Software Architecture Synthesis for
Retargetable Real-Time Embedded Systents

Pai Chou and Gaetano Borriello
Department of Computer Science and Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350 USA
{chou,gaetano }@cs.washington.edu

Abstract — Retargetability of embedded system descriptions naone “fast enough” that schedulability is not a concern. These
only enables better exploration of the design space and evaluationlahguages providesactive constructs and rely on a host lan-
cost/performance tradeoffs but also enhances design maintainabiffiage such as C++ to express computation. Ada 95 [1] pro-
and adaptivity to new technologies. Unfortunately, theitiaeal yides a rich set of concurrent and real-time constructs so that
boundary between run-time support and user-code encourages usg Qfoy|d serve well as both the host and the specification lan-

ad hoc architecture-specific features that lack the structure to per fiage. However, all of these languages rely on external run-
automatic code synthesis for the satisfaction of timing constraints.

This work proposes a specification style for control-dominated e !_me support for architecture specific facilities and for real-

bedded systems that can be easily retargeted via automatic synth IRe.

of the software architecture and run-time support. Many dESignerS use real-time kernels for embedded de-
Unlike previous work, user-specified modes are an integral pagigns. Unfortunately, real-time kernels are not intended to be

of the run-time system and isolate architecture-specific details whitetargetable. They may provide device drivers but only for a

scoping timing constraints to enable more efficient scheduling. fixed architecture, for example, by expecting the system to in-

clude a specific VME bus interface card. If the designers want

1 Introduction to exploit different ways of connecting to devices, then they

Retargetability is an important problem in embedded Sy$y st rewrite the drivers manually for each specific configura-

tems for several reasons. Most interesting tradeoffs are at the,, | is a tedious, error prone task, and can easily conflict

target architecture level, which has the greatest impact on thg, assumptions made by the kernel, such as preemption.

cost and performance. Retargetable designs will also be MOr€> rameterized kernels [12] attempt to enhance retargetabil-

malntamat?le. apd ready to take afjvantage O,f the latest teqp- by dividing the kernel into separate scheduling and com-
nology. This is in contrast to today’s heavy reliance on lega nication layers. The communication layer abstracts the

:) u
code and compqnents. Retarggtable deS|gn§ wil also'ena t%hitecture specific 1/O facilities. The drivers for standard
accurate evaluation of the architecture early in the design ¢ fotocols are written once per ISA and stored in the library.

cle, .ar;]dlsavle painful rede5|gln efforts. d i h The scheduler is preemptive, priority-driven, task-based, as
H|g' sleve prograrl?mmg anguages Tm hcomp| eri AVEssumed by Ada’s Real-Time Annex. While this is adequate
been invented to make programs portable, that is, make CORt data-dominated applications that have regular behaviors,

putations independent of the ISA. However, in system dGf'fis unable to handle complex timing constraints often found

signs, just because the processor runs the code does not Mf%ontrol-dominated systems. Instead of tuning code and

it will behave correctly. In other words, portability does notOlelays designers tune the priority assignments and design
imply retargetability. The lack of retargetability comes frommostly,by trial-and-error.

timing, device drivers, and hard coding system-specific as- To overcome the limitations of process-based scheduling,

sumptions. Retargetability is complicated by the fact that thsechedulers that focus on observable events have been pro-

behavior of many embedded systems, especially the “reac- sed. Schedulability can be enhanced by performing de-

- : L . o}
tive” ones, can be quite complex and are intimately tied t8 ndency analysis and apply code motion when the sys-

architecture-specific elements and timing. Current solutions < . :

. . {em is overconstrained by code-based constraints [9]. Frame

have not adequately addressed the retargetability of real-time : . .

.) cheduling handles more general types of constraints by veri-
reactive behaviors.

To capture complex reactive behavior, Esterel [2] and StatgfI

Charts [10] rely on synchronous semantics to enable compo-Though not yet mature enough for real-time, Java repre-

sition of parallel processes or state machines. An importaﬁ‘{".ntS a new approach to retargetability through its virtual ma-

assumption is that the required work in each time step can Bgme and standardized ””."“”.‘e API. Jaya was originally in-
vénted for embedded applications, and it has several attrac-

*This work was supported by DARPAAAH04-94-G-0272 tive features, including built-in support for multithreading,

ng that constraints are met in the presence of interrupts [6].

synchronization, limited timing control, and exception han- Each handler may also instruct the system to change mode.
dling. Its object orientation provides a good mechanism fdXote that there is a distinction between a transition back to
declaring attributes for software synthesis without extendinthe same mode and no transition. The former can be viewed
the syntax of the language. We also chose Java for buildisg reentering the mode. Specifically, if the mode waits on a
the CAD tool for easy distribution and documentation. It alstimer event, a self-transition effectively reinitializes the delay,
enables better presentation of examples of embedded systemtle in the latter case the delay continues after handling an
as applets on web pages. Users can actually play with a mo@sknt without a transition.
and get a feel of the behavior, instead of reading vague naturalSequencing is a simple replacement of the current mapping
language descriptions or deciphering from HDL or C code. with that of the target mode. A fork can be viewed as aug-
We have developed a way of organizing control-dominateahenting the mapping with additional (trigger, response) en-
real-time embedded systems and propose methods for synthrées. It is a way of composing modes to form hierarchical
sizing the software architecture. It centers on system mode®des, because it combines the mapping functions of the sub-
as functions for mapping physical events to logical eventsiodes. Each submode can make its own transitions indepen-
and scoping timing constraints. Modes not only isolate tadently of the other submodes. Different submodes may also
get dependent features for synthesis, but also enables statamsition to a joining mode that does not become effective
scheduling for meeting reactive timing constraints. Addiuntil all of its predecessors have completed their transitions to
tionally, scheduling observable events, rather than processisA join is the inverse of a fork. Finally, a disable kills other
guarantees the detailed timing assumptions of device driverfarked branches as well.

2 System Model 22 UserCode .
A retargetable software architecture should abstract awa: The user code defines the handlers to be invoked when an

architecture-specific features that can potentially affect theé/’em Is detected. The semantics of the handlersristo-

program structure. It should have the following properties: completionthat is, once a handler starts executing, it cannot
be suspended and context-switched out, though it may be pre-

1. preserve timing assumptions of the device drivers at thgnpted briefly for system interrupts. [8]
fine-grained level We call a specification purely reactive if it is invoked only
to respond to events, amdch regponse can complete before
%he next event needs to be handled. Another way of viewing
the system is as a (program) state machine, where each state
Most schedulers cannot handle highly complexative be- does nothing, but actions are executed only on state transition
havior, because they have no knowledfewt modes, which edges. In reality, this is shifting the responsibility of event
are encoded as an arbitrary mixture of program counters addtection to the run-time system. In object-oriented terms, a
state variables throughout a programecBuse this kind of purely reactive object is a passive object.
specification can be very target specific, retargeting can forceEven though purelyaactive objects are more restrictive,
major restructuring of the behavioral description. they can express a large class of interesting embedded sys-
Our model centers around user-specified modes that kdems. In the purest form, they cannot handle user code that
come an integral part of the run-time system. Modes not onBtill wants attention even in the absence of events. This can
bridge the architecture elements and the behavior, but also d&ppen when the response to an event is a sustaining action
fine scopes of timing constraints for scheduling. that continues beyond subsequent events that need to be han-
2.1 Modes dled. Also, the system may be actively computing and gener-
Reactive systems perform tasks ingesse to input events. ating events, such as a mobile robot that computes its course
A main feature that distinguishes these systems from da@4 @ screen that displays messages according to a prepro-
dominated ones, such as DSP, is their modal behavior. THi#emmed script. We can simulate active objects by treating
is, a given event may trigger different reactions, depending ¢i#ock ticks as a type of event.
the internal state of the system. Until now, the term “mode2.3 Timing Constraints
has been vaguely defined as something like a state in StateTiming constraints in a pure specification are minimum or
Charts, but is concerned more with the behavior rather thamaximum separation requirements between the times of two
the topology of the graph. observable events. Common classifications of events are pe-
Here we are proposing a more formal definition of modesodic and sporadic. Periodic events are those that repeat, and
in the context of reactive systems. A mode is a function thaporadic ones do not always occur, though once they occur,
maps a physical event (possibly with associated values) tafzey will not occur again for some minimum amount of time.
logical event, each with a corqgsnding handler, as defined In addition to events from the environment, the system may
by the user. This allows a given physical event to take oalso generate events either actively or in response to them.
different logical meanings by triggering an entirely different Constraints are specified on a pair of events, one of which
response, or even to be ignored entirely. must be generated by the system. A specified separation be-

2. statically meet all timing constraints on observabl
events in complex, modal behavior

tween two events from the environment is not a constraint, b3t3 Real-Time Engine

a promise, though it is possible to derive constraints such asthe real-time engine dispatches the scheduled events at the
polling rates from promises. Our model considers three typegyi times. It accepts requests from the event manager for
of timing constraints: sequencing, rate, and response time [Zl:heqyling I/0. The primitives are in the form of scheduling
Sequencing is between two different events generated by thg /0 operation some number of time units relative to a refer-
system, rate is the separation between successive 0CCUITENGESs event, which can be the previous iteration in the case of a
of an event, and response time is between an input and a sygjjing loop, or relative to the trigger in the case of a response.

tem event. o _ _The timing is statically determined by the scheduler.

'Irlhe rrodes scopg the timing con;trzaé;nts_ cljn ﬁvegt gete?t'ﬁn’The real-time engine maintains a calendar for the scheduled
poliing loops may be rate constrained, an the ody o t &vents, and it must be able to dynamically reconfigure the cal-
loop and handlers may be under sequencing constraints. So%

i b ified to be i di el q fdar as a result of mode transitions. In particular, if a polling
events may be specified to be ignored in a particular mode a p is no longer active then it may need to be removed from
do not need to be scheduled at all.

the calendar. In the case of composite modes, a transitioning
2.4 Time-Triggered I/O submode does not affect events schedules for other parallel
Time-triggered 1/O is used to guarantee both the detailegibmodes that do not undergo transitions.

timing assumptions of device drivers and meeting inter-driver

timing constraints. That is, time-triggered I/O's are scheduleq Using the Java Language

on clock interrupts only. This enables more accurate timing
on observable events than delay statements. By disallowipI
nested interrupts, intra-driver timing can be guaranteed.

Current proposals for adapting Java to real-time applica-
8ns focus their effort on several problems, including stan-
dardizing the API, real-time garbage collection, and compi-

3 Retargetable Software Architecture lation vs. interpretation tradeoffs. While these are impor-

Our proposed software architecture is divided between us™ problems, these still assume process-based preemptive

code and run-time system, but the interesting issues are tﬁcéwedulmg. To achieve retargetability, we believe iteses-

separation of responsibilities between the two parts. The rupary o augment the existing model with event-based schedul-
time system to be synthesized is divided into device driverf!9:

event management, mode management, and the real-time enJ@va provides several standard library methods for tim-
gine. (See also slide 5) ing control. Thesleep (milliseconds) call is a delay, and

join (Thread, milliseconds) waits for another thread to ter-
3.1 Mode Manager minate, or kills it after the specified time. These are not ade-
_The mode manager is divided into two distinct tasks: mapyyate for implementing the real-time engine described earlier,
ping physical events to handlers for dispatch and changiRghich needs a delay relative to a reference point. Unlike Ada
modes. When the event manager detects an event, the m@@e java has no “delay until a 64-bit absolute point in time.”
manager looks up the corresponding handler if one is definegyen though Java API allows reading of absolute times, at-
Certain events may be “filtered out” because the system mgympts to use a relative-delay on the difference between two
be in a mode that ignores those events. Otherwise, the mogigso|ute times will not always work in the presence of pre-
manager maps the event to a handler, which runs to complénptive task scheduling. This is because if context switching
tion before returning control to the mode manager. happens between computing the relative delay and the delay
After the handler completes execution, if there is a modgg||, then the delay amount will be too long.
transition to perform, the mode manager reconfigures thegsih javaTime [13] and Real-Time Java [11] take the
event manager to reflect the current sensitivity Ijst. TO COMsrocess-based approach to solving the delay problem. Java-
struct the new mapping, the mode manager applies one of #igne requires periodic tasks to define rate constraints and sup-
transition operators, which can be sequencing, fork, join, angy 5 timeout handler. It is built on existing mechanisms and is

disable. platform independent. Real-Time Java proposes sporadic and
3.2 Event Manager spontaneous in addition to cyclic (periodic) tasks. It assumes
The event manager detects incoming events and schddatform-specific support.

ules outgoing events. Event detection involves invoking the Ideally, user code should avoid using imperative delay calls
polling methods or enabling an interrupt by calling a drivewhenever possible for retargetability reasons. The same de-
routine. On detecting an event, control is passed to the motiy values do not necessarily yield the same timing behav-
manager to map to the handler. Also, output requests are ier on different architectures, because the code execution time
ceived by the event manager for scheduling. It informs thearies. Instead, timing should be expressed in terms of con-
real-time engine to update the polling list, disables the intestraints between events, as described in the next subsection.
rupts for the exiting mode, and enables the interrupts for tHgynthesis will determine the delays by solving the constraints
new mode. and implement them as a static schedule.

5 Software Architecture Synthesis the device drivers.

The software architecture can be synthesized from a systemThe constraint graphs built during event manager synthesis
(hardware) architecture model, the modes of the system, afte annotated with the execution times and input to the static
user code organized in objects. The architecture model igcheduler [3]. The corresponding run-time engine is gener-
stantiates the devices and interconnection schemes for devéded by linking the schedule tables with a small set of target-
driver synthesis [4, 5]. The compilation is done in two phasespecific primitives extracted from the library.
one to compile and run the CAD tool for static scheduling and
generate code for the customized run-time system, and tRe Example
second to build the custom OS with the user code. We have written several examples eéctive real-time sys-
tems in the proposed style. Here we illustrate the concepts

5.1 Input Data Structures : : . .
The user describes modes by supplying the mappin funvél-r[h a simple mobile robot. (See also slide 11)
y supplying Pping The robot has four inputs: a bumper, a sonar, an arm con-

tion fr.om triggers to responses. Triggers and Responses Hcted to a switch, and a button on its head. The robot also has
con.tamers' for th'e trl.gg'erlng and response actions and th?\%o separate mot(’)rs controlling two wheels. By running the
att;:tﬁ:es’e;rr]glgf?rlgg trlmgq\;\?g:c:\]/ztr:?irs‘tz.etecte d which ma btwo motors at different speeds, the robot can turn in different

99 ' Y Bfirections. The physical input events come from the sensors.

fixed by a specifi'c. protocol, dgrived during static SChed.u.LT'he bumper generates a bump event with no value, though the
ing, or user specified. Each trigger has a flag that Specm%ﬁmper state can be polled. The sonar generates e; pong event
whether it is detected by polling, interrupt, or call-back, and i : '

linked to the device driver library. Timing information such as he arm and the head switches both generate a press event.

) s) . The robot controller can handle the following logical
polling rates and execution times are also defined as atmbUteevSentS' foward, backward, tum, pause, resume, and reset, For
f the Trigger. : ' L ' ! ! e
° ;\ eResggr?se similarly. is also a container of both an ex ward sets both wheels in forward motion, and backward sets
P ' Y. 15 . Fhem in reverse. Turn, for simplicity, always means turning
cutable part and a declarative part. It contains a handler tq%h by setting the left wheel in reverse and the right wheel
invokes the appropriate user-defined methods, which returnls af,orward motion. Pause will stop the wheels, and resume
mode operator object for the transition. Execution times anv%ill continue the rﬁotion before the pause Fina;lly reset will
constraints are also declared as object attributes. ' '

S reinitialize the robot.

A mode operator has a field indicating what type of transi- . I S .

.) . S . The required behavior is that the events are prioritized in
tion to perform: sequencing, fork, join, disable, or no transi, ;)
:) L the following order: reset, pause/resume, bumper, and sonar.
tion. All except for the last requires a destination mode PaF t is. when a high L is beina handled. th
rameter. , Wi g e'r priority event Is being handled, t.e
lower priority ones are ignored completely. In our model, this
5.2 Synthesis Procedure means changing mode to map those low-priority events to no

The steps in the synthesis procedure are mode manager syasponse. For example, when the bumper is pressed, the sonar
thesis, execution time estimation and timing analysis, eveig completely ignored. The event manager will disable pulsing
manager synthesis, scheduling, and real-time engine syntliiee sonar, and this is an important feature because the sonar
Sis. consumes a significant amount of power.

To synthesize the mode manager, the algorithm first fol- The behavior can be modeled well with hierarchical modes.
lows the transition links, builds the complete mode graph, an@n startup, the initialization handler sets the wheels in for-
checks for consistency. Next, Java code is generated by peard motion, and enters the main mode. The main mode is
rameterizing a template file with the mapping functions. composed of two parallel branches. One mode maps the re-

Timing estimation returns the execution time bounds ofet event to a handler that does no work and makes a disable
each piece of code on the target platform. The code segmetri@nsition back to initialization. The other forked branch con-
include the user-defined handlers, mapping functions, and ttens a nested fork, where one branch maps the arm button
various device driver calls customized to the target architete the pause handler, and the other branch is yet another fork
ture. Timing analysis uses the execution time estimation artdat maps bumper and sonar events. The pause handler will
traverses program paths to determine the time separation lsespend the bumper and the sonar mapping, and enters a new
tween events. This will be used determine the methods fonode that maps the arm button to the resume handler. The
event detection. reset mode is always “active” independent of the fitanss

To synthesize the event manager, the triggers of each cotriggered by the other sensors.
posite mode are extracted and generated as either interrupt enfiming constraints are present on both device accesses and
able or static scheduling for polling. The polling loops andeaction times. The sonar, for example, is configured to trig-
all the I/O’s generated by user code are added to a constrag@r when it detects an obstacle within 30cm, and this is deter-
graph for scheduling later. The event manager code is genemined by checking the status bit after the round-trip time of
ated by customizing a template with the scheduling calls f@ms. The pulsing rate for the sonar is once every two seconds,

and this is specified by the designer in the trigger definitiorj4] P. Chou, R. Ortega, G. Borriello, “Synthesis of the Hard-
The reaction times here are scoped to be from event detection ‘I’D"are/lscog‘gari slagt;rface4g181\<4llgrsocontroIIer-Based Systems,” in
to an observable event in the response, namely changing the foc. D - PP, 468495,

motor direction or speed. These would be specified also H§] P. Chou, R. Ortega, G. Borriello, “Interface Co-Synthesis Tech-
the designer as part of the response record. niques for Embedded Systems,®noc. ICCAD 1995. pp. 280-

To show that this style of description is easily retargetable, L
consider that the pause and reset buttons are replaced with(8h ’\S/Iynctggls?srcf)éf 'RTe'é?.??rhg'nﬁgf’rﬁiﬁgﬁ’Sfodcgsgﬁéaéey"s"t e%%?,"}’r?g
infrared receiver. It can interpret four commands, where two Marwedel and G. Goossens (edCpde Generation for Embed-
of the commands trigger the same events as the bumper and ded ProcessorsKluwer Academic Publishers, 1995, pp. 260-
the sonar. The only modifications are limited to the mapping 96.
functions, where the pause and reset commands from the [R P. Chou, E.A. Walkup, G. Borriello, “Scheduling issues in the
replace the buttons in the entries, and the turn and backward go-SyntheS|s of Reactive Real-Time System&EE Micro,

. . ugust 1994. pp. 37-47.
commands from the IR are added to the mapping, without re-
placing the bumper and the sonar. Scheduling ensures tifg] D. Gaudreau, P. Freedman, “Temporal Analysis and Object-

ing of the infrared unit is satisfied. The user-code requires no gg‘g‘@%Ejgﬁiﬁmf,,sigm%telgg\ée:Epérgegga?_%%s: TS.etgﬁzglv ith

change. (See also slide 12) ogy and Applications Symposiudune 1996. pp. 110-118.

i [9] R. Gerber, S. Hong, “Coniling Real-Time Program with Tim-
7 Conclusions and Open Issues o ing Constraint Refinement and Structural Code MotidBEE
We have presented a retargetable way of organizing the Trans.on SW Engineeringol.21, no.5, May 1995.

software of embedded systems. The use of modes i§olate§ gtﬁ D. Harel et al, “STATEMATE: a working environment for the
architecture-specific features from high-level behavior while ™ jevelopment of complex reactive system&EE Trans. on SW

providing important information for the scheduler to meet Engineeringvol.16, no.4, pp. 403-414, April 1990.
timing constraints on' complex Contrql'dommated_b?ha\/'o 11] K. Nilsen, “Issues in the Design and Implementation of Real-
Event-based scheduling enables satisfaction of timing con- “Time Java” document, http:/www.newmonics.com/webroot/
straints without overconstraining the system. technologies/java/RTJI.ps, Revised July 19, 1996.

Accurate timing estimation is an important enabling techr; 5] s vercauteren, B.Lin, H. De Man, “A Strategy for Real-Time
nigue for software synthesis. The use of bytecode, while ~Kernel Support in Application-Specific HW/SW Embedded Ar-
slower than native code, has the potential of yielding more chitectures,” inProc. DAG 1996.
predictable timing behavior with its extra level of indirection[13] J. Young, JavaTime http:/Avww-cadeecs.berke-
It may be possible to parameterize the ISA timing so that tim- ley.eduAjimy/java/index.html, August 1996.
ing analysis needs to be done only once on the byte code.

The open issues include extensions and refinements to the
proposed model. First, events are assumed to be detected one
at a time, but will they automatically be queued? If so, what
is the precise semantics of the queued events on a mode tran-
sition? Does it make sense for an event to remain in the queue
across multiple mode transitions? Or should they be flushed
implicitly? Does the user code have the option of flushing
events? Should the events be time-stamped, and how does
this complicate scheduling? Will it be possible to do out-of-
order dispatching? In addition, will it make sense to gener-
alize triggers to not just physical events, but general boolean
conditions? Are there other useful mode operators?

References

[1] The Ada 9X Design TeamAda 95 Rationale: The Lan-
guage/The Standard Librariepublished by Intermetrics, Jan-
uary 1995.

[2] G. Berry, G. Gonthier, “The ESTEREL synchronous program-
ming language: design, semantics, implementatiSoi&nce of
Computer Programmingvol. 19, no.2, pp. 87-152. November
1991.

[3] P.Chou, G. Borriello, “Software Scheduling in the Co-Synthesis
of Reactive Real-Time Systems,” Rroc. DAG June 1994. pp.
1-4.

