
IPCHINOOK: An Integrated IP-based Design Framework
for Distributed Embedded Systems

Pai Chou Ross Ortega, Ken Hines, Kurt Partridge, and Gaetano Borriello

Consystant Design Technologies, Inc. Department of Computer Science and Engineering, Box 352350
Seattle, WA University of Washington, Seattle, WA 98195-2350 USA

chou@consystant.com fortega,hineskj,kepart,gaetano g@cs.washington.edu

Abstract

IPCHINOOK is a design tool for distributed embedded systems. It
gains leverage from the use of a carefully chosen set of design
abstractions that raise the level of designer interaction during the
specification, synthesis, and simulation of the design.IPCHINOOK
focuses on a component-based approach to system building that
enhances the ability to reuse existing software modules. This is
accomplished through a new model for constructing components
that enables composition of control-flow as well as data-flow. The
designer then maps the elements of the specification to a target ar-
chitecture: a set of processing elements and communication chan-
nels. IPCHINOOK synthesizes all of the detailed communication
and synchronization instructions. Designers get feedback via a co-
simulation engine that permits rapid evaluation. By shortening the
design cycle, designers are able to more completely explore the de-
sign space of possible architectures and/or improve time-to-market.
IPCHINOOK is embodied in a system development environment that
supports the design methodology by integrating a user interface for
system specification, simulation, and synthesis tools. By raising
the level of abstraction of specifications above the low-level target-
specific implementation, and by automating the generation of these
difficult and error-prone details,IPCHINOOK lets designers focus
on global architectural and functionality decisions.

1 Introduction

The complexity of modern embedded system design requires de-
signers to leverage the reuse of both software and hardware IP mod-
ules. In this paper, we focus on software components (e.g., MPEG
decoders, control algorithms, and user interfaces). These modules
are designed with a particular API that cannot adapt well to new
system contexts. Many assumptions about the way the components
will be used are embedded in their implementation, making it diffi-
cult (if not impossible, due to concerns about proprietary informa-
tion) and time consuming (to understand their code well enough) to
make the appropriate modifications.

This work was supported by DARPA contract DAAH04-94-G-0272, a Mentor
Graphics graduate fellowship, and PYI MIP-8858782.

This IP integrationproblem is exacerbated by the fact that many
embedded systems use multiple processing elements and highly
specialized communication topologies in the interests of meeting
cost, power, and performance constraints. The modules must now
not only be composed appropriately but their activities must also be
coordinated across more than one processor. The communication
and synchronization code required to do this cannot be generally
anticipated. A common solution is to provide a general embedded
operating system that can perform these functions. However, this
still requires adapting the modules to the new run-time environment
and opens up the design to inefficiencies due to the full generality
of this operating system.

If we follow this IP-based approach to system design along its
logical trajectory, we see that the design cycle is dominated by
system integration time, rather than component design. In such a
scenario, the task of generating the low-level interfaces between
components and optimizing their coordination must be automated
so that designers can investigate architectures and partitionings that
better satisfy the design constraints. For designers' efficiency and
for IP protection, tools are needed that provide specific support for
system integration.

IPCHINOOK is an example of a new generation of IP-oriented
system design tools. It is targeted to specifically address the three
problems of:

� IP composition

Component models of software IP suffer from some funda-
mental problems. First, their fixed APIs may not anticipate
how the components will be used, thus limiting their applica-
bility when designers cannot directly modify their code, and
causing reverse engineering and maintenance problems when
designers can. Second, composing multiple IP components
often requires designers to spend an inordinate amount of time
writing and debugging custom integration code. Finally, due
to information hiding and imperfect anticipation of what in-
ternal component state needs to be exported, the integration
code often ends up duplicating the state of the components
(and their associated transition functions) in order to make it
visibile. In IPCHINOOK, we formalize component coordina-
tion into a separate system assembly step that leads to reusable
composition constructs. To accomplish this, we permit the ex-
plicit coordination of state/control between components in ad-
dition to an event-based model appropriate for data-flow and
more traditional APIs.

� Communication synthesis

Intermodule communication software must be tailored to the
application by taking into account factors such as the capabil-
ities of the processing elemenets, their interconnection mech-
anisms, the system's physical topology, and how functionality

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

Control synthesis (Section 3.1)
centralized mode manager
distributed mode manager

Input (section 2)
behavioral description target description

control composition

data composition
& timing constraints

modal
process

modal
process

modal
process

micro-
controller

FPGADSP

heterogeneous
distributed
architecture

bus 1

bus 2

allocation:

maps
process->processor
channel->busses

Simulation:
(Section 4)

selective focus

incorporating
hardware

message-passing-only
processes

Communication & interface synthesis: (Section 3.2)
driver generation, routing process synthesis
port allocation, glue logic insertion

target-specific
code

Output:
complete schematic
target-dependent program code

Figure 1: Overview of theIPCHINOOK design framework.

is distributed across the system. Automating this process rad-
ically shortens the design cycle and makes the specification
portable to different architectures without compromising effi-
ciency.

� Rapid evaluation

Co-simulation is needed at different levels of the design pro-
cess, from the original high-level specification of an inte-
grated set of modules to detailed implementation. Speeding
up simulation along with the ability to collect profiling infor-
mation provides the feedback the designer needs to alter the
target architecture and/or specification and explore the design
space in fruitful directions. We apply a technique called selec-
tive focus that enables a simulation to expend its cycles where
details are required rather than uniformly over the entire de-
sign.

This paper provides an overview of theIPCHINOOK framework
(see Figure 1). It first describes the behavioral model of modal pro-
cesses, which enable control composition using high-level primi-
tives without intrusive modification. Next, the synthesis stages are
described, including the mode manager (run-time coordinator) and
communication and interface synthesis. Finally, the paper covers
the Pia simulator, which provides the user interface and framework
for the designers to perform most of their design and development
tasks.

2 Specification Model

The input toIPCHINOOK consists of a behavioral description, a tar-
get description, and anallocation functionthat maps between them.
The behavioral description contains the functionality of the system
described as one or more concurrent interacting modules known
asmodal processes. The target description describes the available
processors, I/O devices, communication busses, and topology of
the hardware. The mapping between the behavioral description and
target architecture determines which processor each modal process
will run on. This structure allows functionality, hardware, and the
distribution of functionality all to be changed independently of one
another.

2.1 Behavioral description

2.1.1 Modal processes

A modal process consists ofports, handlers, andmodes. Ports pro-
vide logical communication contact points for interprocess com-
munication. Ports are connected bychannels. Each channel con-
nects a single output port to one or more input ports for transmitting
messages. A message arrival at an input port is anevent, which trig-
gers the invocation of a handler. A handler encapsulates application
code, sends messages on output ports, and returns mode change re-
quests. Handlers have run-to-completion semantics, which saves
the designer from having to worry about intercomponent synchro-
nization [25].

The modes of a modal process can be independently active or
inactive. Modes also specify a mapping from ports to handlers.
When a mode is active then if a message is received on a portp,
and a mapping exists in the mode fromp to handlerh, h will be
invoked. Since multiple modes can be simultaneously active, mul-
tiple handlers can be called in response to a single message receipt,
although each handler is invoked only once per message. Handlers
are invoked in a statically-defined order.

The execution of modal process handlers is divided into discrete
steps. In a step, messages queued on input ports are dispatched to
the handlers that are enabled by the active modes. During its execu-
tion, a handler can send one or more messages on its output ports,
but there is at least a one-step delay before the receiving handlers
can be triggered, as all input buffers are at least one-deep.

Changes to active modes are made by a three-phase process. The
first phase,vote collection, takes place immediately after all handles
in a given step have finished executing. Each handler returns a set
of votesthat indicate which modes should be activated or deacti-
vated. A handler can only request changes to modes local to its
modal process, although a local mode change can have a global im-
pact through ACTs, as described below. In the second phase,vote
reconcilation, votes and ACTs are examined to determine what, if
any, mode changes should be made at the end of this step. Con-
flicts between votes are reconciled by priorities assigned to votes
by handlers or ACTs. After reconciliation, in the final phase,vote
distribution, the new set of active and inactive modes is distributed
to all affected modal processes. Different synchronization models
affect the distribution as described in section 3.

2.1.2 Control composition

In order for components to coordinate with each other, they must
agree on a protocol. If they do not already agree, thenadaptationis
necessary. A novel feature ofIPCHINOOK is the use of high-level
primitives called Abstract Control Types (ACTs) for control coordi-
nation. ACTs establish automatically maintained relationships be-
tween modes. ACTs cause votes to be augmented with additional
mode requests to maintain the required relationships.

ACTs can be used for many purposes, such as using one mode
to guard a mode change in another, correlating modes so they are
always active or inactive at the same time, and establishing a mutual
exclusion relationship between modes. More complex ACTs can
form a hierarchical FSM similar to Statecharts [14] or Esterel [2]'s
watchdogs.IPCHINOOK provides a rich library of ACTs and allows
designers to define their own abstractions in a structured manner.
More rigid composition frameworks force designers instead to use
awkward constructs such as overlapping superstates.

An ACT can define a protocol for interprocess composition.
Components may need adaptation to be composed with each other,
but this organization enables adaptation of modal processes without
intrusive modification. Note that this differs from the modularity

UI-specific compositionUI-independent composition

Watch

W

Stopwatch

Z R L Zero Run

WS

SS

AS

Reg Set

Lap

Alarm

A C
E

Update

Shown

Chime

Enb Shown

Reg Set

Shown

WatchUI

StopwatchUI

AlarmUI

seqLoop

10:20:03

S M T W T F S

2-26-98

AM

UR

LR

UL

LL

LCD & 4 buttons

Figure 2: Example of Modal Process architecture for a digital wrist-
watch. Each functional component is coordinated with a UI com-
ponent. UI components are coordinated by theseqLoop ACT.

provided by Statemate's ActivityCharts, which allows modules to
communicate only using traditional message-passing.

Consider as an example application the digital wristwatch ex-
ample used by Esterel and Statecharts. The behavioral description
can be decomposed into the six modal processes: one to control
the passage of time (watch), another to control the stopwatch, an-
other to control the alarm, and three others corresponding to the
user interfaces of these particular modal processes. Figure 2 de-
picts this structure graphically, including the modes involved. An
ACT, seqLoop , constrains theShown mode of each of the user
interface processes to arrange for their successive activation as the
user repeatedly pushes the “mode-change” button. A different ac-
tivation pattern, such as changing the cyclic ordering or allowing
multiple modes to be simultaneously active could be imposed sim-
ply by changing the ACT or its constraints. By incorporating this
abstraction into the modal process structure, reuse is supported,
composition behavior is cleanly separated from module behavior,
and consistency of the replicated state is guaranteed. The original
Esterel and Statecharts versions of the wristwatch example do not
provide a clean module separation. Without support for coordina-
tion between modules, the application programmer must arrange to
broadcast updates to state values whenever they are changed to all
interested modules—an error-prone and difficult-to-maintain task.

For a more detailed description of ACTs, see [6].

2.2 Target description

A target description defines a desired targetarchitectureand theal-
locationfunction that maps the modal processes and channels to the
architecture. Unlike some other cosynthesis systems,IPCHINOOK
does not attempt to automate partitioning and allocation; both are
expected to be supplied by the designer or by automatic architec-
ture generation tools [19]. An architecture is defined by its proces-
sors, operating system, and communication protocols. The alloca-
tion function maps elements in the high-level design to those in the
architecture.

A processing element can be a microprocessor running software
or a programmable logic block, such as an FPGA.IPCHINOOK is
specifically designed to take advantage of commercial off-the-shelf
solutions. The architecture specification also includes the commu-
nication topology, which describes how components are connected
to each other and which communication protocols are used. To
maximize the use of off-the-shelf parts,IPCHINOOK provides a rich
library for supporting standard communication protocols, including
I2C, CAN, SCSI, USB, IrDA, and Ethernet.

The allocation function maps processes to processors, and logi-
cal communication channels to architectural communications links.
The process-to-processor mapping is many-to-one: that is, pro-
cesses are assumed to be indivisible, but each processor can run
multiple processes. On the other hand, the communication mapping
is many-to-many: a logical link can be routed through several phys-
ical segments, and each physical channel can carry multiple logical
channels. Even though the specification uses a message-passing
style, IPCHINOOK can synthesize code that runs on a shared mem-
ory system [21].

3 Synthesis

Synthesisis the transformation of a high-level design representa-
tion to a lower-level one, which takes the design one step closer to
implementation. The synthesis stages include mode-manager syn-
thesis and communication and interface synthesis.

3.1 Mode-manager synthesis

A set of modal processes composed using ACTs has many possible
implementations.IPCHINOOK takes the approach of synthesizing
mode managersfor coordinating the processes. A mode manager
is the part of the run-time system that manages control communi-
cations according to the ACTs. The mode manager ensures that
the system always runs in a coherent context by handling the state
maintenance task. When targeting heterogeneous distributed archi-
tectures,IPCHINOOK automatically synthesizes mode managers,
one for each processor, to handle intricate synchronizations asso-
ciated with the control communication.

Mode manager synthesis can be done before and after target
mapping. Without a specific architecture,IPCHINOOK synthe-
sizes acentralizedmode manager that can be readily executed on a
uniprocessor for simulation. The processes by default are assumed
to runmode synchronously: all processes are blocked (and no han-
dlers run) until the mode changes are resolved. For the distributed
version, several available implementation options allow designers
to make tradeoffs between space, performance, and determinism.
IPCHINOOK supports several synchrony models, from the strict
mode synchronyand event synchronyto loosely coupledcommu-
nication synchronyanddataflow synchrony[7]. Mode synchrony
is safe but inefficient; it requires handshaking for every change of
state. Complete asynchrony (such as is used in [3] and [5]) can be
more efficient, but is subject to glitches and livelock. These options
can be specified for each architecture mapping, without having to
modify the same high-level specification.

3.2 Communication and interface synthesis

Communication synthesis and interface synthesis implement an
application-specific communication infrastructure so that the ap-
plication's data messages and the mode manager's control mes-
sages are handled efficiently by the target architecture. Communi-
cation synthesis implements abstract communication protocols on
the given target architecture allowing modal processes to exchange
messages. Interface synthesis generates interfacing logic and low-
level device-drivers to connect processing elements together.

Many different types of communication are used in system de-
signs and at different stages in the design process. Abstract commu-
nication protocols are used in the target-independent system speci-
fication. These abstract protocols must be transformed and imple-
mented on top of the low-level bus protocols mandated by the tar-
get architecture. In the target-independent specification, each out-
put port must be annotated with both a blocking style (blocking or
non-blocking) and a deadline constraint. Each input port must be
annotated with the appropriate queuing semantics such as the queue

Process

OutPort

Device
driver

Comm.
chip

Consumer
Process

InPort

Message
Router

Device
driver

Comm.
chip

Producer

Figure 3: The designer is presented with the communication ab-
straction shown as the dashed line. The automatically generated
communication infrastructure is shown by the solid lines.

size and overflow behavior. These annotations are specified by the
designer for data ports, and by the mode manager synthesis code for
its generated control ports. Communication synthesis refines these
abstract communication protocols from the target-independent de-
sign into a target-dependent implementation, and tailors the mode
manager's communication code for each processor in the target
architecture. Figure 3 shows the communication abstraction pre-
sented to the designer and the actual communication infrastructure
that realizes the abstraction. The communication synthesis tool ac-
counts for the particular bus protocols, routing requirements, and
timing constraints for all of the communication in the system. This
approach, which takes a global view of communication, allows de-
signers to map their high-level system specifications to target archi-
tectures composed of arbitrary bus topologies. The system architect
is insulated from the tedious details of bus protocols, device-drivers,
and various other operating system constructs necessary to achieve
a working prototype.

The steps for communication synthesis inIPCHINOOK [21] are
(1) multi-hop deadline distribution, (2) bus protocol attribute syn-
thesis, (3) message router generation, and (4) device-driver instanti-
ation. Interface synthesis then takes as input the target architecture
and the instantiated device-drivers.

Multi-hop communication synthesis createshop processesfor
situations where logically connected processes are mapped to pro-
cessors not directly connected. The hop processes route the mes-
sage through intermediate processors and busses to reach the des-
tination process. Since the abstract communication link supports
a unidirectional one-to-many connection topology, a message may
travel on multiple paths to reach all of its destinations. The dead-
line associated with each message is distributed along the message's
paths so that the bus protocol parameters for all messages can be
effectively determined. The deadline partitioning algorithm takes
a global view of communication by considering all the bus traf-
fic in the system. Automating multi-hop communication synthesis
with the distribution of deadlines and the insertion of hop processes
is necessary to support target architectures that can have any bus
topology.

Bus protocol attribute synthesis examines all of the messages
that must be transmitted over a particular bus and determines the
appropriate protocol parameters for each of these messages. These
messages are then transformed into bus messages that incorporate
the synthesized protocol-specific attributes. A protocol taxonomy
based on the bus arbitration policy of the protocol has been defined

[21] to enable the synthesis of these parameters. These bus protocol
attributes may be message IDs, processor IDs, message or processor
priorities, and queues, depending on the specific protocol. They are
synthesized so that messages with tighter timing constraints have a
higher priority when arbitrating for the bus. The bus message also
includes routing information so that the customized real-time oper-
ating system executing on each processor can deliver the message
to its destination.

The device-drivers, along with the bus messages containing the
synthesized protocol attributes, abstract the designer from the pe-
culiarities of a given bus protocol. For instance, the Controller
Area Network (CAN) protocol [20] transfers only eight data bytes
per message. The customized device-driver on the sending proces-
sor automatically divides larger messages into eight byte segments
and the receiving processor reconstructs the message. The recon-
structed message is passed to the synthesized message router, which
examines the message's routing information and delivers the mes-
sage to the appropriate input ports. The synthesized input ports in-
corporate the queueing semantics specified in the high-level system
description.

The device-drivers are automatically instantiated from a protocol
library. Interface synthesis customizes those device-driver routines
that directly read and write the physical pins of the processor. These
routines must reflect any introduced glue hardware logic. For the
interface between a processor and hardware, multiple techniques
can be used to physically connect the devices. Embedded micro-
processors typically have I/O ports, which are pins connected to
registers that can be accessed from software. The I/O ports are flex-
ible and require little glue hardware. Interface synthesis allocates
the I/O ports to maximize sharing the physical pins among the pe-
ripheral devices that need to be connected to the processor [10].
Memory-mapped IO is another common interfacing technique for
embedded systems, where the software writes to “phantom” mem-
ory addresses. External address matching logic interprets these
memory accesses as I/O communications. The phantom memory
locations are called I/O addresses. When the I/O ports have been
fully utilized, interface synthesis performs memory-mapped I/O by
inserting multiplexing logic as necessary to realize the connection.
To minimize the address matching logic, different encoding tech-
niques are used to assign the I/O addresses [11].

Communication synthesis allows system architects to investigate
the tradeoffs between different mappings, bus topologies, and com-
munication protocols. Exploring the design space is crucial to cre-
ating a cost-effective implementation that satisfies all system-level
constraints. Moreover, communication synthesis also provides an
effective means for system-level analysis by instrumenting for sim-
ulation, without having to modify the high-level specification.

4 Simulation

Hardware/software co-simulation lets designers execute a model of
their embedded system [23]. The model can range from the initial
target-independent description to the output of intermediate synthe-
sis stages. Many hardware/software design automation tools have
co-simulation support [1, 22, 26], howeverIPCHINOOK supports
a novel technique calledselective focussimulation [15]. This ap-
proach simulates at the highest level of abstraction whenever pos-
sible to achieve the fastest simulation speed. Since designers may
sometimes need to inspect low-level details in isolated regions of
the system, our approach must allow this as well. Instead of sim-
ulating the entire system at the detailed level, selective focus per-
forms detailed simulation only in the regions of interest; other parts
of the system are simulated at a higher level to provide the work-
load needed to drive the simulation. Selective focus lets designers

dynamically zoom in and out of different regions in a given simu-
lation run.

The simulation tool, Pia, also includes support for a style of de-
bugging that exploits the higher levels of abstraction (i.e. modal
processes and ACTs) enabled byIPCHINOOK[17]. This allows de-
signers to step through a mode trace or event trace and observe the
system's behavior.

4.1 Implementing selective focus

The simulator is able to obtain the selective focus effect by keep-
ing track of several versions of entry calls for each interface, and by
choosing the appropriate version based on the detail level at which a
region of the system is operating. A set of versions for a consistent
single level of detail is called arunlevel. Normally, each interface
has two runlevels, one that goes through any lower level interfaces
it uses, and another that goes directly to similar interfaces on other
components. To illustrate this point, consider the example system,
“WubbleU” [27]. WubbleU is a small PDA that is connected to
the Internet through a wireless connection (in this case IrDA), and
a software server on a host machine. Figure 4 shows the protocol
stack used by the components on either side of the wireless link.
Each interface in this protocol stack is given two runlevels; one for
performing communications in the normal way—through the rest
of the stack—and one for accelerating the simulation by communi-
cating directly with the similar interface on the other component.

There are several issues to consider when implementing run-
levels. For example, there must be a way for communicating in-
terfaces to coordinate the runlevel at which they are currently oper-
ating. Also, when interfaces switch runlevels, they must not leave
any residual state behind. In addition to these, each of the differ-
ent runlevels held by any one interface must be essentially indis-
tinguishable to the applications or other interfaces that use it. For
example, in Figure 4, the link management interface should not be
able to tell whether the link access layer is talking to the link ac-
cess layer on another component directly, or through the physical
layer. For the first two considerations, some simple rules suffice.
For example, communication tokens can be tagged with the run-
level of their transmitting interface, such that recipients can ensure
that they are handled in the appropriate manner, thus coordinating
runlevels without handshaking. Also, the granularity for switching
runlevels for a particular interface is an entry call, so that any re-
quest for a switch in runlevels will not be handled until it is safe to
do so.

The last of these issues—namely generating alternate methods
for different levels of detail—is not always quite so simple to re-
solve. Fortunately, it is usually possible to automatically gener-
ate runlevels based on information provided by the designer about
the behavior of entry calls, and based on information derived from
higher level specifications [16].

4.2 Including real hardware in simulation

Pia can incorporate real hardware to be used as part of the simu-
lation [18], and it allows simulator nodes to be distributed across
the Internet. The main advantage of this is that parts vendors can
put real parts on the web, and allow designers to use these remotely
through a simulator interface. In this way, designers can try out
these parts in their designs without having to build a hardware pro-
totype, or even purchase the parts. Other advantages are that IP
providers can maintain tight controls on preliminary use of the IP
by limiting access to only the external interface, and better perfor-
mance can be achieved by mapping concurrent modules in a simu-
lation to separate hosts.

The role played by selective focus in geographically distributed
simulation can be quite substantial. By allowing the designer to

IRDA

Server

IRDA

WubbleU

PHY

irLAP

irLMP

PHY

irLAP

irLMP
runlevel short circuiting

Figure 4: An IrDA protocol stack showing runlevel short-circuiting
between the link management layers, the link access layers, and the
physical layers.

dynamically trade abstraction for total communication overhead,
better parallelism is achieved, without sacrificing any essential de-
tail. This is because components can synchronize on larger scale
communication actions rather than on all the inevitable low level
actions required to perform them.

5 Conclusions

IPCHINOOK is a comprehensive hardware/software cosynthesis
framework for heterogeneous distributed embedded systems. It en-
ables design space exploration by mapping a high-level design to
the target architecture of designers' choice. The specification model
enhances design reuse through control composition, and the syn-
thesis tasks enhance retargetability through coordination, commu-
nication, and interface synthesis. Efficient simulation techniques
let designers validate their design at different stages of synthesis
without having to construct a hardware prototype. The simulator
also gives them flexible observability to maximize simulation per-
formance and a level of control that would otherwise be difficult to
accomplish with hardware prototypes.

The current version of theIPCHINOOK user interface has been
used to construct several system specifications with multiple map-
pings for each. The handlers that make up the executable code of
the system specifications are written in a subset of Java (without
dynamic creation and destruction of objects). In addition, the tools
themselves are all written in Java.

IPCHINOOK presents a new model for IP-based design. Our fu-
ture work will seek to further develop the modal process abstrac-
tions and composition methodology. Areas of future emphasis in-
clude (1) allowing verification of mode liveness and safety prop-
erties, (2) expanding debugging to directly use coordination infor-
mation, (3) expanding the mode management framework to include
hardware IP, and (4) broadening communication synthesis to sup-
port networked distributed embedded systems.

References

[1] BALBONI , A., FORNACIARI, W., AND SCIUTO, D. Co-
synthesis and co-simulation of control-dominated embedded
systems. Design Autmation for Embedded Systems(July
1996).

[2] BERRY, G. Programming a digital watch in Esterel v3.2.
Tech. Rep. 1032, Instut National de Recherche en Informa-
tique et Automatique (INRIA), May 1989.

[3] BERRY, G., RAMESH, S., AND SHYAMASUNDAR , R. K.
Communicating reactive processes. InConference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages(January 1993),
pp. 85–98.

[4] BOLSENS, I., DEMAN, H. J., LIN, B., ROMPAEY, K. V.,
VERCAUTEREN, S., AND VERKEST, D. Hardware/software
co-design of digital telecommunication systems.Proceedings
of the IEEE 85, 3 (March 1997), 391–418.

[5] CHIODO, M., ENGELS, D., GIUSTO, P., HSIEH, H., JUREC-
SKA, A., LAVAGNO, L., SUZUKI , K., AND SANGIOVANNI -
VINCENTELLI , A. A case study in computer-aided co-design
of embedded controllers.Design Automation for Embedded
Systems 1, 1-2 (January 1996), 51–67.

[6] CHOU, P. Control Composition and Synthesis of Distributed
Real-Time Embedded Systems. PhD thesis, University of
Washington, 1998.

[7] CHOU, P., AND BORRIELLO, G. An analysis-based ap-
proach to composition of distributed embedded systems. In
Proc. International Workshop on Hardware/Software Code-
sign (CODES/CACHE)(1998).

[8] CHOU, P.,AND BORRIELLO, G. Modal processes: Towards
enhanced retargetability through control composition of dis-
tributed embedded systems. InProc. Design Automation Con-
ference(June 1998), pp. 88–93.

[9] CHOU, P., HINES, K., PARTRIDGE, K., AND BORRIELLO,
G. Control generation for embedded systems based on com-
position of modal processes. InProc. International Confer-
ence on Computer-Aided Design(1998).

[10] CHOU, P., ORTEGA, R., AND BORRIELLO, G. Synthesis of
the hardware/software interface in microcontroller-based sys-
tems. InProc. International Conference on Computer-Aided
Design(1992), pp. 488–495.

[11] CHOU, P., ORTEGA, R., AND BORRIELLO, G. Interface
co-synthesis techniques for embedded systems. InProc. In-
ternational Conference on Computer-Aided Design(1995),
pp. 280–287.

[12] DAVEAU , J.-M., MARCHIORO, G. F., BEN-ISMAIL , T.,
AND JERRAYA, A. A. Protocol selection and interface gen-
eration for hw-sw codesign.IEEE Transactions on VLSI Sys-
tems 5, 1 (March 1997), 136–144.

[13] ERNST, R., HENKEL, J., BENNER, T., YE, W., HOLT-
MANN , U., HERRMANN, D., AND TRAWNY, M. The
COSYMA environment for hardware/software cosynthesis of
small embedded systems.Microprocessors and Microsystems
20, 3 (May 1996), 159–166.

[14] HAREL, D. StateCharts: a visual formalism for complex sys-
tems.Science of Programming 8, 3 (June 1987), 231–274.

[15] HINES, K., AND BORRIELLO, G. Dynamic communication
models in embedded system co-simulation. InProc. Design
Automation Conference(June 1997), pp. 395–400.

[16] HINES, K., AND BORRIELLO, G. Optimizing communica-
tion in hardware-software co-simulation. InCodes/CASHE
'97 (1997), IEEE, ACM.

[17] HINES, K., AND BORRIELLO, G. Debugging distributed im-
plementations of modal process systems.Lecture Notes in
Computer Science 1474(1998), 98–107.

[18] HINES, K., AND BORRIELLO, G. A geographically dis-
tributed framework for embedded system design and valida-
tion. In Proc. Design Automation Conference(June 1998),
pp. 140–145.

[19] ISMAIL , T. B., AND JERRAYA, A. A. Synthesis steps and
design models for codesign.IEEE Computer 28, 2 (February
1995), 44–53.

[20] ISO 11898.Road vehicles - Interchange of Digital Informa-
tion - Controller Area Network (Can) for High-Speed Com-
munication, 1st ed., 1993.

[21] ORTEGA, R., AND BORRIELLO, G. Communication synthe-
sis for distributed embedded systems. InProc. International
Conference on Computer-Aided Design(1998).

[22] PASSERONE, C., LAVAGNO, L., CHIODO, M., AND
SANGIOVANNI -VINCENTELLI, A. Fast hardware/software
co-simulation for virtual prototyping and trade-off analysis.
In Proc. Design Automation Conference(1997), pp. 389–394.

[23] ROWSON, J. Hardware/software co-simulation. InProceed-
ings of the Design Automation Conference(1994), pp. 439–
440.

[24] ROWSON, J. A., AND SANGIOVANNI -VINCENTELLI, A.
Interface-based design. InProceedings of the Design Automa-
tion Conference(June 1997), pp. 178–83.

[25] SELIC, B., GULLEKSON, G., AND WARD, P. T. Real-Time
Object-Oriented Modeling. Wiley, 1994.

[26] VALDERRAMA , C. A., NACABAL , F., PAULIN , P., AND
JERRAYA, A. A. Automatic generation of interfaces for dis-
tributed C-VHDL cosimulation of embedded systems: an in-
dustrial experience. In7th International Workshop on Rapid
Systems Prototyping(June 1996).

[27] WubbleU hand held PDA benchmark for co-design,
http://www.it.dtu.dk/jan/WubbleU.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

