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To explore different points in the design space of an em-
bedded system, it is important to be able to compose a design
from reusable design components, and then map the resulting
system description onto several possible target architectures
with different partitionings of functionality. Today’s specifi-
cation models support composition styles that work well for
data communication but not for control communication be-
tween concurrent processes to be mapped onto a distributed
architecture. We propose a new retargetable system specifica-
tion model that combines the best properties of process-based
and hierarchical-FSM-based methods for modular composi-
tion of data and control. The model lends itself to automated
synthesis of the run-time system for coordinating tasks on
different processors in the system. The model and synthe-
sis method are illustrated with several examples of embedded
systems.

Embedded systems are increasingly being implemented
as distributed systems with heterogeneous processors. Dis-
tributed architectures are motivated by applications that must
interact with multiple elements of the environment concur-
rently. For example, typical automobiles are now controlled
by a distributed system that coordinates everything from the
braking system and engine to the dashboard and climate con-
trol. These systems also tend to be heterogeneous, so that de-
signers have more flexibility in optimizing the design to their
specific objectives of cost, size, power, and performance. It
is often imperative that designers explore many points in the
design space, but at the same time, they are given less time to
complete their designs. To meet these conflicting goals, suc-
cessful designers must maximize design reuse and work at the
highest possible level of abstraction.

Today, most designs are written in
such as C, Ada-95 (for avionic or military applica-

tions), or Java. These languages allow reuse through a
, and object-oriented languages further en-

able specialization and extension through inheritance. They
work well for a wide variety of algorithmic descriptions on a
single processor. However, they become very difficult to man-
age when several concurrent processes must interact with each
other on a wide variety of target architectures. Programs that
use threads are often very difficult to debug and do not behave
consistently on different platforms. The run-time system also
consumes high overhead that can be prohibitive on low-cost
embedded processors. Furthermore, today’s methodology re-
lies heavily on legacy code and components that severely limit
the optimizations a designer can explore.

What makes the development of a retargetable specification
method difficult is the underlying dichotomy between data
and control flow. Virtually all practical embedded systems
contain both control and data aspects of behavior, and a good
model for one aspect is awkward for the other. The most suc-
cessful methods so far have taken a domain specific approach
by fixing their assumptions about data and control. These
models can be roughly divided into communicating processes
and hierarchical state machines. We propose a new model that
combines the best features of the two approaches.

We envision a design style where the designer composes a
behavioral specification with reusable modules, and uses auto-
mated tools to map it onto several target architectures. These
building blocks may be designed either in-house or be intel-
lectual property. To adapt reusable components to the specific
application, we propose a new way of customizing the be-
havior by , instead of modifying individ-
ual components. By deriving a complete implementation of
the system on the target architecture, designers would be able
to closely evaluate not only the mix of components and their
communication topology and protocols, but also the alloca-
tion of system tasks to different processors. Such tools would
support systems with arbitrary topologies that use a rich set of
components and interfaces.
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Embedded systems are very diverse. We have selected two
examples with different features that will allow us to illustrate
our specification model.

The first example is a simplified version of the space shut-
tle’s heat-shield tile tessellator robot. It can be controlled ei-
ther manually with a joystick or automatically to inspect and
replace tiles on the hull of the spacecraft. The mode of op-
eration is selected by a toggle switch, and defaults to manual
mode. For safety reasons, the robot moves only when a hu-
man operator is present and holding the deadman switch on
the joystick. The robot must always halt whenever the switch
is released. The joystick controls the heading and acceleration
of the robot. In autonomous mode, the robot uses its sonar
and bumper sensor for maneuvering. It moves forward nor-
mally, but if the sonar detects an obstacle, then the robot turns
45 degrees and continues forward. If its bumper is hit then
the robot goes in reverse until two seconds after the bumper
has been released continuously, and then turns 45 degrees and
moves forward in the same manner as the sonar’s reaction.
The bumper overrides the sonar, switching from auto to man-
ual mode overrides both, and releasing the deadman button
stops all activities.

The RAVEN human-powered airplane [11] includes an em-
bedded system to control its rudder and elevators. It runs
one of several control algorithms based on user commands
and regularly samples sensor values. The flight data can be
logged in a flash memory module and transfered over a se-
rial line for analysis after landing. The logger has two tim-
ing resolution options. The LCD-based user interface, which
has seven command screens, is the most complex part of the
design because it interacts with all other components in the
system. Some commands are local to the user interface ( .
changing screens, editing parameters) while others affect the
system’s modes of operation.

Existing models offer ways of composing modules to form
a complete design. The ways existing models organize behav-
ior can be divided into two styles:
and .

Most systems are composed in a style we call
, as exemplified by process based models. Each

process or module is an encapsulation of logically related
functionality. Processes are a natural way of organizing de-
sign components, and they can be composed by message pass-
ing or signaling. Examples include synchronous dataflow
(SDF) and dynamic dataflow (DDF) [6], CSP (strictly mes-
sage passing) [9], and many concurrent FSM variants like
CFSM [1] and SDL [12]. For design space exploration, pro-
cesses define the granularity for partitioning. A designer can

experiment with different assignments of processes to proces-
sors, and tools can help with system integration by synthesiz-
ing interprocessor communication [10]. Process models pro-
mote a modular design style – as long as the composition is
limited to . The modularity breaks down for control com-
position.

Data is concrete, while control is more abstract and can
have many implementations: implicitly with the program
counter or explicitly encoded and manipulated as data. Cur-
rently, control must be as a command or a named
signal in order to be communicated, and the receiver must be
ready to interpret the command and change its control flow
accordingly. This has been done successfully for specific do-
mains, such as the subsumption architecture [4], where pro-
cesses in a chain either send their own commands to the lower
level or pass commands from above when overridden. Outside
the specific domain, though, the problems with this approach
are that data primitives are too low level for control and con-
trol is handled in an manner by user code.

Control composition inherently requires processes to make
use of a common set of states. To be modular, each pro-
cess must maintain its own copy of the shared states. Each
process is burdened with the responsibility of ensuring the
coherence of their replicated states. Existing functional en-
capsulation models lack high-level primitives for expressing
the state coherence requirements on the processes. Instead,
state-coherence is handled imperatively in terms of transmit-
ting state changes, interpreting the commands, and actually
making those changes. Such low level code is embedded and
scattered throughout each process and can be a major source
of error.

An alternative to functional encapsulation is to focus on
the composition of control based on hierarchical state ma-
chines, as exemplified by hierarchical state machine models
like StateCharts [7] and scoped watchdogs like Esterel [2].
Instead of embedding states in a process (in terms of the pro-
gram counter or in state variables), explicit states and tran-
sitions are used to structure the behavior. Explicit states de-
scribe the behavior of the entire system and can be related
in several ways: as parent/child, mutually exclusive, or par-
allel. Control composition by temporal encapsulation can be
more modular than functional encapsulation because neither
the preempting nor preempted state needs to know about each
other, and different compositions do not require modifications
to the behavior by explicitly anticipating the transition com-
mand and interpreting it. Also, there is no state coherence
problem because there is only one set of states.

Temporal encapsulation can be difficult to partition for
mapping onto a distributed architecture. It breaks process
modularity because logically related functionality must be
scattered in different states. Also, these models rely on the

for control composition, but it
is impractical for many distributed systems. As a result,
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languages that support temporal encapsulation also support
process-like, parallel composition style using and sig-
naling statements that use asynchronous composition at the
system level, such as CRP [3] and ModuleCharts [8]. How-
ever, these are effectively processes without control modular-
ity.

We propose a model that provides primitives for compos-
ing control independently of the communication semantics.
The unit of composition is a . It encapsulates
functionality and defines the granularity of partitioning. Its
behavior is organized into . Modes can be viewed as
states of an incompletely specified state machine and serve as
the interface for modular control composition. A distinguish-
ing feature is that modes are managed by the run-time system
code that we synthesize, according to the coherence require-
ments on the modes specified explicitly, rather than being em-
bedded in user code and tied to the message passing seman-
tics. By separating the specific synchronization requirements
of the application from reusable behavior, this approach not
only helps eliminating a whole class of bookkeeping errors
related to state coherence, but also enhance module reusabil-
ity in different applications and over different architectures.

In our terminology, a is a container of event handler
routines. It may be derived from another model that assumes
shared memory, message passing, event-driven, time-driven,
dataflow, . In general, events may include I/O, interprocess
communication, timing, dataflow, and mode transitions. We
assume nonblocking communication, but the can
be parameterized.

A is a process with several modes, where
a is, informally, a way of handling events. Each mode
defines a collection of handlers to use while the mode is ac-
tive. Different modes may pick different handlers to handle
an event or ignore it. Modes allow a modal process to have
several possible behaviors.

Although modes are similar to states, there are several dif-
ferences. A traditional FSM has a transition function that
maps a state to the next state , or .
The state space of a modal process is a subset of the power-
set of its modes, that is, . When a handler finishes
execution, it may return its transition request , where

is a set of modes to activate and is a set
to deactivate, and . The requests from different
handlers are merged.

For syntactic convenience, designer do not need to actually
specify all of the modes to activate and deactivate on every
transition, but they can rely on to automat-
ically activate or deactivate a set of modes. In fact, hierar-
chical state machines are a special case where two states can
be mutually exclusive or related as parent and child. Mutual
exclusion is an automatic deactivation of the current mode on

Figure 1: Control composition of the robot specification.

activating the new mode. A parent is automatically activated
on activating a child, and a child is automatically deactivated
on deactivating its parent. Unlike a state machine, a modal
process is : it defines the maximum al-
lowed state space and the minimum transition space. In fact,
it may define no transitions at all. Control composition will
restrict the state space and expand the transition space, as de-
scribed in the next subsection.

The robot has five processes: Joystick, Pilot, Bumper, Sonar,
and Wheels (Fig. 1). Joystick has two modes, for dead-
man and for enabled. The Pilot process has two modes:
for manual and for auto pilot. The Sonar process has two
modes: to pulse the sonar every two seconds and
for turning after obstacle detection. The Bumper process has
four modes: , when the bumper is hit, when waiting
for two more seconds, and like the Sonar. The Wheels
process has modes for going forward, reverse, turning, and
halt, but it does not define any transitions of its own.

This system has five processes. The logger is capable of log-
ging fast , slow , uploading data , or being . The
altimeter can measure air altitude or perform calibration. The
control algorithm process has two modes for manual ( ) or
autopilot ( ). The user interface process has two sets of mutu-
ally exclusive modes. One set is for setting the logging modes,
and the other set for plane operations: manual, autopilot, up-
load logger data, calibrate, analog diagnostics, and digital di-
agnostics. The ground sensor detects whether the plane is in
the air or on the ground.

Control composition is done by modes to common
states that can be organized hierarchically. A

, or simply for short, is a boolean variable.
When one process requests to activate a mode, it also causes
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Figure 2: Control composition of the RAVEN human powered
airplane controller.

other processes to activate their modes that are bound to the
same state. A transition consists of an exit phase followed by
an entry phase. A process may choose to be notified of the
transition with a special internal mode-exit event to give it a
chance to clean up, or a mode-entry event to set up.

(Fig. 1) The system’s state hierarchy has two states at the
top level for and . In , we have
two nested states and . The state has three
nested states: , , and . The
state has two modes for and . Note that Bumper
and Wheels processes do not fully specify the transitions be-
tween their own modes; instead, they acquire some transitions
through binding. By binding Bumper’s mode to the same
state as Sonar’s mode, Bumper effectively reuses Sonar’s
behavior, which will take it back to mode when Sonar re-
turns to . The Wheels process has four behaviors but does
not decide when to transition between them.

The binding between states and modes is many-to-many
and may be asymmetric. A state activates modes that are
bound to it. On the other hand, a mode can be bound to several
states, and of them can activate the mode.

Synchrony is the characterization of their relative progress
or correlation to the events in the system. Different semantics
can be obtained by changing the synchronization behavior.

semantics means that all parallel
state machines make progress in lock-step, such as Esterel.

semantics, used by discrete event sys-
tems, means that all parallel state machines see the same set
of events simultaneously, but it makes no restrictions on how

many transitions each state machine can make within a time
step. It is possible to combine the two. Synchronous composi-
tion can yield deterministic and predictable implementations,
though they may be impractical for distributed architectures.

In composition, each process can make ar-
bitrary amount of progress asynchronously to other processes.
Mode transitions are asynchronous to the communication.
A special case is , where pro-
cesses make progress asynchronously until they need to com-
municate. Asynchronous semantics is more realistic for dis-
tributed systems, and in fact synchronous models have come
to rely on asynchronous compositions at the system level. For
example, CRP [3] is essentially a set of locally-synchronous
Esterel components that are composed asynchronously as
CSP processes at the system level. StateMate [8] offers sim-
ilar composition: locally-synchronous StateCharts compo-
nents are connected together asynchronously in the Module-
Charts.

semantics requires different processes
to synchronize on a mode change if their modes are affected,
so that the composed system behaves in a coherent man-
ner. This is particularly useful for distributed systems be-
cause most of the time the systems make independent but co-
herent progress by running in the same mode context with-
out synchronization. The occasional synchronizations en-
sure that the entire system (or subsystem) is in a coherent
new context before it is allowed to make further progress.
In semantics, mode changes happen syn-
chronously to dataflow. It allows the system to operate in a
logically coherent manner by pipelining mode changes along
dataflow, thereby relaxing the instantaneous state-coherence
requirement and eliminating the need for additional synchro-
nization.

Although both the robot and RAVEN are control oriented and
have similar auto-pilot and manual modes, they have different
synchronization requirements. The robot can be implemented
correctly with asynchronous composition, while the RAVEN
needs to be at least data-synchronous. On the robot, the sonar
and bumper processes are not synchronized with each other
or with the joystick, but the only requirement is respose time.
The RAVEN, however, operates on streams of sensor/actuator
values from the user interface to the control algorithm and
the logger, similar to SDF. Theoretically the mode can change
every iteration, but an implementation only needs to ensure
that each process operates on the data in consistent modes. A
rendezvous type of synchronization would be unnecessarily
costly and even preclude pipelined implementations.

Another use of modes is to scope timing constraints. A
system may have different sets of timing requirements de-
pending on what mode it is in. Event detection may im-
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pose polling constraints in one mode, but in other modes, the
event may be ignored and therefore need not be dispatched
at all. Event sensitivity information can be extracted from
the specification at compile time and is used by the real-time
scheduler to determine the work load for each mode config-
uration. Handlers may be constrained by rate or related by
precedence, with minimum or maximum separation require-
ments between the times of two observable events. Our modal
process model is not tied to any particular scheduling model,
and most types of timing constraints can be specified, as long
as the available schedulers support them. These include both
priority-driven schedulers, such as EDF and rate monotonic,
and static scheduling techniques that can meet more complex
intramodal and intermodal constraints [5].

We implement the modal process abstraction with a mix of
compile-time transformations and synthesized run-time sup-
port. The first step partitions the hierarchical states of the sys-
tem onto the processors and determines interprocessor com-
munication needed for mode transitions. We also synthesize

as run-time support for maintaining state co-
herence among modal processes that can reside on different
processors.

The system states are represented as a graph .
is the set of vertices that represent states.

is the set of edges that constrain the activation. is the set of
activation relations AA, AD, DA, DD : (AA, ) requires
that when is activated (denoted ), must be activated, too
( , ), while (AD, ) requires to be deactivated
instead, namely . Similarly, (DA, ) means

and (DD, ) is . Finally, is the root
(initial) state.

A modal process is , where is the set
of modes and is the set of transitions between
modes. We define . The binding
between the modes and the states is a set of relations

.
A is a function that maps a process to its pro-

cessor number . Because a mode is contained by a pro-
cess, we overload the function to map a mode to its proces-
sor ID, without ambiguities, namely .

State partitioning involves projecting the system states onto
the individual processors. Some replication may be required,
although it is not always necessary to duplicate those states
that have no binding to any of the modes on the given proces-
sor except those required structurally. In addition to projecting
the states, this procedure also returns , the interprocessor
communication edges for mode transitions. The algorithm is
shown in Fig. 3.

We make a copy of a state if one of the modes on the proces-
sor has a binding to that state or its descendent. The resulting

PartitionState( , ,
)

//
( )
//

//

( , )
where

and are the shortest paths
and

Figure 3: State partitioning algorithm.

Figure 4: Control communication of the robot as partitioned
onto three processors

graph is necessarily connected as a tree. The edges are ex-
actly those needed to connect the replicated states locally. The
second part of the procedure builds the set of edges for in-
terprocessor mode transitions. It projects the local

to a remote host to obtain . If the
projected path is empty then the mode change has no effect
on that processor, and therefore no communication is neces-
sary. The projection can be obtained by taking the transitive
closures of the paths. The activation operators can compose
as follows:

AA AD DA DD

AA AA AD
AD AA AD
DA DA DD
DD DA DD
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Consider partitioning the Robot onto three processors. To
project the (manual, enabled, auto) path on the bumper’s pro-
cessor, we add the edges (manual , auto ) and (manual ,
auto ) since they are the terminal vertices. On the other hand,
the path (auto, enabled, manual) terminates at on
processors 2 and 3, because they do not have the replicated

state. Paths like (wait, reverse, bump) yield empty
projections on processor 1 and therefore no edges are added
from processor 2 to 1.

The mode manager is synthesized as part of the run-time
support for modal processes. It maintains the state hierarchy
on its own processor and services the mode change requests.
When an event is dispatched, the mode manager calls those
handlers that are mapped by the local processes’ modes. The
order in which these handlers are called can be defined stati-
cally by the user or by the scheduling algorithm. It is possible
that one or more handlers can request a mode transition, and
they are serviced and resolved after all pending handlers are
called. Local transitions can be implemented with either static
path enumeration or dynamic path generation. The tradeoffs
are determinism vs. code size.

By default, interprocess mode transitions assume mode-
synchronous semantics, which is implemented with a three-
phase synchronization. After the sender communicates the
mode change, all receivers must acknowledge the completion
of the exit phase. A receiver may also have a pending tran-
sition, and may need to either override the sender’s request
with a NACK or nullify its own transition and ACK. Transi-
tion conflicts can be resolved in a number of ways, and we
currently support static priorities. For example, for a control-
synchronous version of the robot, suppose the sonar tries to
transition from pong to ping at the same time the bumper
wants to go to bumped. This can be statically resolved in favor
of the bumper.

If a sender receives a NACK or decides to nullify its pend-
ing transition, it continues collecting ACKs and sends a con-
solidated ACK to the receiver. If a sender receives all of the
ACKs (statically determined count) then it sends out a “go-
ahead” event that tells all receivers to proceed with the entry
phase of the transition. This may be very strict but it can be
used to implement the semantics of Esterel and StateCharts.

We propose the modal process model for capturing control
and data behavior with real-time constraints by composing

and automatically synthesizing run-time sup-
port software. Modes provide not only an interface for control
composition between processes, but also a way of systemat-
ically scoping timing constraints. By enforcing a separation
between system states and process modes, this model com-
bines the data modularity of processes with the control modu-
larity of hierarchical state machines. The decoupling between

control and data enhances reuse and allows us to automate the
most error prone aspects of distributed systems implementa-
tion, namely, synchronization and real-time. We believe that
this approach will lead to a higher level of retargetability for
distributed embedded systems by enabling the designer to bet-
ter explore the design space. We are currently developing
analysis tools to help the designer determine the best choice
of synchronization mechanism and integrate hardware com-
ponents into the modal process model.
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