
Rappit: Framework for Synthesis of Host-Assisted
Scripting Engines for Adaptive Embedded Systems

Jiwon Hahn, Qiang Xie, and Pai H. Chou
Center for Embedded Computer Systems, University of California, Irvine, USA

{jhahn, qxie, phchou}@uci.edu

ABSTRACT
Scripting is a powerful, high-level, cross-platform, dynamic, easy
way of composing software modules as black boxes. Unfortu-
nately, the high runtime overhead has prevented scripting from be-
ing widely adopted in embedded applications. This work proposes
to overcome these obstacles by synthesizing light-weight, host-
assisted scripting engines for embedded systems. The result is
dramatically shortened development cycle due to the much higher-
level abstraction, interactive access and dynamic reconfigurability,
robust in-field software upgradability, and compact code size. This
framework has been successfully applied to ultra low-power sensor
nodes with under 10KB of program memory to high-performance
platforms with fast Ethernet.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—General; C.3 [Computer
Systems Organization]: Special Purpose and Application-Based
Systems—Real-time and embedded systems

General Terms
Design, Languages

Keywords
Scripting, adaptive systems, software synthesis

1. INTRODUCTION
Embedded systems have evolved from simple controllers to het-

erogeneous distributed systems that are a critical part of many key
infrastructures today. To develop these systems, designers today
write mostly C or assembly and can program the flash memory
over a serial port in addition to burning EEPROM. Such devel-
opment methodology has remained fundamentally unchanged for
several decades. The code is often written at the lowest level of
abstraction for a single processor with direct access to platform-
specific registers such as timers, interrupts, and I/O ports. As a
result, much development effort today goes into software – not so

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05,Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

much for new applications, but for re-inventing these low-level ab-
stractions for each intertwined combination of application and sys-
tem functions. The single-processor, platform-specific approach
is impeding progress while the rest of the world is moving towards
larger scale, distributed networked embedded systems with increas-
ingly dynamic configurations.

To address these problems with programming, we propose a new
methodology that usesscripting as the primary way for higher-
level software development and dynamic execution in either single-
processor or distributed systems. Scripting has gained popularity
in general-purpose computing, ranging from CGI-scripts, text pro-
cessing, interactive animations, computer-aided design, and scien-
tific computing. Ousterhout [13] has shown that scripting consis-
tently achieves a 10×productivity gain oversystem-programming
languages such as C or Java. Scripting is also a natural fit for
loosely coupled systems.

What has prevented scripting from being widely adopted in em-
bedded systems is the high runtime overhead. Most existing script-
ing engines are implemented for general purpose computers with
virtually unlimited memory and high performance. There, conve-
nience is the primary concern. For embedded systems, however,
designers often try to optimize every bit of memory or speed to
save component cost or increase battery life. As a result, they pre-
clude the use of many scripting engines with full generality.

To solve this problem, we propose a methodology based on syn-
thesis of host-assisted, light-weight scripting engines. Analogous
to architecture description languages (ADLs) that target physical
machines with the optimal amount of hardware resources for the
given application, we synthesize a virtual machine with just the
right complexity for the given application and architecture. Unlike
Java VM, scripting can invoke powerful primitives interactively,
without requiring recompilation. To make this lightweight, we take
the host-assistedapproach. That is, the end user gets the illusion
that they are interacting with a nearly full-featured command-line
prompt running on the embedded system, but much of the com-
plexity is actually handled by the host. We limit the complexity by
subsetting the language that the node needs to process.

The result is that designers are empowered with a much higher-
level way of expressing the behavior of their systems while keeping
the runtime overhead low. Not only can they design for yesterday’s
applications with much less effort, but they are now actually able to
write much more powerful programs for a network of adaptive dis-
tributed embedded systems of tomorrow. Experiences have shown
dramatically shortened development cycle due to the much higher-
level abstraction, interactive access and dynamic reconfigurability,
robust in-field software upgradability, and compact code size. This
framework has been successfully applied to systems ranging from
ultra low-power sensor nodes with under 10KB of program mem-
ory to high-performance platforms with fast Ethernet.

2. BACKGROUND AND RELATED WORK
Many embedded systems may be viewed as having a microcon-

troller (MCU) controlling I/O devices. The I/O may be for periph-
eral devices, communication with a host computer, or with another
embedded system in a distributed network. We will use the appli-
cation of wireless sensor nodes to illustrate the concepts, though
the techniques are broadly applicable. Because these nodes should
be small, low power, and low cost, most of them use small micro-
controllers with very limited memory. For instance, some of the
most widely used sensor platforms use the Atmel ATmega series
of MCU with 1–4KB SRAM and 16–128KB program flash. Ex-
isting approaches can be divided into compiled vs. interpreted, and
pre-deployment vs. post-deployment.

Many programmers take the compiled approach with little or no
consideration for post-deployment update. That is, they write code
for the bare machine because it incurs minimum runtime overhead,
but it is very low level. Thin runtime support such as TinyOS
[9] and BTnut [6] can be compiled in with the user program to
make light-weight, monolithic executables. The problem is that
they are rigid, and post-deployment firmware updates are difficult
if not impossible, because it may be deeply buried inside a struc-
ture. TinyOS2 supports post-deployment writing of selective exe-
cutable code into the program memory. However, in the case of het-
erogeneous networks, different binaries must be generated for each
configuration. In all of these compiled approaches, pre-deployment
testing is difficult. It would require either a simulator that does not
have access to the actual I/O, or an in-circuit emulator (ICE) that
may be difficult to set up if it has to be worn or mounted in a special
way.

Scripting features have been considered to address limitations
of compiled approaches. PyBAR [3] is a router that includes a
python interpreter to facilitate introduction and maintenance of new
services, though its performance is less than 1/10 of C++ imple-
mentation. Luxdbg [14], the LUxWORKS tool suite’s debugger
provides Tcl as a user-interaction language. Sensorware [4] is a
framework designed for reprogramming the high-end sensor sys-
tems. The middleware occupies 237 KB, including a 64KB subset
of Tcl called tinyTcl used mainly to support modular code update
rather than interactivity. To further reduce the memory footprint,
researchers propose a variety of interpreters. They interpret com-
mands or virtual instructions that are encoded either in terms of the
addresses of the routines to invoke (e.g., Forth [5]), or in terms of
some arbitrary assignment of byte values (e.g., Java, Maté). Mat́e
[10] is a bytecode interpreter built on top of TinyOS and occupies
16.8KB memory. Its bytecode is for low level operations for a stack
machine, though they allow eight user-defined instructions. The
support for scripting is thus very limited. Agilla [8] is a middle-
ware system with a memory footprint of 41.6 KB of code and 3.59
KB of data memory. It is primarily for supporting mobile agents
in a wireless sensor network, but not so much for system configu-
ration or I/O control. In Pushpin [11], the application is composed
of pieces of native code calledpfrags (process fragments), which
are dynamically transferred and executed on the Bertha OS inside
each node. The Bertha OS occupies less than 14K, or 32K with
nine pfrags.

Unlike other approaches that rely on fixed runtime support, we
synthesize the scripting engine to explore a much wider range of
implementation options, ranging from extremely lightweight to ar-
bitrarily complex, depending on application requirements from above
and resource constraints imposed by the architecture from below.
Host-assist and script subsetting further push the limit of minimiz-
ing the footprint of the scripting engine. Table 1 compares the
memory footprint of Rappit with the other techniques.

Name Code Size Data Size Total
Sensorware 237KB < 64MB > 237KB
Agilla 41.6KB 3.59KB 45.19KB
Maté 16KB 849B 16.8KB
Pushpin 32KB 2.26KB 34.26KB
Rappit 1.4– 16 KB < 1 KB 1.4– 17 KB

Table 1: Memory footprints of runtime systems.

3. SCRIPTING APPROACH
Our approach to scripting is to blend the host and target sys-

tems (or “nodes”) as one integrated environment. The nodes appear
and can be accessed as data structures in the host’s scripting envi-
ronment. This section classifies subsets of scripting based on the
runtime support needed on the node and illustrates their use with
examples.

3.1 Language Classification
The scripting console on the host is a full-featured scripting in-

terpreter. We base our syntax on the Python language [15] for con-
venience. By default, user commands to the nodes go through a
preprocessor that has knowledge about each node. If there is no
room or need for certain heavy-weight features, then they may be
implemented on the host instead. We first classify scripting lan-
guages based on their interpretation requirements: script parsing,
symbol table support, and memory management.

First, the designer must inform our synthesis tool of whether the
node will require parsing in order to interpret the script. If the
designer expects to type commands directly into the system without
preprocessing (e.g., over a serial terminal), or if the commands are
encoded in XML or one of the Internet application protocols (e.g.,
HTTP), then a parser needs to be generated. Because a great deal
of the complexity may be in handling and recovering from syntax
errors, the designer can further specify whether the parser needs to
handle syntax errors or can expect all scripts to be well formed. If
no script parsing is required, then the system can just run a bytecode
interpreter. Orthogonally, if the script is expected to be transmitted
over a lossy link, then CRC or additional data integrity attributes
can be included.

The second issue is symbol tables. Even though scripting lan-
guages use symbols as logical addresses, symbol table support is
not strictly required in many cases. At the lower level, a script ac-
cesses only symbols such as the names of the commands or hard-
ware resources and a fixed set of symbols for software references.
In this case, the host can translate all symbols into their numeric
form without maintaining a symbol table on node. Script parsing
may either use a symbol table, or the symbols may be hardwired.
The latter may be more efficient when the scripting language is in
an Internet protocol format, such as HTTP, because the parser only
needs to extract a few relevant name-value pairs and ignore most
other fields in the header.

Third, scripts have different requirements for memory. In the
simplest case, the memory for variables and commands is statically
allocated, besides the stack. Even if dynamic memory management
is required, we push it to the host whenever possible if the host is
part of the final runtime system. The host can assist with memory
management by tracking the memory usage and send commands to
move or copy memory segments.

3.2 Scripting Examples
Scripts can be typed by a human interactively in front of a ter-

minal or by a GUI as the message interchange format. Scripts can
also be executed in batch as high-level programs. We show exam-

ples on how scripting can be used for different purposes throughout
the design and deployment stages.

3.2.1 Interactivity
Interactive access to the system at runtime is useful because it

provides designers with instant control and observability to all rel-
evant registers states, which are otherwise not observable without
using scopes or debuggers via JTAG. Consider the following in-
teractive session, where the user types into a text terminal con-
nected to the embedded system (>>is the command-line prompt,
and comments follow #):

>> PORTA[1] = 1 # set port A pin 1
>> PORTA[2] = !PORTA[2] # toggle PORTA[2]
>> PINA[0] # read input pin
0
>> PORTA[2] = 1; PORTA[2] = 0 # toggle clock
>> r5(PORTA[2]=1; PORTA[2]=0) # toggle clock 5 times

3.2.2 System Configuration
One primary use of scripting is system configuration, at both de-

sign time and run time. During system design, it helps design-
ers quickly experiment with the effects of different configurations
without the lengthy, tedious edit-compile-load-reboot process. This
feature supports in-field update for already installed embedded sys-
tems over any of the designated communication interfaces.

>> mcu.sysclock = 1 MHz # set system clock speed
>> uart.baudrate = 9600 bps # set baudrate for UART
>> rf.power = -5 db # set RF tx power
>> rf.speed = 1 Mbps # set RF throughput
>> rf.config # query the configuration
{’payload’: 1, ’power’: -5, ’speed’: 1000000, ’channel’:
100, ’mode’: ’TX’}

3.2.3 Multi-System Scripting
In addition to scripting an individual node, Rappit also supports

scripting a set of heterogeneous nodes.

>> L = rappit.listnodes() # get list of visible nodes
>> L
[’node1’, ’node2’, ’node3’, ’node4’, ’node5’]
>> N = map(open, L) # open connections to all
>> dir(N[1]) # see node N[1]’s keys & fcns
[’ID’, ’type’, ’loc’, ’adc’, ’lcd’, ’mcu’, ’rf’, ...]
>> S = lambda x: x.every(50 ms, ’sample’) # deferred eval
>> map(S, N) # issue command to all nodes
>> N[4].stop(’sample’) # tell node N[4] to stop sampling

Line 1 gets a list of nodes visible to the host. Line 4 calls open on
each of the nodes and constructs a list of their proxy objects. The
lambda expression on line 7 can be viewed as a script to be invoked
at a later time. Line 8 tells each node to invoke its own sampling
script once every 50 ms. Line 9 tells node N[4] to stop scheduling
its sampling task.

4. THE RAPPIT FRAMEWORK
The Rappit framework supports the entire design flow from ar-

chitecture modeling and synthesis to host-assisted execution of scripts.
At design time, the user captures the target system architecture and
behavior in a high-level description, whose syntax resembles the
example scripts. To describe the architecture, the designer instan-
tiates components from a component library, and makes the hard-
ware interconnection either manually or automatically with an in-
terface synthesis tool [7]. The next step is to select the desired
subset of scripting features and commands, including the level of
host assist allowed. The code synthesizer then composes the parser
or bytecode interpreter along with all communication drivers and

commands into an executable. The MCU is then loaded with this
firmware, including some resident scripts.

The scripting engine can be synthesized and loaded early in the
design cycle. This encourages designers to test features frequently
and get instant feedback as they develop software. This is in con-
trast to compiled approaches, where designers tend to defer test-
ing either to avoid the long compile/load cycles, or they must im-
plement many features manually just to enable testing in the first
place. For each node connected to the host, the host maintains a
data structure for its current configuration so that the host can pro-
vide a translation service for the user console or GUI.

4.1 System Description
The Rappit framework provides libraries to aid description of

system architecture, application, and communication. The com-
ponent library captures the available features of hardware mod-
ules, including built-in devices on MCUs and stand-alone ones. An
MCU model may include a system clock, on-chip memories, I/O
interfaces (e.g., SPI), registers, I/O ports, and ADCs. The I/O ports
are defined by their directions and widths. Stand-alone devices in-
clude off-chip memories or flash memory cards, RF tranceivers,
sensors, LCD, joystick, speaker, etc. The below example shows the
system description process.

example: pin mapping for an RF module
import MCU # load MCU module
mcu = MCU("ATmega169") # instantiate an atmega169 MCU
import RF # load RF transceiver module
rf = RF("nRF2401") # instantiate a nRF2401 transceiver
rf.CS = mcu.PORTB[0] # connect the chip select pin
rf.CE = mcu.PORTB[1] # connect the chip enable pin
rf.DR1 = mcu.PORTB[2] # connect the data ready pin
rf.CLK1 = mcu.PORTF[1] # connect the clock pin
rf.DOUT1 = mcu.PORTF[2] # connect the data pin

In addition to the drivers associated with the components, users
may also add their own functions as well. An application is ex-
pected to be a script that invokes these modules already written or
other scripts. Policies such as admission control, security, resource
fairness, or energy saving are treated as directives already under-
stood by existing software modules.

4.2 Scripting Engine Synthesis
The scripting engine to be synthesized depends on the message

format between the host and the node. The messages can be ei-
ther textual scripts or fixed-length bytecode packets. Synthesis of
scanners and parsers for textual scripts is a well understood prob-
lem for either the host or the node. Here we focus the discussion
on bytecode interpreters, which assume the host does the parsing
and sends bytecodes. A bytecode interpreter is a switch statement
in a loop and uses a stack for passing parameters. The difference
between bytecode interpreters and parsers is mainly in how the pa-
rameters are handled. We define a fixed-length meta-format as a
basis for encoding command and response packets. Synthesis di-
rectives also let the designer choose how many packets will be used
for bytecode transfer, what kind of header and trailer bytes to add,
and the CRC checking algorithm. For instance, if the communica-
tion link is reliable and there is only a single target system, then
theDest andCRCfield can be omitted. Having a framework that
maintains the format information enables the translation to be done
consistently and correctly.
〈Command Packet〉

Dest. Msg ID Opcode Arg1 Arg2 Arg3 CRC

〈ResponsePacket〉
Src. Msg ID Msg Type Data Type Data CRC EOP

Whetherthe interpreter parses scripts or runs bytecodes, they
end up calling the same set of routines. The generated interpreter is
compiled and linked with the communication driver, configuration

Target
System

Code
Synthesis

Architecture
Description

Application
Description

Parser,
GUI

Host

Interpreter,
Runtime
Library

Communication
Description

System Description

Binary
Executable

Interpretive
Language

High-level
Language

Symmetric

Component
Library

Figure 1: Code synthesis

Figure 2: AVR Butterfly: an implementation platform

data, identification tags, and interrupt-driven job control to create
the firmware for the target system.

4.3 Runtime Environment
The runtime environment spans the host and the nodes. The

nodes may have different levels of complexity, and the host pro-
vides full generality and adapts its level of assist to what is needed
by the node. The user interface on the host can be either a command
line interface (CLI) or the Rappit GUI. The GUI provides an inte-
grated, interactive control environment for selecting different com-
munication links (e.g., UART, RF, USI) and for providing its own
command prompt and the output window. Both the CLI and GUI
generate textual scripts that are fed into the host parser. The host
parser parses the script and links the lower level details retrieved
from the runtime library. The host’s packetizer encodes the parsed
string into the command packet format and sends the packet to the
target system. The target system runs a synthesized depacketizer to
reconstruct the message. After dequeuing the message and before
command execution, the admission controller decides whether to
execute the command or not. The admission policy is defined by
user, which can be resource-based, security-based, etc, and imple-
mented at the time the firmware is synthesized. Upon admission,
the interpreter starts executing the command as a subroutine call.
The I/O drivers are the primitives inside the runtime library, which
can access and manipulate the actual hardware.

5. EVALUATION AND ANALYSIS
The first prototype of Rappit has been implemented and tested

on a number of MCUs, including the Atmel ATmega169, PIC16F
series, FreeScale HC12 with fast Ethernet, and the nVLSI nRF24E1
with an 8051 core and 2.4GHz RF transceiver.

0

1000

2000

3000

4000

5000

6000

Co
de

 S
iz

e
(b

yt
es

)

1 2
Rappit vs. Native

Application
Interpreter
Library Subroutines
Packet Handler

Figure 3: Code size: rappit vs. native code

5.1 AVR Butterfly
The AVR Butterfly board (Fig. 2) is the most feature-rich and

the most resource-constrained. It has an Atmel ATmega169L 8-bit
MCU at 8MHz, 512B EEPROM, 1KB SRAM, 16KB instruction
memory, and peripherals including a dataflash, speaker, sensors
(temperature, light, voltage), joystick, and an LCD. In our experi-
mental setup, the command and response channel between the host
and the board uses a USART serial link at 9600 baud. Both inter-
active and batch modes are supported. In interactive mode, pack-
ets are handled immediately in a nonblocking manner, whereas in
batch mode, the entire script is loaded before execution.

5.1.1 Code Size
The total code size for the MCU includes the application, inter-

preter, library routines, and the packet handler. The interpreter and
library routines are determined by code synthesis, which in turn
depends heavily on user’s directive, architecture constraints, and
application needs. The packet handler implements the communica-
tion protocol, which is also synthesized. The application script is
loaded at runtime and may go to either RAM or ROM. Our current
implementation loads the bytecode into the 1KB RAM. In inter-
active mode, application storage can be a small (e.g., less than 10
bytes) buffer. We tested loading up to 280 commands in 3-byte
packets of 255 different instruction types, for a total of 9.78KB of
code size and 1KB of data size.

Fig. 3 compares the size of our scripting bytecode against com-
piled C. The test case contains 100 commands of 9 instruction
types, which map to a mix of simple and complex primitives. The
equivalent C code was written manually for the comparison. For
cases where bytecodes map to powerful primitives, we can achieve
dramatic reduction in application code size as shown in the top
boxes in Fig. 3. The same subroutines and packet handlers were
used for fair comparison. The interpreter itself consists a thin layer
since it is a simple jump table.

5.1.2 Execution Delays of Rappit vs. Native Code
Execution delays are measured in terms of executed commands

per second. We show results of two examples in Fig. 4, the two
extreme cases (i.e., simple vs. complex) in our experiment. The
first command sets and clears the register bits of the MCU. The
second command samples the temperature for a certain amount of
time, computes the average, and sends it to the host. Rappit is tested
in both batch mode and interactive mode, where in batch mode all
commands are preloaded to the RAM, while in interactive mode
each command is sent through the serial link. In the result, the batch
mode execution shows similar or better performance compared to
the native code execution. Since the script size is smaller and can

0

20

40

60

80

100

120

reg. config. sense & sample
Instruction

C
o

m
m

a
n

d
s

(c
m

d
s/

se
c)

Native
Interactive
Batch

Figure 4: Comparison of execution delays

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

No
. o

f C
om

m
an

ds
 (c

m
ds

/s
ec

)

Baud Rate (bps)

1 MHz 4.703 4.57 4.74 0 0 0
2 MHz 4.751 4.757 4.744 4.732 4.753 0
4 MHz 4.703 4.755 0 0 0 0

4800 9600 14400 19200 28800 38400

Figure 5: Delay of loading commands vs. communication speed

fit entirely in RAM as opposed to loading from the much slower
flash memory, the script in batch mode may run actually faster than
the native code, although the speed-up is still limited by command
decoding. In interactive mode, Rappit execution incurs a latency of
5 cmds/sec.

5.1.3 Overhead Components of Interactive Rappit
In interactive mode, the latency of 5 cmds/sec is tolerable, since

users can continue typing ahead and sending commands while the
results are being delivered. However, it is desirable to minimize the
overhead. The overhead may be due tocommunication,buffering
(i.e., queue, dequeue),packets(packetize, depacketize), andinter-
pretation. The first three types of delay occur in loading the code
to the board, while the last consists of the execution delays.

To reducecommunication overhead, we explored different con-
figurations of MCU’s system clock and baud rate. The USART has
certain combinations of parameters for the communication to be es-
tablished and to provide a reliable link. Fig. 5 shows the valid com-
munication configurations at different speeds. We observed that
the total execution speed is independent of the link speed, and that
communication is a negligible portion of the total overhead.

Buffering overheadis measured by comparing using the buffer
against not using. Interestingly, the results show higher delay with-
out buffering, since the buffer provides asynchronous writing, while
without buffering, the read/write needs to be synchronized.

Packet overheadis measured by altering the packet size start-
ing from a singleopcode to adding fields in the order ofarg1,
msgID, dest, arg2, arg3, and crc. Fig. 6 shows the result
of loading 100 commands for testing each packet size. The results
show that the packet overhead becomes a major bottleneck in the
performance for longer packet sizes, especially if CRC check has
to be done in software.

Interpretation overheadis practically a negligible part in the ex-
ecution time. The execution time shows little difference for an in-

0

3

6

9

12

15

18

21

24

0 1 2 3 4 5 6 7 8

Packet Size (byte)

L
o

a
d

in
g

 D
e
la

y
 (

se
c)

Packet Size (byte) 1 2 3 4 5 6 7
Overhead (ms) 30.33 60.10 90.03 120.67 150.61 180.66 210.6

Figure 6: Loading overhead vs. packet size

0

1

2

3

4

5

6

7

8

9

Default w/o Interpreter w/o Target
Packetizer

w/o Host
Packetizer

w/o Host
Parser &

Packetizer

Overhead Components

E
x
e
c
u

ti
o

n
 O

v
e
rh

e
a
d

 (
c
m

d
s
/s

e
c
)

Figure 7: Execution overhead vs. different software compo-
nents

terpreter with a range of numbers of instructions from zero to 255.
In addition, we generated several test cases to analyze the over-

head. Fig. 7 shows disabling the interpreter and the packetizer
in the target system makes little difference. However, the host
side shows more influence on the overhead, where the parser com-
presses the raw string, but in turn, the packetizer adds headers and
trailers. The results confirm that our methodology adds some over-
head not so much to the core execution, but mainly on the commu-
nication side, which can be improved by the adjustment of protocol
and data format.

5.2 The Mini-FDPM Breast Cancer Detector
We have successfully applied the Rappit methodology to the

development of the Mini-FDPM system [12]. It performs broad-

Amplitude
Detector

Phase
Detector

Mixer

Power
Splitter

Crystal
Filter

Laser 1

Laser 2

Laser 3

Laser 4

RF
Switch FilterMixer

Mixer

Power
Divider

Filter

Filter

Amp

Amp

Power
Coupler

Local
Oscillator

Broadband
Oscillator

2

Broadband
Oscillator

1

TCXO

16bit microcontroller
with ethernet

Figure 8: The Mini-FDPM System

AMPAMP
PowerPower

CouplerCoupler

Output SignalOutput Signal
10MHz ~ 1GHz10MHz ~ 1GHz
Pout = +5dBmPout = +5dBm

PhasePhase
DetectorDetector

SignalSignal
GeneratorGenerator

11

Laser 1Laser 1

PhotoPhoto
DetectorDetector

ComputerComputer

16 bit16 bit
controllercontroller

TT
ii
ss
ss
uu
ee

RF (Radio Freq.)RF (Radio Freq.) LaserLaser DCDC DigitalDigital

10MHz~1GHz10MHz~1GHz
Pout = +22dBmPout = +22dBm
Gain = 18dBGain = 18dB

SensitivitySensitivity
-- 45dBm45dBm

Laser 2Laser 2

Laser 3Laser 3

Laser 4Laser 4
PowerPower
SplitterSplitterAmplitudeAmplitude

DetectorDetector

CrystalCrystal
FilterFilter

MixerMixer

SignalSignal
GeneratorGenerator

22

RFRF
SwitchSwitch

MatchingMatching
NetworkNetwork

EthernetEthernet
SensitivitySensitivity
--70dBm70dBm

Output SignalOutput Signal
55MHz ~ 1045MHz55MHz ~ 1045MHz
Pout = +5dBmPout = +5dBm

45MHz45MHz
(BW=30kHz)(BW=30kHz)

FDPM Block Diagram

(MC9S12NE64)

Figure 9: System Block Diagram of the Mini-FDPM

band modulation on the intensity of near-infrared laser diodes and
derives the scattering and absorption coefficients of the bulk tis-
sue from phase and amplitude data measurements. It consists of
a broadband generator, laser modulator, and detector as shown in
Fig. 9. It also includes the FreeScale MC9S12NE64 16-bit MCU
with an integrated 10/100 Mbps Ethernet controller.

The MCU controls the peripheral devices including the frequency
synthesizers and the laser drivers through I2C, SPI, and general-
purpose I/O (GPIO) pins, and performs measurements with its built-
in ADC. The samples are sent back to the host computer through
the Ethernet interface. The MCU runs a command interpreter with
routines for accessing the built-in Ethernet, SPI, I2C, ADC, and
GPIO. The total code size of the interpreter is only10.2KB. The
implemented system is shown in Fig. 8. The Rappit GUI opens a
terminal in the host to control the MCU through the Ethernet inter-
face. To collect measurement data, developers can simply type the
commands or invoke the GUI to generate the following script:

>> sc # configure SPI interface
>> PH[3] = o # set port H[3] to output
>> PH[3] = 1 # turn on the laser
>> i2s197 # send data to I2C device 2
>> i1s197 # send data to I2C device 1
>> ss98 # send to SPI device(control frequency)
>> r5(a2;a4;a6) # read ADC channel(2, 4, 6) 5 times
>> save result # save data to file ’result’

It takes the developer only a few minutes to write the script, and
the result can be collected and post-processed (e.g., FFT) on the
host immediately. This enables the user to easily customize the
behavior of the instrument dynamically over different applications,
without low-level programming. As we revise the Mini-FDPM de-
signs with a different, newer MCU, the same script and the rest of
the software will continue to work correctly.

6. CONCLUSION
Embedded systems are long overdue for an extreme makeover

in software. Traditional compiled languages for uniprocessors are
no longer keeping up with the trend towards distributed, loosely
connected embedded systems. Scripting represents one of the most
promising solution and has demonstrated compelling advantages in
general-purpose computing. The interactive nature not only short-
ens development cycle and encourages testing but also makes these
systems adaptive by design. What is sorely needed is to overcome
high-overhead challenges that have prevented scripting from wider
use in embedded systems. The Rappit framework described in
this paper represents a first step towards bringing more viability
of scripting to highly constrained embedded systems. Analogous
to synthesizing a processor from an ADL (architecture description
language) by allocating the right amount of resources to better fit
the workload of an application, we synthesize a software machine,

namely the scripting engine that best fits the architecture below and
applications above. We exploit host assist and synthesis to make
this technique applicable to a wide range of architectures, from very
small MCUs that rely heavily on host assist, to high-performance
systems that implement fully general scripting. Results show that
scripting as synthesized by our Rappit framework is not only viable
and convenient but actually has code size advantages over native
code while incurring minimal overhead, even on one of the most
resource-constrained MCUs.

Acknowledgments
This work was supported by the National Science Foundation grant
CCR-0205712 and an NSF CAREER Award CNS-0448668, and
sponsored in part by the National Institute of Health through an
NTROI (Network for Translational Research on Optical Imaging)
seed grant. The authors thank Chan Woong Nam from LG Elec-
tronics for the careful feedback and help in performing the experi-
ments.

7. REFERENCES
[1] Atmel Corporation. Inhttp://www.atmel.com/.
[2] J. Axelson. Tiny and inexpensive programmable controllers for quick

project development.MicroComputer Journal, pages 20–27, May
1995.

[3] F. Baumgartner, T. Braun, and B. K. Bhargava. Design and
implementation of a python-based active network platform for
network management and control. InIWAN ’02: Proceedings of the
IFIP-TC6 4th International Working Conference on Active Networks,
pages 177–190, London, UK, 2002. Springer-Verlag.

[4] A. Boulis, C.-C. Han, and M. Srivastava. Design and implementation
of a framework for efficient and programmable sensor networks. In
MobySys, 2003.

[5] L. Brodie.Thinking Forth. Prentice Hall, 1984.
[6] BTnut System Software. In

http://www.btnode.ethz.ch/support/btnutapi/main.html.
[7] P. Chou, R. B. Ortega, and G. Borriello. Interface co-synthesis

techniques for embedded systems. InProc. of 1995 International
Conference on Computer-aided Design, pages 280–287, November
1995.

[8] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible
deployment of adaptive wireless wireless sensor network
applications. In24th Internatonal Conference on Distributed
Computing Systems (ICDCS’05), 2005.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for networked sensors.SIGOPS Oper.
Syst. Rev., 34(5):93–104, 2000.

[10] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor
networks. InInt’l Conference on Architectural Support for
Programming Languages and Operating Systems, October 2002.

[11] J. Lifton, D. Seetharam, M. Broxton, and J. A. Paradiso. Pushpin
computing system overview: A platform for distributed, embedded,
ubiquitous sensor networks. InPervasive ’02: Proceedings of the
First International Conference on Pervasive Computing, pages
139–151, London, UK, 2002. Springer-Verlag.

[12] K. S. No and P. H. Chou. Mini-fdpm: a handheld non-invasive breast
cancer detector based on frequency domain photon migration. In
Proc. of IEEE BioCAS, pages 2.2–5–2.2–8, December 2004.

[13] J. K. Ousterhout. Scripting: Higher level programming for the 21st
century.IEEE Computer, 31(3):23–30, March 1998.

[14] D. E. Parson, B. Schlieder, and P. Beatty. Extension language
automation of embedded system debugging.Kluwer Academic
Publishers, 9:7–39, January 2002.

[15] G. van Rossum. Extending and embedding the python interpreter.
Amsterdam: Stichting Mathematisch Centrum, 1995.

