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Abstract – Retargetability of embedded system descriptions not
only enables better exploration of the design space and evaluation of
cost/performance tradeoffs but also enhances design maintainability
and adaptivity to new technologies. Unfortunately, the traditional
boundary between run-time support and user-code encourages use of
ad hoc architecture-specific features that lack the structure to permit
automatic code synthesis for the satisfaction of timing constraints.
This work proposes a specification style for control-dominated em-
bedded systems that can be easily retargeted via automatic synthesis
of the software architecture and run-time support.

Unlike previous work, user-specified modes are an integral part
of the run-time system and isolate architecture-specific details while
scoping timing constraints to enable more efficient scheduling.

1 Introduction
Retargetability is an important problem in embedded sys-

tems for several reasons. Most interesting tradeoffs are at the
target architecture level, which has the greatest impact on the
cost and performance. Retargetable designs will also be more
maintainable and ready to take advantage of the latest tech-
nology. This is in contrast to today’s heavy reliance on legacy
code and components. Retargetable designs will also enable
accurate evaluation of the architecture early in the design cy-
cle, and save painful redesign efforts.

High-level programming languages and compilers have
been invented to make programs portable, that is, make com-
putations independent of the ISA. However, in system de-
signs, just because the processor runs the code does not mean
it will behave correctly. In other words, portability does not
imply retargetability. The lack of retargetability comes from
timing, device drivers, and hard coding system-specific as-
sumptions. Retargetability is complicated by the fact that the
behavior of many embedded systems, especially the “reac-
tive” ones, can be quite complex and are intimately tied to
architecture-specific elements and timing. Current solutions
have not adequately addressed the retargetability of real-time
reactive behaviors.

To capture complex reactive behavior, Esterel [2] and State-
Charts [10] rely on synchronous semantics to enable compo-
sition of parallel processes or state machines. An important
assumption is that the required work in each time step can be
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done “fast enough” that schedulability is not a concern. These
languages provide reactive constructs and rely on a host lan-
guage such as C++ to express computation. Ada 95 [1] pro-
vides a rich set of concurrent and real-time constructs so that
it would serve well as both the host and the specification lan-
guage. However, all of these languages rely on external run-
time support for architecture specific facilities and for real-
time.

Many designers use real-time kernels for embedded de-
signs. Unfortunately, real-time kernels are not intended to be
retargetable. They may provide device drivers but only for a
fixed architecture, for example, by expecting the system to in-
clude a specific VME bus interface card. If the designers want
to exploit different ways of connecting to devices, then they
must rewrite the drivers manually for each specific configura-
tion. It is a tedious, error prone task, and can easily conflict
with assumptions made by the kernel, such as preemption.

Parameterized kernels [12] attempt to enhance retargetabil-
ity by dividing the kernel into separate scheduling and com-
munication layers. The communication layer abstracts the
architecture specific I/O facilities. The drivers for standard
protocols are written once per ISA and stored in the library.
The scheduler is preemptive, priority-driven, task-based, as
assumed by Ada’s Real-Time Annex. While this is adequate
for data-dominated applications that have regular behaviors,
it is unable to handle complex timing constraints often found
in control-dominated systems. Instead of tuning code and
delays, designers tune the priority assignments and design
mostly by trial-and-error.

To overcome the limitations of process-based scheduling,
schedulers that focus on observable events have been pro-
posed. Schedulability can be enhanced by performing de-
pendency analysis and apply code motion when the sys-
tem is overconstrained by code-based constraints [9]. Frame
Scheduling handles more general types of constraints by veri-
fying that constraints are met in the presence of interrupts [6].

Though not yet mature enough for real-time, Java repre-
sents a new approach to retargetability through its virtual ma-
chine and standardized run-time API. Java was originally in-
vented for embedded applications, and it has several attrac-
tive features, including built-in support for multithreading,



synchronization, limited timing control, and exception han-
dling. Its object orientation provides a good mechanism for
declaring attributes for software synthesis without extending
the syntax of the language. We also chose Java for building
the CAD tool for easy distribution and documentation. It also
enables better presentation of examples of embedded systems
as applets on web pages. Users can actually play with a model
and get a feel of the behavior, instead of reading vague natural
language descriptions or deciphering from HDL or C code.

We have developed a way of organizing control-dominated
real-time embedded systems and propose methods for synthe-
sizing the software architecture. It centers on system modes
as functions for mapping physical events to logical events
and scoping timing constraints. Modes not only isolate tar-
get dependent features for synthesis, but also enables static
scheduling for meeting reactive timing constraints. Addi-
tionally, scheduling observable events, rather than processes,
guarantees the detailed timing assumptions of device drivers.

2 System Model
A retargetable software architecture should abstract away

architecture-specific features that can potentially affect the
program structure. It should have the following properties:

1. preserve timing assumptions of the device drivers at the
fine-grained level

2. statically meet all timing constraints on observable
events in complex, modal behavior

Most schedulers cannot handle highly complex reactive be-
havior, because they have no knowledge about modes, which
are encoded as an arbitrary mixture of program counters and
state variables throughout a program. Because this kind of
specification can be very target specific, retargeting can force
major restructuring of the behavioral description.

Our model centers around user-specified modes that be-
come an integral part of the run-time system. Modes not only
bridge the architecture elements and the behavior, but also de-
fine scopes of timing constraints for scheduling.
2.1 Modes

Reactive systems perform tasks in response to input events.
A main feature that distinguishes these systems from data
dominated ones, such as DSP, is their modal behavior. That
is, a given event may trigger different reactions, depending on
the internal state of the system. Until now, the term “mode”
has been vaguely defined as something like a state in State-
Charts, but is concerned more with the behavior rather than
the topology of the graph.

Here we are proposing a more formal definition of modes
in the context of reactive systems. A mode is a function that
maps a physical event (possibly with associated values) to a
logical event, each with a corresponding handler, as defined
by the user. This allows a given physical event to take on
different logical meanings by triggering an entirely different
response, or even to be ignored entirely.

Each handler may also instruct the system to change mode.
Note that there is a distinction between a transition back to
the same mode and no transition. The former can be viewed
as reentering the mode. Specifically, if the mode waits on a
timer event, a self-transition effectively reinitializes the delay,
while in the latter case the delay continues after handling an
event without a transition.

Sequencing is a simple replacement of the current mapping
with that of the target mode. A fork can be viewed as aug-
menting the mapping with additional (trigger, response) en-
tries. It is a way of composing modes to form hierarchical
modes, because it combines the mapping functions of the sub-
modes. Each submode can make its own transitions indepen-
dently of the other submodes. Different submodes may also
transition to a joining mode that does not become effective
until all of its predecessors have completed their transitions to
it. A join is the inverse of a fork. Finally, a disable kills other
forked branches as well.
2.2 User Code

The user code defines the handlers to be invoked when an
event is detected. The semantics of the handlers isrun-to-
completion, that is, once a handler starts executing, it cannot
be suspended and context-switched out, though it may be pre-
empted briefly for system interrupts. [8]

We call a specification purely reactive if it is invoked only
to respond to events, andeach response can complete before
the next event needs to be handled. Another way of viewing
the system is as a (program) state machine, where each state
does nothing, but actions are executed only on state transition
edges. In reality, this is shifting the responsibility of event
detection to the run-time system. In object-oriented terms, a
purely reactive object is a passive object.

Even though purely reactive objects are more restrictive,
they can express a large class of interesting embedded sys-
tems. In the purest form, they cannot handle user code that
still wants attention even in the absence of events. This can
happen when the response to an event is a sustaining action
that continues beyond subsequent events that need to be han-
dled. Also, the system may be actively computing and gener-
ating events, such as a mobile robot that computes its course
or a screen that displays messages according to a prepro-
grammed script. We can simulate active objects by treating
clock ticks as a type of event.
2.3 Timing Constraints

Timing constraints in a pure specification are minimum or
maximum separation requirements between the times of two
observable events. Common classifications of events are pe-
riodic and sporadic. Periodic events are those that repeat, and
sporadic ones do not always occur, though once they occur,
they will not occur again for some minimum amount of time.
In addition to events from the environment, the system may
also generate events either actively or in response to them.

Constraints are specified on a pair of events, one of which
must be generated by the system. A specified separation be-



tween two events from the environment is not a constraint, but
a promise, though it is possible to derive constraints such as
polling rates from promises. Our model considers three types
of timing constraints: sequencing, rate, and response time [7].
Sequencing is between two different events generated by the
system, rate is the separation between successive occurrences
of an event, and response time is between an input and a sys-
tem event.

The modes scope the timing constraints. In event detection,
polling loops may be rate constrained, and the body of the
loop and handlers may be under sequencing constraints. Some
events may be specified to be ignored in a particular mode and
do not need to be scheduled at all.

2.4 Time-Triggered I/O
Time-triggered I/O is used to guarantee both the detailed

timing assumptions of device drivers and meeting inter-driver
timing constraints. That is, time-triggered I/O’s are scheduled
on clock interrupts only. This enables more accurate timing
on observable events than delay statements. By disallowing
nested interrupts, intra-driver timing can be guaranteed.

3 Retargetable Software Architecture
Our proposed software architecture is divided between user

code and run-time system, but the interesting issues are the
separation of responsibilities between the two parts. The run-
time system to be synthesized is divided into device drivers,
event management, mode management, and the real-time en-
gine. (See also slide 5)

3.1 Mode Manager
The mode manager is divided into two distinct tasks: map-

ping physical events to handlers for dispatch and changing
modes. When the event manager detects an event, the mode
manager looks up the corresponding handler if one is defined.
Certain events may be “filtered out” because the system may
be in a mode that ignores those events. Otherwise, the mode
manager maps the event to a handler, which runs to comple-
tion before returning control to the mode manager.

After the handler completes execution, if there is a mode
transition to perform, the mode manager reconfigures the
event manager to reflect the current sensitivity list. To con-
struct the new mapping, the mode manager applies one of the
transition operators, which can be sequencing, fork, join, and
disable.

3.2 Event Manager
The event manager detects incoming events and sched-

ules outgoing events. Event detection involves invoking the
polling methods or enabling an interrupt by calling a driver
routine. On detecting an event, control is passed to the mode
manager to map to the handler. Also, output requests are re-
ceived by the event manager for scheduling. It informs the
real-time engine to update the polling list, disables the inter-
rupts for the exiting mode, and enables the interrupts for the
new mode.

3.3 Real-Time Engine
The real-time engine dispatches the scheduled events at the

right times. It accepts requests from the event manager for
scheduling I/O. The primitives are in the form of scheduling
an I/O operation some number of time units relative to a refer-
ence event, which can be the previous iteration in the case of a
polling loop, or relative to the trigger in the case of a response.
The timing is statically determined by the scheduler.

The real-time engine maintains a calendar for the scheduled
events, and it must be able to dynamically reconfigure the cal-
endar as a result of mode transitions. In particular, if a polling
loop is no longer active then it may need to be removed from
the calendar. In the case of composite modes, a transitioning
submode does not affect events schedules for other parallel
submodes that do not undergo transitions.

4 Using the Java Language
Current proposals for adapting Java to real-time applica-

tions focus their effort on several problems, including stan-
dardizing the API, real-time garbage collection, and compi-
lation vs. interpretation tradeoffs. While these are impor-
tant problems, these still assume process-based preemptive
scheduling. To achieve retargetability, we believe it is neces-
sary to augment the existing model with event-based schedul-
ing.

Java provides several standard library methods for tim-
ing control. Thesleep (milliseconds) call is a delay, and
join (Thread, milliseconds) waits for another thread to ter-
minate, or kills it after the specified time. These are not ade-
quate for implementing the real-time engine described earlier,
which needs a delay relative to a reference point. Unlike Ada
95, Java has no “delay until a 64-bit absolute point in time.”
Even though Java API allows reading of absolute times, at-
tempts to use a relative-delay on the difference between two
absolute times will not always work in the presence of pre-
emptive task scheduling. This is because if context switching
happens between computing the relative delay and the delay
call, then the delay amount will be too long.

Both JavaTime [13] and Real-Time Java [11] take the
process-based approach to solving the delay problem. Java-
Time requires periodic tasks to define rate constraints and sup-
ply a timeout handler. It is built on existing mechanisms and is
platform independent. Real-Time Java proposes sporadic and
spontaneous in addition to cyclic (periodic) tasks. It assumes
platform-specific support.

Ideally, user code should avoid using imperative delay calls
whenever possible for retargetability reasons. The same de-
lay values do not necessarily yield the same timing behav-
ior on different architectures, because the code execution time
varies. Instead, timing should be expressed in terms of con-
straints between events, as described in the next subsection.
Synthesis will determine the delays by solving the constraints
and implement them as a static schedule.



5 Software Architecture Synthesis
The software architecture can be synthesized from a system

(hardware) architecture model, the modes of the system, and
user code organized in objects. The architecture model in-
stantiates the devices and interconnection schemes for device
driver synthesis [4, 5]. The compilation is done in two phases:
one to compile and run the CAD tool for static scheduling and
generate code for the customized run-time system, and the
second to build the custom OS with the user code.

5.1 Input Data Structures
The user describes modes by supplying the mapping func-

tion from triggers to responses. Triggers and Responses are
containers for the triggering and response actions and their
attributes, including timing constraints.

A Trigger defines how an event is detected, which may be
fixed by a specific protocol, derived during static schedul-
ing, or user specified. Each trigger has a flag that specifies
whether it is detected by polling, interrupt, or call-back, and is
linked to the device driver library. Timing information such as
polling rates and execution times are also defined as attributes
of the Trigger.

A Response, similarly, is also a container of both an exe-
cutable part and a declarative part. It contains a handler that
invokes the appropriate user-defined methods, which returns a
mode operator object for the transition. Execution times and
constraints are also declared as object attributes.

A mode operator has a field indicating what type of transi-
tion to perform: sequencing, fork, join, disable, or no transi-
tion. All except for the last requires a destination mode pa-
rameter.

5.2 Synthesis Procedure
The steps in the synthesis procedure are mode manager syn-

thesis, execution time estimation and timing analysis, event
manager synthesis, scheduling, and real-time engine synthe-
sis.

To synthesize the mode manager, the algorithm first fol-
lows the transition links, builds the complete mode graph, and
checks for consistency. Next, Java code is generated by pa-
rameterizing a template file with the mapping functions.

Timing estimation returns the execution time bounds of
each piece of code on the target platform. The code segments
include the user-defined handlers, mapping functions, and the
various device driver calls customized to the target architec-
ture. Timing analysis uses the execution time estimation and
traverses program paths to determine the time separation be-
tween events. This will be used determine the methods for
event detection.

To synthesize the event manager, the triggers of each com-
posite mode are extracted and generated as either interrupt en-
able or static scheduling for polling. The polling loops and
all the I/O’s generated by user code are added to a constraint
graph for scheduling later. The event manager code is gener-
ated by customizing a template with the scheduling calls for

the device drivers.
The constraint graphs built during event manager synthesis

are annotated with the execution times and input to the static
scheduler [3]. The corresponding run-time engine is gener-
ated by linking the schedule tables with a small set of target-
specific primitives extracted from the library.

6 Example
We have written several examples of reactive real-time sys-

tems in the proposed style. Here we illustrate the concepts
with a simple mobile robot. (See also slide 11)

The robot has four inputs: a bumper, a sonar, an arm con-
nected to a switch, and a button on its head. The robot also has
two separate motors controlling two wheels. By running the
two motors at different speeds, the robot can turn in different
directions. The physical input events come from the sensors.
The bumper generates a bump event with no value, though the
bumper state can be polled. The sonar generates a pong event.
The arm and the head switches both generate a press event.

The robot controller can handle the following logical
events: foward, backward, turn, pause, resume, and reset. For-
ward sets both wheels in forward motion, and backward sets
them in reverse. Turn, for simplicity, always means turning
left, by setting the left wheel in reverse and the right wheel
in forward motion. Pause will stop the wheels, and resume
will continue the motion before the pause. Finally, reset will
reinitialize the robot.

The required behavior is that the events are prioritized in
the following order: reset, pause/resume, bumper, and sonar.
That is, when a higher priority event is being handled, the
lower priority ones are ignored completely. In our model, this
means changing mode to map those low-priority events to no
response. For example, when the bumper is pressed, the sonar
is completely ignored. The event manager will disable pulsing
the sonar, and this is an important feature because the sonar
consumes a significant amount of power.

The behavior can be modeled well with hierarchical modes.
On startup, the initialization handler sets the wheels in for-
ward motion, and enters the main mode. The main mode is
composed of two parallel branches. One mode maps the re-
set event to a handler that does no work and makes a disable
transition back to initialization. The other forked branch con-
tains a nested fork, where one branch maps the arm button
to the pause handler, and the other branch is yet another fork
that maps bumper and sonar events. The pause handler will
suspend the bumper and the sonar mapping, and enters a new
mode that maps the arm button to the resume handler. The
reset mode is always “active” independent of the transitions
triggered by the other sensors.

Timing constraints are present on both device accesses and
reaction times. The sonar, for example, is configured to trig-
ger when it detects an obstacle within 30cm, and this is deter-
mined by checking the status bit after the round-trip time of
2ms. The pulsing rate for the sonar is once every two seconds,



and this is specified by the designer in the trigger definition.
The reaction times here are scoped to be from event detection
to an observable event in the response, namely changing the
motor direction or speed. These would be specified also by
the designer as part of the response record.

To show that this style of description is easily retargetable,
consider that the pause and reset buttons are replaced with an
infrared receiver. It can interpret four commands, where two
of the commands trigger the same events as the bumper and
the sonar. The only modifications are limited to the mapping
functions, where the pause and reset commands from the IR
replace the buttons in the entries, and the turn and backward
commands from the IR are added to the mapping, without re-
placing the bumper and the sonar. Scheduling ensures tim-
ing of the infrared unit is satisfied. The user-code requires no
change. (See also slide 12)

7 Conclusions and Open Issues
We have presented a retargetable way of organizing the

software of embedded systems. The use of modes isolates the
architecture-specific features from high-level behavior while
providing important information for the scheduler to meet
timing constraints on complex control-dominated behavior.
Event-based scheduling enables satisfaction of timing con-
straints without overconstraining the system.

Accurate timing estimation is an important enabling tech-
nique for software synthesis. The use of bytecode, while
slower than native code, has the potential of yielding more
predictable timing behavior with its extra level of indirection.
It may be possible to parameterize the ISA timing so that tim-
ing analysis needs to be done only once on the byte code.

The open issues include extensions and refinements to the
proposed model. First, events are assumed to be detected one
at a time, but will they automatically be queued? If so, what
is the precise semantics of the queued events on a mode tran-
sition? Does it make sense for an event to remain in the queue
across multiple mode transitions? Or should they be flushed
implicitly? Does the user code have the option of flushing
events? Should the events be time-stamped, and how does
this complicate scheduling? Will it be possible to do out-of-
order dispatching? In addition, will it make sense to gener-
alize triggers to not just physical events, but general boolean
conditions? Are there other useful mode operators?
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