROC, Ep only depends onFp. The selection toAd and
Ac is independent for one node. So are the choicesFd andFc, but
they decideFp due to the timing constraintD. Therefore, we must
enumerate overC choices of bothAd andAc, andSchoices of both
Ad andAc for the minimum energy consumption.

The algorithm shown in Fig. 11 has a runtime complexity of
O(C2S2). It selects the optimal compression/decompression algo-
rithms, combined with the optimal CPU speed settings to overcome
the DVS fragmentation problem. In realityC and S are usually
small integers ranging from 3 to 10. Therefore the runtime com-
plexity of this algorithm is close to a constant.

Problem 2. Optimal Compression Algorithm and CPU Speed Se-
lection for Pipelined Nodes with a Fixed Partitioning Scheme

Given

(a) a fixedM-node pipelineN[1 : M] with processing
loadWp[1 : M], communication payloadWrraw[1 :
M],Wsraw[1 : M] in raw data, and,

(b) C compression algorithmsαc[1 :C], and the corre-
sponding decompression algorithmsαd[1 :C],

(c) SCPU frequenciesφ[1 : S],
(d) the same single-stage delayD for all nodes,

Find

(1) compression algorithmsAc[1 : M] ∈ αM
c , and the

corresponding decompression algorithmsAd[1 :
M] ∈ αM

d , subject to the following constraint: if
Ac[i] = αc[x] andAd[i +1] = αd[y], thenx= y (i.e.,
sender and receiver agree on the choice of com-
pression/decompression algorithms)

(2) CPU speedsFp[1 : M] ∈ φM
p , Fd[1 : M] ∈ φM

d , and
Fc[1 : M] ∈ φM

c to minimize energyEsys.

In an M-node pipeline, there areM + 1 communication trans-
actions that require a combination ofM + 1 independent com-
pression/decompression algorithms. The CPU speed selection is
an O(S2) procedure. Therefore, the overall enumeration space is
O(CM+1S2). Problem 1 becomes a special case whenM = 1. We
propose a dynamic programming solution to avoid exhaustive enu-
meration. We construct a series of optimal solutions to the sub-
problems by selecting the compression algorithms for one node at
a time. We compute the optimal cost function in terms of the mini-
mum energy consumption over the subproblems. Upon selecting a
compression algorithm for each node, the new optimal sub-solution
can be computed from past optimal sub-solutions. Therefore, a dy-
namic programming approach is applicable.

We define anenergy matrix E[0 : M,1 :C]. Each entryE[i, j] in-
dicates the minimum energy of a sub-problem that selects the com-
pression algorithms for the firsti nodes, with theith nodeN[i] using
algorithmAc[i] = αc[j] for compression. All entries ofE are ini-
tialized to∞.

E[i, j] =


0 for i = 0, j = 1

min1≤l≤C

[
E[i−1, l]+
EN[i](αd[l],αc[j])

] for 1≤ i ≤M, 1≤
j ≤ C, if network
is contention-free

(5)
(5) indicates that the optimal solution for the firsti nodes with

Ac[i] = αc[j] must be a combination of the followings: (a) the min-
imum energy of the firsti−1 nodes with the(i−1)th node’s com-
pression algorithmAc[i−1] = αc[l] for anl ≤C; and (b) the optimal
energy of theith nodeN[i] with the correspondingl th decompres-
sion algorithmAd[i] = αd[l] andAc[i] = αc[j]. To compute (b), we
can use algorithmopt-1 (Fig. 11) with fixed choicesAd[i] = αd[l]
and Ac[i] = αc[j] for one-node compression algorithm and CPU
speed selection. MatrixE can be updated only if the network is
contention-free. The dynamic programming algorithm can iterate
(5) from i = j = 0 until i = M, j = C. Finally, the minimum en-
ergy is minj (E[M, j]),∀ j = 1,2, . . . ,C. The algorithm can be de-
rived from the a new algorithm to be presented in the next section
(Fig. 12) as a special case. Therefore, we omit it for brevity. Its
time complexity isO(C2S2M), which is practically linear withM.

Problem 3. Optimal Compression Algorithm and CPU Speed Se-
lection with Functional Partitioning for Pipelined Nodes

Given

(a) M pipelined nodesN[1 : M] with workloadWp[1 :
M],Wrraw[1 : M],Wsraw[1 : M],

(b) C compression algorithmsαc[1 :C], and the corre-
sponding decompression algorithmsαd[1 :C],

(c) SCPU frequenciesφ[1 : S],
(d) the delayD for all nodes,

Find

(1) the optimal partitioningN′[1 : M′], with

(2) compression algorithmsA′c[1 : M′], and the cor-
responding decompression algorithmsA′d[1 : M′],
and

(3) CPU speedsF ′p[1 : M′], F ′d[1 : M′] andF ′c[1 : M′] to
minimize energyEsys.

We propose a two-dimensional dynamic programming algorithm
shown in Fig. 12 to solve this more complex problem, whose solu-
tion space is exponential withM. 1 We define a 3-dimensionalen-
ergy matrix E[0 : M,1 :C,0 : M] as follows: each elementE[i, j,k]
stores the minimum energy consumption of a subproblem, which
maps the firstk original nodesN[1 : k] onto a newi-node sub-
partitioningN′[1 : i], whose last nodeN′[i]’s compression algorithm
is selected to beA′c[i] = αc[j]. Matrix E is initialized to∞, except
E[0, j,0] = 0,∀1≤ j ≤C.

The optimal energyE[i, j,k] is the summation of two portions.
(a) E[i−1, l ,m] of a previous optimal sub-solution, which mapsm
original nodesN[1 : m] ontoi−1 new nodesN′[1 : i−1], with node
N′[i− 1]’s compression algorithm selected asαc[l]. Plus, (b) the
last new nodeN′[i] that combines original nodesN[m+1 : k] with
decompression algorithmαd[l] and compression algorithmαc[j].
The sub-solution (a) has the optimal energyE[i−1, l ,m]. (b) also
must have the optimal energy for the only nodeN′[i], and its optimal
energy is denoted asEN′[i](αd[l],αc[j]). E[i, j,k] = minl ,m(E[i −
1, l ,m]+EN′[i](αd[l],αc[j])),∀1≤ l ≤C, i−1≤m≤ k−1. Matrix
E can be updated by (6) only if the network is contention-free.

The algorithm is shown in Fig. 12. The global minimum en-
ergy is mini, j (E[i, j,M]),∀1 ≤ i ≤ M,1 ≤ j ≤ C. Computing
EN′[i](αd[l],αc[j]) by calling algorithmOPT-1 (Fig. 11) requires

O(S2) with both arraysαd[1 :C],αc[1 :C] having only one element
asαd[l : l],αc[j : j]. The runtime complexity of the algorithm is
O(C2S2M3).

E[i, j,k] =


0

for i = k = 0,1≤
j ≤C

min
1 ≤ l ≤
C, i − 1 ≤
m≤ k−1

[
E[i−1, l ,m]+
EN′ [i](αd[l],αc[j])

] for 1 ≤ i ≤ k ≤
M, 1 ≤ j ≤ C,
if network is
contention-free

(6)
If we let k = i in this algorithm, then the new partitioning algo-

rithm is fixed to be the same as the original one, since the loops over
k andmwill be eliminated. Then, the same algorithm can solve the
previous Problem 2 on a fixed partitioning. Further, if we leti = 1,
it becomes the algorithm to solve Problem 1 that finds the optimal
energy for one node.

6 Experimental Results

We experiment with the ATR algorithm mapped onto one and two
Itsy nodes. The delayD for each frame is used as the performance
metric. We repeat executing the ATR algorithm until the battery is
fully discharged. We defineI to be the processed image count and
use it as a measure of energy efficiency.

I. Experiments with One Node

With the one-node configuration, we perform three experiments:

(I.A) The baseline configuration is a single Itsy node to run the en-
tire ATR algorithm at the maximum CPU speed of 206.4MHz,

1There are

(
i−1

M−1

)
i−node partitionings, each havingi + 1 compres-

sion/decompression instances withCi+1 choices, combined withS2 CPU speed enu-

merations oni nodes. The total number of solutions is∑M
i=1

(
i−1

M−1

)
iS2Ci+1 =

C2S2(C+1)M−2(CM+1)

OPT-M(Wrraw[1 : M],Wsraw[1 : M],Wp[1 : M],αc[1 :C],αd[1 :C],φ[1 : S],D)
1 for i← 0 to M do
2 for j ← 0 to C do
3 for k← i to M do
4 E[i, j,k]← ∞
5 for j ← 1 to C do
6 E[0, j,0]← 0
7 for i← 1 to M do
8 for j ← 1 to C do
9 for k← i to M do
10 for l ← 1 to C do
11 for m← (i−1) to (k−1) do
12 if network is contention-freethen
13 W′p← ∑k

q=m+1Wp[q]
14 E′← OPT-1(Wrraw[m+1],Wsraw[k],W′p,
15 αd[l : l],αc[j : j],φ[1 : S],D)
16 e← E[i−1, l ,m]+E′

17 if e< E[i, j,k] then
18 E[i, j,k]← e
19 Eopt← retrieve from matrixE
20 return Eopt

Figure 12: Dynamic Programming Algorithm for Combined Com-
pression selection with partitioning.

Target

Detection /

FFT

IFFT /

Compute

Distance

Host

10KB
raw

16KB
raw

0.1KB
raw

Target

Detection

FFT / IFFT /

Compute

Distance

Host

1KB
gzipped

10KB
gzipped

0.1KB
gzipped

0.35s @ 206.4MHz 0.85s @ 206.4MHz 0.17s @ 206.4MHz 0.93s @ 206.4MHz

(a) optimal partitioning without compression (b) optimal partitioning with compression

Figure 13: Partitioning schemes for two nodes.

without data compression. Its peak performance isD = 2.9s
for each frame and the node can processI = 10.1K images
before the battery is exhausted.

(I.B) Same as (I.A)D = 2.9s but with data compression. Even
though the entire ATR algorithm is mapped onto one node and
internal communication is completely eliminated, compres-
sion still applies to communication with the external source
(host computer). As a result, the processor can reduce its
clock rate to 132.7MHz. Meanwhile the node can processI =
15.1K images with a 50% improvement in energy efficiency.

(I.C) Same as (I.B) except it maximizes performance. With com-
pression, this achieves a higher peak performance atD = 2.3s
while processingI = 11.5K images. That is, it can speed up
the performance by 26% and increase the energy efficiency by
14% at the same time.

II. Experiments with Two Nodes

We also perform three similar experiments for the two-node
pipeline.

(II.A) We useD = 2.9s from the the baseline configuration (I.A) for
two nodes, without data compression.

(II.B) With compression for energy efficiency

(II.C) With compression and maximum performance

For (II.A), the best partitioning schemeN[1 : 2],N[3 : 4] with-
out compression is shown in Fig. 13(a). With more parallelism, the
CPU speeds may be reduced on both processors. However, the first
node must still run at the fastest speed of 206.4MHz to achieve the
same performance ofD = 2.9s, due to the long internal communica-
tion delay. The second node can operate at 88.5MHz with a much
lower power level. As a result, the two-node pipeline can process
21.2K frames with two batteries. Therefore,I = 10.6K. Compared
with (I.A), the increased parallelism with two nodes cannot further
improve performance due to imbalanced workload, where the first
node must run at the highest speed. This parallelism improves the
energy efficiency by 5%.

(II.B) shows that data compression unveils a new optimal parti-
tioning asN[1],N[2 : 4] (Fig. 13(b)), because the raw data between
the two new partitions can be very well compressed (10KB down
to 1KB). The saved time budget allows both nodes to reduce their
CPU clock rates to 59MHz and 73.7MHz, respectively. While not
perfectly balanced because the second node must now process more
workload, this is a much better solution. The battery efficiency is
increased by 38% with 27.8K images being processed (I = 13.9 K).

(II.C) Data compression also allows a 100% speedup withD =
1.45 s and a 16% improvement in the energy efficiency withI =
11.6K. Without data compression, it would be impossible to deliver
higher performance with two nodes in (II.A).

In summary, Fig. 14 presents the Pareto views of solution spaces
of our experiments. The performance efficiency and energy ef-
ficiency are normalized to the baseline configuration (I.A). (I.A)
and (II.A) represent the peak performance levels without compres-
sion. (II.A) and (II.B) extend the energy efficiency through com-
pression while delivering the same performance as (I.A) and (I.B).
Finally, (I.C) and (II.C) improve both performance and energy effi-
ciency at the same time. The curves along (I.B) – (I.C) and (II.B)
– (II.C) represent many new solutions that were not possible with-
out data compression. They strictly dominate (I.A) and (II.A) with
both higher performance levels and lower energy consumption. It
should be noted that in experiment (II.B) and (II.C), data compres-
sion achieves a much wider range of energy vs. performance trade-
offs. This finding validates the concept that multiple processors can
support both high-performance and low-power applications. How-
ever, as indicated by (II.A), increasing parallelism alone may not
be effective unless it is explored synergistically with other trade-
offs by a joint effort. These important trade-offs include selecting
compression algorithms, CPU speeds and partitioning schemes that
are discussed in this paper.

7 Conclusion

We present an energy optimization technique for distributed em-
bedded systems. In such systems, communication and computa-
tion compete over time and power budgets for operating at the most
energy-efficient states. It is critical to balance the time and power
budget for both communication and computation on each node and
across the whole system. With data compression, the system can
be tuned towards either high performance with shortened critical
delays, or low power with extra DVS opportunities. We present
an exact multi-dimensional dynamic programming formulation that
produces the energy-optimal solution as defined by a partitioning
scheme with compression algorithm selections for all tasks. This
technique is applicable to a whole class of data-oriented systems
that can be structured in a pipelined organization.

Acknowledgment

Special thanks to HP Western Research Lab for providing Itsy
Pocket Computers and technical assistance. This research was
sponsored in part by DARPA under contract F33615-00-1-1719

and in part by the Natinal Science Foundation under grant CCR-
0205712.

References

[1] Y. Aghaghiri, F. Fallah, and M. Pedram. Reducing transitions
on memory buses using sector-based encoding technique. In
Proc. International Symposium on Low Power Electronics
and Design, pages 190–195, August 2002.

[2] J. F. Bartlett, L. S. Brakmo, K. I. Farkas, W. R. Hamburgen,
T. Mann, M. A. Viredaz, C. A. Waldspurger, and D. A. Wal-
lach. The itsy pocket computer. Technical Report 2000/6,
COMPAQ Western Research Laboratory, 2000.

[3] L. Benini, A. Macii, and A. Nannarelli. Cached-code com-
pression for energy minimization in embedded processors.
In Proc. International Symposium on Low Power Electronics
and Design, pages 322–327, August 2001.

[4] W.-C. Cheng and M. Pedram. Power-optimal encoding for
DRAM address bus. InProc. International Symposium on
Low Power Electronics and Design, pages 250–252, July
2001.

[5] R. Cherabuddi, M. Bayoumi, and H. Krishnamurthy. A low
power based system partitioning and binding technique for
multi-chip module architectures. InProc. Proc. Great Lakes
Symposium on VLSI, pages 156–162, 1997.

[6] W. R. Hamburgen, D. A. Wallach, M. A. Viredaz, L. S.
Brakmo, C. A. Waldspurger, J. F. Bartlett, T. Mann, and K. I.
Farkas. Itsy: stretching the bounds of mobile computing.
IEEE COMPUTER, 34(4):28–36, April 2001.

[7] E. Huwang, F. Vahid, and Y.-C. Hsu. FSMD functional parti-
tioning for low power. InProc. Design, Automation and Test
in Europe, pages 22–28, 1999.

[8] H. Lekatsas, J. Henkel, and W. Wolf. Code compression for
low power embedded system design. InProc. Design Automa-
tion Conference, pages 294–299, June 2000.

[9] L. Shang, L.-S. Peh, and N. K. Jha. Dynamic voltage
scaling with links for power optimization of interconnec-
tion networks. InProc. International Symposium on High-
Performance Computer Architecture, pages 91–102, February
2003.

[10] A. Wang and A. Chandrakasan. Energy efficient system par-
titioning for distributed wireless sensor networks. InProc.
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, pages 905–908, May 2001.

[11] E. F. Weglarz, K. K. Saluja, and M. H. Lipasti. Minimiz-
ing energy consumption for high-performance processing. In
Proc. Asian and South Pacific Design Automation Conference,
pages 199–204, 2002.

80

100

120

140

160

180

200

60 100 120 140 160

P
er

fo
rm

an
ce

 e
ffi

ci
en

cy
 %

Energy efficiency %
(I) one node

80

100

120

140

160

180

200

60 100 120 140

P
er

fo
rm

an
ce

 e
ffi

ci
en

cy
 %

Energy efficiency %
(II) two nodes

(I.C) D = 2.3 (126%)
I = 11.5 K (114%)

(I.A) D = 2.9 (100%)
I = 10.1 K (100%)

(I.B) D = 2.9 (100%)
I = 15.1 K (150%)

(II.C) D = 1.45 (200%)
I = 11.6 K (116%)

(II.A) D = 2.9 (100%)
I = 10.6 K (105%)

(II.B) D = 2.9 (100%)
I = 13.9 K (138%)

(A) peak performance without compression

(B) same performance as (A) with compression

(C) peak performance with compression

60 60
80 80

220 220

180 160

initial solution space without compression

additional solution space with compression

180

Figure 14: Extended solution space by data compression.

