
�

�

f g

modal process

Abstract

2.1 Modal processes

1 Introduction

2 Previous work

chou,gaetano @cs.washington.edu

This work was supported by DARPA DAAH04-94-G-0272

dis-
tributed

system in-
tegration

rendezvous

e.g

modal process

active

An Analysis-Based Approach to Composition of Distributed Embedded Systems

Pai Chou and Gaetano Borriello
Department of Computer Science and Engineering, Box 352350

University of Washington, Seattle, WA 98195-2350 USA

The growing complexity in the functionality and system archi-
tecture of embedded systems has motivated designers to raise the
level of abstraction by composing the system with a mix of reusable
and system-specific components. Currently, these components as-
sume specific programming models that make them difficult to com-
pose or retarget. The model addresses the problem
of control composition by separating the synchronization semantics
from state unification, and by supporting automatic synthesis of con-
trol communication onto distributed architectures. By avoiding over-
specifying the behavior, the components can be made more compos-
able and the designer can more easily choose the least expensive syn-
chronization semantics for implementing the composition. To help
designers evaluate their choice, we propose a method for analyzing
the properties of the composed system, including the detection of
potential deadlock and livelock situations.

Embedded systems are becoming increasingly complex.
Not only is there increased functionality, but the system ar-
chitecture is also becoming more complex. Specifically,

(message passing) systems have become an attractive
choice because they offer good price performance tradeoffs.

The increased complexity has motivated a higher level of
abstraction. The design task now is dominated by

, namely composing a set of high level components
to form a complete system. A typical design would consist
of a mix of mostly reusable components and some application
specific components.

Currently, this component-based design approach works as
long as all components to be composed are written in the
same programming model. Each model makes assumptions
about the synchrony of transitions, communication, and many
other factors. For example, CSP [6] assumes that different
processes make progress asynchronously unless they commu-
nicate by synchronization. On the other extreme,
the synchronous language Esterel [1] assumes that transitions
are taken synchronously, as are the events.

Synchronous (event or transition) semantics have many ad-
vantages, including composability and determinism, which
enable designers to succinctly and precisely capture complex
control-dominated behavior. Synchronous models can be im-
plemented efficiently on a uniprocessor. However, they can

be prohibitive on distributed architectures if they have to syn-
chronize on every transition.

Heterogeneous programming models are important for both
specification and implementation. Certain applications are
more naturally written in specific models (. dataflow),
which also enable their analysis and optimization. Another
reason for heterogeneous programming models is for mapping
onto diverse target architectures. Ideally, the cheapest imple-
mentation should use the least strict semantics that meets the
requirements of the specific application. Since this knowledge
is highly dependent on the application, the choice should be
up to the designer.

Our framework for control composition and analysis is
based on the model. It addresses the prob-
lem of control composition by separating the synchroniza-
tion semantics from the composition, and by supporting au-
tomatic synthesis of control communication on distributed ar-
chitectures. By parameterizing the synchrony of composition,
modal processes allow the designer to choose the least expen-
sive synchronization semantics, based on the analysis of our
tool.

In this paper, we describe such a tool that aids the designer
in analyzing potential problems in the composed system, in-
cluding deadlock and livelock situations. Analyses for dead-
lock and livelock conditions are made possible by the explicit
constraints that must be stated when composing the states of
the processes. In the next section, we review the modal pro-
cess model, discuss a taxonomy of various semantics, and re-
view the synthesis of control communication. Section 3 de-
scribes our analysis algorithm based on the space-time dia-
gram representation.

Our model for embedded systems is called modal processes
[3]. A process consists of event handlers, data variables, com-
munication ports, and accesses to devices. For the purpose
of this discussion, we will focus on the control aspect of the
processes. A modal process is a process with modes. A mode
is a collection of event handlers. A modal process can have
several modes, or several ways of handling events. At any
moment, one or more modes may be , though it is also
possible that none of the modes is active. After handling an

top

deadman enabled

manual auto

reverseping pong

bump wait

system-level
hierarchical

states
(system
 composition)

D

E

M

A

off

on wait

turn ping

turn halt

turnfwd

rev

modal
processes

(components)
Joystick Pilot Bumper Sonar Wheels

off

on wait

turn ping

turn halt

turnfwd

rev

Bumper Sonar Wheels

top

deadman enabled

manual auto

D

E

M

A

Joystick Pilot

top

enabled

auto

ping reverse pong

bump wait

top

enabled

auto

ping reverse pong

processor 1 processor 2 processor 3

s

s

2.2 Taxonomy of control communication

unified

discrete event

logically

correlated

Transition synchronous

Event synchronous

Mode synchronous

data synchronous

asynchronous

Figure 1: Robot as modal processes with state constraints

Figure 2: Partitioning the robot onto three processors

event, a handler may also return a value requesting the activa-
tion of a new mode.

System composition can be viewed as adding application-
specific constraints to the processes. Modes of different pro-
cesses can be , which means when one mode is ac-
tivated in one process, all unified modes in other processes
must be activated, even if they are on different processors.
These unified modes are said to be bound to a common state.
For brevity, we say “activating a state ” to mean “activate
the modes unified by state ,” as there is no ambiguity. Dif-
ferent states can be related hierarchically, where activating a
child state requires activation of its parent. Each state can
also constrain its children to be mutually exclusive, or it can
allow them to be concurrent – in addition to the process’s own
constraints on its modes. State de-activation is not expressed
explicitly, but is inferred from the constraints. Entering a state
requires the deactivation of those states that are mutually ex-
clusive to it. Similarly, exiting a parent state requires the exit
of all of its children states.

Fig. 1 shows a robot example described as a composition of
modal processes. The robot can be operated with a joystick
or can run autonomously with a bumper and a sonar. Their
modes are constrained by the state tree above. When the de-
signer partitions the processes onto a distributed architecture,
our tool automatically partitions the hierarchical states and

synthesizes the control communication accordingly. Fig. 2
shows the robot partitioned onto three processors.

Different semantics can be obtained by changing the syn-
chronization behavior. We have identified the following
classes:

semantics means that every pro-
cess takes (at most) one-step, or a transition in the Mealy ma-
chine sense, in every time step. Examples of this include RTL
(register-transfer level) semantics and Esterel.

, a.k.a. , means that all
processes see the same set of events simultaneously. Event
handling is synchronous to the events, which are totally or-
dered. It is possible to emit events that are globally visible
instantaneously and trigger a potentially infinite chain of tran-
sitions within a time step. The time step ends when no more
transitions can be triggered. This is the semantics assumed
by the original StateCharts as well as the program statements
in hardware description languages such as Verilog [9] and
VHDL. It is also possible to combine event synchrony with
transition synchrony, as in Esterel and the later revised State-
Charts [4].

semantics requires processes to syn-
chronize on a mode change if their modes are affected. Lo-
calized transitions that do not affect other processes need no
synchronization. Otherwise, the system can have any other
combinations of synchrony. This is the semantics assumed by
modal processes [3] by default.

In models, the propagation of control is
tied to data communication. Even though a set of processes
should operate in the same modes (as a result of
binding), it is unnecessary to synchronize all of them at once
on a mode change. Instead, the mode is with data
and is allowed to be pipelined over data communication chan-
nels in the same way data flows through a dataflow network or
a pineline. In other words, control can flow synchronously as
data, or piggybacked with data. See [8] for a comprehensive
survey on dataflow models.

In models, each process can make arbi-
trary amounts of progress asynchronously to other processes.
Most “process” models fall into this category, most notably
CSP [6] and its derivatives. Even synchronous models have
come to rely on asynchronous compositions at the system
level. For example, CRP [2] is essentially a set of locally-
synchronous Esterel components that are composed asyn-
chronously as CSP processes at the system level. StateMate
[5] offers similar composition: locally-synchronous State-
Charts components are connected together asynchronously in
ModuleCharts. Both are motivated by the fact that transition-
synchrony and event-synchrony are impractical for distributed
systems.

Unfortunately, these models force designers to commit to
a specific synchronization semantics at the highest specifica-
tion level to reflect their architectural mapping concerns. In

top

deadman enabled

manual auto

top+enabled
auto

reverseping pong

bump wait

top+enabled
auto

reverseping pong

d a ping pong d aping rev pong

state enables target handler
direction of communication
handler to target state transition source state to target handlers

top+enabled

auto

reverseping pong

bump wait

top+enabled

auto

reverseping

ping pong ping rev pong

pong

top+enabled

auto

reverseping pong

bump wait

top+enabled

auto

reverseping pong

ping pong ping rev pong

Bumper's
processor

Sonar's & Wheel's
processor

Bumper's
processor

Sonar's & Wheel's
processor

(a) both Bumper and Sonar communicate
mode change to each other.

(b) convergence: Sonar goes to reverse,
Bumper denies transition to pong.

3 Analysis

steady state
consistent

2.3 Control communication

ping pong

reverse
pong reverse

Figure 3: Synthesized control communication and handlers

Figure 4: Transition scenario

contrast, our modal process model allows the designer to pa-
rameterize and synthesize the synchrony that is appropriate
for the specific architectural mapping. The advantages are
that the modules can be made more retargetable without over-
specifying their behavior, and that they enable better design
optimization to the target architecture.

To satisfy the mode unification constraints in a distributed
architecture, mode changes must be communicated across
processors. The run-time system on each processor does not
need a full replication of the state space, but only a projection
needed for maintaining the local modes and their interactions
with the other processes. When a handler initiates a mode
change, our run-time system transmits the target-state refer-
ence to other processors whose modes are affected, as deter-
mined by static analysis. On the receiver’s side, we synthesize
a handler for each state that can be a remote target.

Fig. 3 shows the synthesized transition handlers in the
nested boxes. These target handlers can be qualified by the
modes where outgoing transitions to the handlers’ targets are
actually allowed, though they default to always active in the
figure. For example, on the second processor, the target han-
dler for is enabled only when in state. The ability
to deny transition requests selectively is a useful feature for
convergence in asynchronous compositions. Fig. 4 shows a
scenario of the robot example where two transitions simulta-
neously requested by both the sonar and the bumper processes
result in convergence without any synchronization. The sonar

accepts the bumper’s request to go to , while the
sonar’s request to go to is dropped while in .

Control communication may need synchronization depend-
ing on the composition semantics. Transition-synchronous
semantics requires synchronization on every Mealy-machine
transition, or every quantum of computation, while event-
synchronous semantics requires synchronization on every
event, and both are impractical for distributed systems. By
default, we assume mode-synchronous semantics, which re-
quires the run-time system to implement the abstraction of al-
ways presenting a consistent view of the system state. The
run-time system can hide the transient conditions from the
components by using a three-phase synchronization protocol
on a mode change: the sender sends the request, waits for all
receivers to reply, and tells everyone to proceed.

It is possible to further relax the synchronization require-
ment by presenting individually consistent view on different
processors, even though the entire system may not be simulta-
neously consistent. For example, data-synchronous seman-
tics further eliminates global synchronization by exploiting
the regularity in the underlying dataflow model. As long as
each process is fired with consistent context, global synchro-
nization is not a requirement. However, this approach re-
quires knowledge about the way control flows through the sys-
tem. We are currently investigating its application to dataflow
models, which have highly regular structures. In this paper,
we are mainly concerned with asynchronous composition. It
achieves the least expensive implementation for a given target
architecture by exposing transient conditions to the user pro-
cesses. It should be considered if the application can tolerate
transient states, especially in areas that are not safety-critical.

In this section, we describe a method for analyzing the
property of a given asynchronous composition. We assume
that each mode starts in a consistent . A system
state is if the active modes satisfy the unification,
mutual exclusion, and hierarchy constraints. The system is
in a (temporary) steady state when all internal (mode-change)
events have been generated and handled in response to a given
set of input events. Since a given event can occur multiple
times, a system may never reach a steady state because the in-
put set is potentially infinite. Here we will use the event inter-
arrival constraints to allow us to bound the number of events
to consider in a scenario between steady states. Anomalous
conditions in asynchronous systems include oscillation, live-
lock, divergence, and deadlock.

Oscillation means that the system fails to reach a steady
state directly, but may be temporarily caught in a cycle of in-
ternal events due to race conditions. That is, processes on
different processors bounce between different modes trying
to unify with each other’s modes at the same time telling each
other to do otherwise. An oscillation can continue indefinitely
and can pose a problem in the ability to satisfy response time

pong event

bump event

bumper

sonar

bump(A)

pong (D)

off (B)

ping (C)

bump(E)

pong(F) rev(H)

bump(G)

-BC-

ABC-

-BCD

AEC-
AECD

-BFD
ABFD

AEFD

AGFD

AEHD

AGHDABCD

G

divergence

consistent cut

causal set

reverse
turn

bump
reverse bump reverse

pong
pong

bump
pong bump

3.1 Space-time diagram

3.2 Formulation and algorithm

3.3 Examples

Figure 5: Space-time diagram and lattice of consistent cuts

constraints or even lead to incorrect behavior, although a later
event may be able to break the cycle. A stronger case of an
oscillation is a livelock, which cannot be broken by any event
or race condition.

Note that it is difficult to get into an oscillation and even
harder for a livelock because our synthesized run-time system
and handlers do not create such a cycle, but anomalous user
handlers can. On the other hand, it is easy to reach a steady
state, but it is not necessarily correct. If the steady state is
inconsistent, we call this . A special case of diver-
gence is a deadlock, which is an inconsistent steady state that
responds to no events and therefore the system has no way of
exiting. It is possible for a consistent steady state to respond
to no events, but it would not be considered a deadlock here.

The representation for our analysis is based on the space-
time diagram as used by Lamport [7] for describing events in
distributed systems. The diagram contains vertices that are
divided into parallel tracks, each of which models a physi-
cally separate module with its own views of time and event
arrivals. Event occurrences are represented by vertices, and
they are connected by directed edges that represent “happens-
before” relations. Note that the term “event” in a space-time
diagram is more abstract and general than those in a behav-
ioral description because it marks not only I/O and internal
communication but also mode changes. These events are to-
tally ordered on a given track but partially ordered between
different tracks. The happens-before edges capture causality
due to sequencing and communication.

The instantaneous state of a system as modeled by a space-
time diagram can be characterized by dividing the events into
two sets: a past set and a future set. A cut that has no edges
going from the future to the past in a space-time diagram is
called a . There can be many consistent cuts
in a given space-time diagram representing different points in
a trace. Different consistent cuts of a given diagram can be
partially related to form a graph (specifically, a lattice). It
will be used as our primary representation for analysis. Fig. 5
shows a space-time diagram and the corresponding lattice for

the transition scenario in Fig. 4. A lattice can be constructed
by traversing the space-time diagram. The label for the new
vertex in the lattice is the concatenation the labels of all events
on the current cut. Initially, the past set is the precondition and
the future set contains the entire vertex set. We create a new
vertex by moving an event from the future set to the past set if
all of its predecessors are in the past set.

Our approach to the deadlock/livelock analysis is to analyze
the causality graph, which is based on the graph of consistent-
cuts. An oscillation/livelock analysis involves cycle detection
in the causality graph. If it is acyclic, then we check for diver-
gence by inspecting the states encoded by the sink vertex.

To construct the causality graph, we need to encode causal-
ity and the event’s class using the event labels. The
of a given event instance is the union of all of those events
on its incoming edges. To encode causality in an event label,
we concatenate the class label of the event itself with the class
labels of those events in its causal set. We modify the routine
for allocating a new vertex for a consistent cut. The new al-
location routine must return the same vertex every time if it is
called with the same causality. A cycle is detected when the
routine returns the same vertex twice.

The analysis algorithm constructs causality graphs for all
possible event orders and for all reachable steady states. For
every consistent-cut graph, the algorithm continues growing
the graph until a cycle is detected or when no more vertex can
be added. A cycle indicates a potential livelock. If the graph
has no cycles, we check the consistency of the sink vertex
by substituting the active modes into the constraint equations,
which are captured by the mode bindings and the state hierar-
chy.

The example shown in Fig. 5 is an analysis of a potential
race condition in Fig. 4. The bumper module is requesting
a mode change to while the sonar detects an obsta-
cle and requests a transition to mode. We obtain a finite
space-time diagram and an acyclic causality graph. There-
fore, we can verify the sink vertex for state consistency. The
bumper’s processor is in state while the sonar’s proces-
sor is in . Because is a child state of ,
the system converges to a consistent state for this scenario. If
we continue enumerating all possible orders of event observa-
tion and conditional branches, we will find that they converge
to the same state. Therefore, asynchronous composition can
be considered for implementation.

A subtle modification to the bumper process would intro-
duce divergence. For example, suppose the bumper process
contains a transition edge from sf bump to . The node
labeled in Fig. 5 would represent a transition from to
state, instead of remaining in . Steady state analysis
shows that and are simultaneously active on dif-
ferent processors even though they should be mutually exclu-
sive. Therefore, an asynchronous implementation can lead

P1

P2

Q

R Q

R Q

R

R

Q

E

F

P1.P2

QEP.P2

P1.RPF

RQR.RPF QRQ.QQR

QEP.QQR RQR.RRQ

RQR.QQR

RQR.RRQ

QRQ.QQR

QEP.RPF QRQ.RRQ RQR.QQR

(a) space-time diagram

(b) graph of consistent cuts

4 Conclusions

References

Science of Computer Programming

Conference Record of the
Twentieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages

Working pa-
per, http://www.cs.washington.edu/research/chinook/pub-
lications.html

ICSE-18

IEEE Transactions on
Software Engineering

Communicating Sequential Processes

Communications of the ACM

Proceedings of the IEEE

The Verilog Hard-
ware Description Language

Figure 6: Livelock example

to inconsistent behavior. The problem can be fixed by mode-
synchronous composition, where the run-time system resolves
the conflicting transition requests before returning control to
user code.

Real livelocks involve very intricate sequences of events
that are too complex to explain for this paper. Instead, we use
the simplest possible, though rather hypothetical, scenario as
shown in Fig. 6 to illustrate the concepts. Even this seemly
trivial example involves over a dozen vertices for consistent
cuts. The reason for the complexity is that even though the
same modes are visited repeatedly, the causality does not re-
peat until much later. The earlier vertices are caused by ex-
ternal events, while the repeated vertex is in a causality cycle
without external events.

Many control-dominated specification models have relied
on strict synchrony to give them well-defined composition
semantics and determinism. Unfortunately, strict synchrony
makes them impractical for targeting heterogeneous, dis-
tributed architectures. In this paper, we presented an evalua-
tion method that helps designers determine if alternative com-
position synchrony yields the same behavior when transient
conditions can be tolerated. Such consistency tests and im-
plementation freedom are made possible by the specification
model, namely modal processes, where the control states of
the processes are explicitly bound and constrained indepen-
dently of their synchrony. It allows the designer to parameter-
ize, rather than dictates, the synchrony needed for their spe-
cific application. The goal of our tool is to help the designer
achieve the least expensive implementation by synthesizing
the corresponding run-time support and perform analysis for
their evaluation. This paper addresses the asynchronous op-
tion; we are currently investigating data-synchronous compo-
sition and other alternatives.

Currently, manual designs involve mostly asynchronous
composition for practical reasons, but designers are burdened

with the task of analyzing race conditions in terms of low
level primitives like semaphores. It is extremely error-prone
and difficult to cover all possible intricate cases, and we have
presented a systematic approach to automating this task. Al-
though it can be expensive for computers to exhaustively enu-
merate all possible states, many cases can be pruned in prac-
tice. Modal processes constrain the state space by unifying
states across different modules, so that many combinations
can be ruled out. Also, race conditions are possible only when
multiple processes request conflicting mode changes simulta-
neously, and these cases are relatively straightforward to iden-
tify. We believe that the analysis tool will help designers iden-
tify more system-level optimization opportunities without re-
sorting to ad-hoc techniques that hinder design maintainabil-
ity and retargetability.

[1] G. Berry and G. Gonthier. The ESTEREL synchronous
programming language: design, semantics, implementa-
tion. , 19(2):87–152,
November 1992.

[2] G. Berry, S. Ramesh, and R. K. Shyamasundar. Commu-
nicating reactive processes. In

, pages 85–98,
January 1993.

[3] P. Chou and G. Borriello. Modal processes: To-
wards enhanced retargetability through control composi-
tion of distributed embedded systems. In

, October 1997.

[4] D. Harel and E. Gery. Executable object modeling with
StateCharts. , pages 246–257, 1996.

[5] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,
R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot.
STATEMATE: a working environment for the develop-
ment of complex reactive systems.

, 16(4):403–414, April 1990.

[6] C. A. R. Hoare. .
Prentice-Hall, 1985.

[7] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. , 21(7),
July 1978.

[8] E. A. Lee and T. M. Parks. Dataflow process networks.
, 83:773–801, May 1995.

[9] D. E. Thomas and P. R. Moorby.
. Kluwer Academic Publish-

ers, 1991.

