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Abstract—This paper proposes a distributed real-time detec-
tion algorithm for detecting rupture events in water pipelines
noninvasively. The purpose is to suppress not only unnecessary
transmission but also local processing in order to save power
without sacrificing sensitivity or specificity of the events of
interest. All these goals are accomplished by adaptive threshold-
ing, a cascaded wake-up chain, local processing, and aggressive
power management. Experimental results show that the proposed
algorithm achieves high sensitivity and high specificity while
reducing the total energy consumption significantly.

Index Terms—Water pipeline monitoring, ruptures, wireless
sensor network.

I. INTRODUCTION

The aging and deteriorating infrastructure is one of the
greatest challenges facing water systems in the United states.
The EPA (Environmental Protection Agency) estimated a total
need of US$324.9 billion over the next 20 years to be used
for water infrastructure assessment in their 2007 Drinking
Water Infrastructure Needs Survey and Assessment [1]. The
39 billion dollars estimated for California’s need represents
about 12 percent of the national need. The DWR (Department
of Water Resources) [2] made several recommendations to
direct effort to upgrade, improve and enhance the security and
emergency response capability of the water infrastructure in
order to maintain a reliable supply and delivery of drinking
water in the case of damage caused by natural disasters or
deteriorating pipelines.

Non-invasive monitoring of pressurized water pipelines
is desirable due to cost and practical considerations. Since
change in pipe vibration can be attributed to the sudden change
in the water pressure caused by rupture or breakage event,
non-invasive monitoring can be achieved by measuring the
vibration on the pipe surface at various joints. Identifying
the location of failure quickly and easily can be crucial
in most situations, though it requires continuous monitoring
of the system. Challenges associated with monitoring such
systems include quality of data sensing, timely and reliable
communication from the field to control centers, accurate data
analysis, and high power efficiency. The ideal system should
be able to continuously monitor the pipes and report up-
normal behavior back to the control center while maintaining

low power consumption, yet power can not be saved with
continuous monitoring. Up-to-date, a tradeoff had be to made
between missing events , through using sparse monitoring, and
saving power.

This paper describes an energy-efficient method for real-
time, in-field monitoring and condition assessment of utility
water distribution systems, particularly during and after natural
disasters. What makes our system unique is its ability to mon-
itor pipes at all times, while maintaining low power consump-
tion. The system consists of multiple wireless communication
units and high-precision sensor nodes that can be deployed
non-invasively on fresh-water and sewage-water pipelines.
Multiple systems work together to collect acceleration data to
be analyzed in the field or transmitted back to the laboratory
in real time for post-processing.

II. BACKGROUND AND RELATED WORK

A. Background

Online damage detection using WSNs has emerged in recent
years as a promising technique to monitor the health state of
civil structures such as bridges, buildings, and dams, and also
in monitoring water and gas pipelines.

A number of monitoring techniques have been applied in
the gas and oil industries to monitor gas pipelines and detect
pipe breaks. Most of the applied pipelines monitoring was
implemented using invasive methods to measure pressure and
flow [3]. Ruptures and breaks in pipelines induce a negative
pressure wave that travels in both direction away from the
failure point. Measuring and sampling pressure at both ends
of the water pipeline can be used to detect rupture events. The
performance of such monitoring systems can be dramatically
improved by installing more measuring points, but it requires a
great deal of instrumentation for continuous monitoring. Water
pipelines, as opposed to oil and gas pipelines, are not well-
instrumented to allow invasive installations, in addition to the
fact that the water utilities budget does not allow for expensive
instrumentation. The research has been shifted toward the
usage of non-invasive methods to monitor fresh water and
sewage pipelines.

Ruptures and leaks in water pipelines manifest themselves
as high-amplitude noise, which can be used to detect such



Fig. 1. Original PipeTECT Architecture

events. Previous proposed and implemented WSNs for mon-
itoring water pipelines varied in their sensing techniques,
mathematical formulation, data acquisition methods, and data
processing algorithms. In most cases, the wireless sensing
platform is mainly equipped with sensing, communication,
and computation units. The communication unit enables the
sensing platform to transmit data wirelessly without the usage
of expensive coaxial cables. The computaion unit, if present,
is utilized to process data locally and make decisions on the
state of the monitored structure or pipes. The sensing unit
is equipped with different kinds of sensors, depending on
the monitored feature, such as acoustic or vibration sensors,
temperature sensors, or even Lead Ziroconate Titanate (PZT)
sensors [4].

In our previous work [5], [6], we introduced a wireless
sensor platform, PipeTECT, a smart wireless sensor system
based on MEMS accelerometers that can be deployed non-
invasivly on fresh water or sewage water pipelines. The
latest version of PipeTECT encapsulates sensors, processors
and communication modules with high performance and ex-
pandability features. Fig. 1 shows a block diagram of the
original monitoring system. The system consists of three main
tiers: the sensing tier, the aggregation tier, and the back-end
server tier. The sensing tier consists of the sensing node and
low-complexity microcontroller unit (MCU) in addition to a
signal converter. The aggregation tier consists of a wireless
communication unit and a low-power, low-complexity MCU.
The sensed data is transfered from the sensing unit to the
aggregation unit through the Controller Area Network (CAN)
interface and then continuously streamed back to the server
via a wireless connection.

An initial version of the server receives and processes in-
coming data to determine failure events. Multiple aggregation
nodes can aggregate data from multiple sensor nodes, where
each sensing node can provide up to 3 channels of acceleration
reading (X, Y, and Z axes). At the network level, each
aggregation node provides a data stream that can encapsulate
several sensing channels. The server saves each data stream
in a common data storage for further analysis.

B. Related Work

Monitoring buildings, bridges, dams and pipelines through
measuring seismic vibration using WSN has become an active
area of research in recent years. The main advantage of using
WSN is ease of installation and deployment in addition to
lower cost when compared to wired techniques.

Stoianov [7], [8] proposed and evaluated comprehensive
method to detect both leaks and breakage in water pipelines
using a combination of pressure transient, flow, and acoustic
vibration signals. Note that pressure and flow require invasive
sensing for detecting breaks and ruptures, while acoustic and
vibration are non-invasive. The use of invasive snsors limits
the installation to areas with an outlet. The application of non-
invasive method used vibration sensors to detect small leaks
and relied on continuous sampling for short periods of time
to save energy. Hence, leakage events are not time critical.
The non-invasive method used FFT analysis to determine leak
events in the monitored pipes. Although the analysis were able
to detect small leaks in water pipes, it was computationally ex-
pensive (O(N log(N)) steps to compute the frequency spectrum
for N samples) and required offline data evaluation.

Lynch in [9] proposed embedding a damage detection algo-
rithm in wireless sensor network to lower energy consumption
in SHM and overcome the need for continuous streaming
of data. A computational core was incorporated to execute
engineering analysis and reduce the size of the transmitted data
by transmitting only important aspects of the data. Reducing
the size of the transmitted data is an effective way to save
bandwidth and energy consumption, but it does not overcome
the problem imposed by the need for continuous sampling at
high rates in applications such as water pipeline monitoring for
disastrous events. In addition, the embedded algorithm used in
structural-health monitoring relies on the assumption that the
measured data can be modeled as a stationary process, i.e.,
a process where the variance and autocorrelation structure do
not change over time. Unfortunately, it is not applicable to
water pipeline monitoring because vibration in pipes is highly
affected by exotic factors and varies throughout the day.

Geof [10] proposed an event detection algorithm to sup-
press continuous transmission and save energy in a volcano
monitoring network. The event detection algorithm computes
two exponentially weighted moving average (EWMA) using
two different gain settings. Through collaboration between all
sensors in the network, the event is confirmed if 30% of the
nodes reported average deviation. While applying a voting
scheme to detect events works well for dense WSNs, it is
not applicable to water pipe monitoring, where the number of
installed sensors are much more limited due to accessibility
and wide coverage area. Most of the pipes are buried under
ground and access is only possible through manholes and fire
hydrants.

Another way to lower energy consumption and reduce the
amount of data is to take into account the nature of the
monitored application. For example, in [11] monitoring a
railway bridges was enabled only when trains are passing.



The network was put to sleep most of the time and was active
for short periods of times throughout the day.

In this paper, we present a system architecture for monitor-
ing rupture and breakage events in water pipelines by continu-
ous monitoring while incurring low energy consumption. Our
system combines a tiered system architecture, cascaded wake-
up hierarchy, and a hybrid local event detection algorithm that
work together to monitor the pipes at all times. It extracts and
transmits only the important aspects of the data.

The rest of this paper is organized as follows. Section
III discusses the problems associated with monitoring water
pipelines and outlines the problem statement, followed by
section IV to introduce our technical approach. In Section
V we present our damage detection algorithm. Section VI
describes the experimental setup and field deployment, and
Section VII presents the results with an analysis. Section VIII
concludes the paper with a direction for future research.

III. PROBLEM STATEMENT AND CONTRIBUTIONS

The problem statement can be stated in terms of the
functional requirements, objective functions, and constraints.

A. Functional Requirements

The functional requirement is to detect rupture events on
water pipes by in-field processing. More specifically, the data
aggregator collects raw data from the sensing nodes and
performs processing to decide whether a rupture event has
occurred. If so, it is to report the event back to the server tier
immediately. To do this, it is to process the acceleration data
sampled at 1000 Hz on the pipe surface. It should report all
true-positive events and should not report false-negative ones.

The data collected from our system can fairly be described
as semi-infinite stream of values, which can be formally rep-
resented by a discrete sequence of numbers 〈x1,x2,x3, . . . ,xn〉,
each representing the acceleration measured at specific time.
The limited processing and memory resources in the sensor
networks makes it impossible to store every measured value.
On the other hand, the limited bandwidth makes it rather
expensive to transmit all the measurements. Therefore, these
limitations imply the need for certain trade-offs: it is impossi-
ble to store everything or transmit everything, and furthermore
we want to more fully utilize the available resources. This
problem can be modeled as a continuous query processing
problem.

We are looking for an adaptive algorithm that can identify
a pattern and requires no previous knowledge or human
guidance. In water pipelines monitoring, the vibration of the
pipes are affected by many exotic effects. Therefore, it might
be impossible to guide the sensors in identifying failure events
due to the large volume of data and limited communication.
In detail, the main requirements of the detection algorithm can
be outlined as follows:
• Succinct model: the algorithm should be able to capture

the disastrous event in real time, using limited resources.
• Unsupervised model: very little to no human intervention.

• Streaming limitations: we cannot afford to transmit back
all the data, yet we still need the ability to store and report
back any values that deviate too much from the standard
deviation of the system.

B. Objectives

The primary objective is to maximize both sensitivity and
specificity of the event detection method. The secondary
objective is to minimize the total energy consumption, or
equivalently the average power consumption of the sensing
tier and the aggregation tier.

Sensitivity and specificity are metrics for quantifying the
accuracy of sensors in general. They are defined as

sensitivity =
T P

T P+FN
(1)

specificity =
T N

T N +FP
(2)

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively. The sensitivity
objective means that whenever a true rupture event occurs, the
system should not miss it, or else some rupture events may go
unreported. On the other hand, the specificity objective means
that whenever an event that is not a rupture event occurs, the
system should filter it out, or else the system may suffer from
too many false alarms.

The objective to minimize energy consumption can be
further refined. On the sensor, this may mean to suppress
sampling at the high rate (1000 Hz) whenever possible, since
the ADC and signal conditioning subsystem consumes a
significant amount of power. On the data aggregator, this may
mean to minimize the uplink transmission of data with low
information content. Of course, if the local processing ends
up consuming more energy, then the data aggregator should
just transmit raw data.

C. Contributions

In this paper we introduce a novel hybrid local detection
algorithm that can be embedded in sensor nodes to detect and
report abnormal behavior in the monitored platform in real-
time. Through combining a hardware thresholding detection
technique with a fundamental statistical analysis, our system
can achieve the highest possible sensitivity and scored 80%
savings in power consumption. We also introduced a com-
bined architecture of low-power and high-performance MCUs
utilized together in a master/slave model to detect and analyze
the measured data before transmission. The contributions of
this paper are as follows:
• We develop a hybrid on-site event detection algorithm

based on threshold detection and statistical analysis.
• We introduce a cascaded wake-up hierarchy utilized to

lower energy consumption.
• We validate the correctness, sensitivity and specificity of

our model using real-time measurements obtained from
field deployment.



Fig. 2. Threshold violation interrupt

Fig. 3. Cascaded Wake-up Hierarchy

IV. TECHNICAL APPROACH

As mentioned in Section II, the original system architecture
had three main tiers: sensing tier, aggregation tier, and server
tier. Our approach is to energy-efficient pipeline monitoring is
augment the existing PipeTECT system with new modules at
both the sensing and the data aggregation tiers. Together, they
minimize energy consumption without missing events.

A. Enhanced Data Aggregation Tier

The original data aggregator contains a medium-complexity
MCU, the wired or wireless network interfaces, and a data
storage module (e.g., flash memory card) for storing and
transmitting the data back to the back-end server for analysis.
We enhanced the aggregator with a powerful MCU capable
of running the analysis algorithm in the field on the collected
data, so that it can suppress transmission of data with low
information content most of the time. The new MCU is added
as a daughter card so that it can be power managed by the
existing medium-complexity MCU.

B. Enhanced Sensing Tier

The original sensing node contains a low-complexity MCU,
an analog-to-digital converter (ADC) with signal conditioning
functions, and a wired bus interface. We added a new module
with a threshold detection unit so that the rest of the system
can be kept in very low power mode. This added unit en-
ables the cascaded wake-up hierarchy to dramatically reduce
the energy consumption without missing events. Fig. 4. The

Fig. 4. A block diagram of the monitoring system

threshold detection unit, samples at lower sampling rate and
keeps monitoring the system for any deviation from a preset
threshold value throughout the day.

C. Wake-up Hierarchy

The cascaded wake up hierarchy starts by the threshold
detection unit which monitors the pipes at all times for any
deviation off of a predefined threshold value. Upon deviation
detection, the threshold unit initializes a wake-up interrupt
signal to start the sensing node. Sampling at a higher rate
starts on the sensing node and a ripple of wake-up interrupt
signals travels from the sensing unit through the aggregation
unit, ending at the high computational unit as shown in Fig. 3.

Transmission to the back-end server is only initialized if the
failure event is confirmed by the system on-site. Applying the
described wake-up hierarchy aided in saving over 80% of the
consumed energy, hence all but the threshold detection unit
will be in sleep mode most of the time.

D. Two-Tier Event Detection

To achieve these requirements, we propose a hybrid event
detection algorithm applied in the lower two tiers, a threshold
hardware based detector in the sensing tier, and a statistical
based detector in the aggregation tier. Fig. 5 shows a block
diagram of the proposed detection method. The next section
describes the algorithm in detail.

V. HYBRID DAMAGE DETECTION ALGORITHM

The detection algorithm runs in two stages: threshold and
median estimation at startup, and embedded damage detection
at run time.

A. Threshold and Median Estimation

Estimation of the threshold and median values is a crucial
step, where it highly affects the sensitivity of the system. For
instance, choosing a high threshold value increase the possi-
bility of missing true events related to damage, while lowering
the threshold value increases the number of false positives, as
the system will falsely report damage. As mentioned, vibration
on water pipes are affected by many possible events such as



Fig. 5. A block diagram of the two-tier detection method.

operating pumps, passing trucks, etc. Therefore, the estimation
of these values should be associated by the time of the day,
since no one single threshold value or median values can be
representative at all times. The estimation process runs as
follows:
1. continuous sampling during pre-specified times (5AM,

9AM, 12PM, etc).
2. Evaluate and store threshold value Tt associated with t time

of the day in a set of data Y sampled at time t where,

Y = 〈(yi) ∈ R : i = 1....N〉 : yi ≤ yi+1 ≤ .......yN−1 ≤ yN
(3)

The threshold value Tt ∈ Y will be estimated such as:

Tt = Yn : n = b.95∗Nc (4)

To optimally evaluate the threshold value on-site, we used
in-place sorting algorithm with O(n logn) complexity. Al-
gorithm 1 shows the pseudocode used to estimate threshold
value T in set A with size n [12].
The obtained optimal threshold value will be sent to the
threshold detection unit.

3. Estimate the median m for n set of values where the median
yi for a set Y of size n samples, occurs at

i = b(n+1)/2c. (5)

4. Populate onsite database with time stamped median values.

B. Embedded Damage Detection

Damage in water pipelines can be identified when the accel-
eration measured in one window exceeds the optimal threshold
value or its median deviates from the expected median. Our
damage detection algorithm identifies damage in two steps:
a preliminary damage detection based on threshold violation,
and a refined detection based on the median deviation. The
time stamped threshold values, evaluated at startup, will be

Algorithm 1: Threshold estimation, THRESHOLD(A,n)

for k = n/2 to 1 do
call ShiftDown(k, a, n);

for k = n to 2 do
v← a[1] ;
a[1]← a[k];
call ShiftDown(1, a, k−1);
a[k]← v;

procedure ShiftDown(k,a[],N);
v← a[k];
while 2k = N do

j← 2k;
if j < N∧a[ j] < a[ j +1] then

++ j
if v≥ a[ j] then

break
a[k]← a[ j];
k← j;

a[k]← v;

Fig. 6. Threshold Detection Unit

stored in the threshold detection unit. As shown in Fig. 2,
an interrupt will be triggered when the measured acceleration
values, within a time window, rises above the threshold. Once
a threshold violation occur, the sensing node starts sampling
and evaluating the median values. The obtained values will be
compared against the time stamped median, and a damage is
confirmed if the deviation exceeds a predefined error ε.

VI. EXPERIMENTAL SETUP AND FIELD DEPLOYMENT

We conducted experiments in several settings, both in the
laboratory and in the field. In this section, we provide a
description of the hardware used in the experiments and briefly
describe one of our field deployments.

A. Hardware Description

1) Sensing Units: The sensing tier consists of a sensing
node and a threshold detection unit. The sensing node, shown
in Fig. 7, consists of a 4-channel programmable signal con-
verter (QF4A512), an SD1221L-002 MEMS-type accelerom-
eter, and a PIC18LF MCU. The sensing nodes can achieve a
stable sampling rate of over 1000 samples per second. The
sampled data is sent to the local data aggregator for logging,
processing, and transmission. Because RF transmission does
not work well underground, and due to the lack of power
sources at most sensing locations (i.e., on the exterior of
underground pipes), the Controller Area Network (CAN) was



(a) Sensing Unit (b) Aggregation Unit

Fig. 7. Sensing and Aggregation Units

Fig. 8. The Aggregation Unit with WiFi attached

chosen for providing the data link and power to the sensing
nodes over a wired interface. Multiple sensing nodes can
be daisy-chained together and work as relay points to one
aggregation unit. The threshold detection unit shown in Fig. 6
is a triaxial linear accelerometer with an output data rate
of up to 400 Hz and a threshold detection capability. The
threshold unit is programmed to provide the interrupt signal
to the sensing unit, via Serial Peripheral Interface (SPI), when
a programmable acceleration threshold is exceeded.

2) Aggregation Tier Hardware: The aggregation tier con-
sists of a data aggregation unit and a high computational MCU.

The aggregation unit, shown in Fig. 7(b), uses the MSP430
16-bit ultra-low-power MCU with 256KB flash, 16KB RAM,
and a 12-bit ADC. It does not contain any sensing devices;
instead, it contains a Micro-SD card for data logging and
several wired and wireless interfaces. It connects to the sensing
units via the CAN bus for collecting sensing data, and it also
powers all sensing nodes on the attached CAN bus. It has the
options of (1) logging data to an on-board, removable Secure
Digital (SD) flash memory card, (2) transmitting the data over
one of the wireless interfaces, which may be Wi-Fi (by default,
as shown in Fig. 8), XBee (up to 1 km), or XTend (up to 64
km) as shown in Fig. 9, or (3) transmit the data to off-board
processing unit through SPI for further analysis.

The Computational MCU: An ARM Cortex TMS570LS

(a) XBee (b) Xstream

Fig. 9. Wireless Communication Units

Fig. 10. High Computational Unit

Fig. 11. Experimental Setup Showing PACE Metal Water Pipe

high-performance 32-bit MCU was selected for data process-
ing and analysis with 1MB flash with ECC, and 160 KB RAM
with a fast clock rate of 140 MHz, shown in Fig. 10. The
MCU is equipped with three multi-buffered Serial Peripheral
Interface (mibSPI) for communicating with the aggregation
node. The MCU draws 10mA in sleep mode and 220mA in
active mode. Operation of the MCU will be under control
of the aggregation node, where sleep, wake-up, and data
exchange commands will be communicated through SPI.

B. Field Deployment

The types of water pipelines that our system can monitor
may be pressurized vs. gravity pulled; buried underground vs.
above ground; accessible in a manhole, a pump station, a vault,
or along another manmade structure such as a bridge; with
availability of utility power, energy harvesting, or battery. For
the purpose of this study, we analyzed the data collected at
the Pacific Advanced Civil Engineering (PACE) firm, located
in Santa Ana, CA, USA. We installed the accelerometers on
the exterior of the pipes without invasive modifications to
the pipes. The installation was relatively easy, as it entailed
mainly gluing the sensor (in our case, the sensing node) to the
pipe surface with a hot glue gun without compromising the
structural integrity of the pipe.

Rupture was simulated by opening a control valve of a
metal pipeline system. As shown in Fig. 11, most parts of
the pipe were underground but the instrumented section was
above ground.

A pressure gauge had already been installed in this section,
which enabled us to correlate vibration with pressure change.
Three sensing nodes were deployed at

i) upstream 7m away from the control valve,



Fig. 12. Acceleration data during rupture emulation test

ii) upstream near the control valve, and
iii) downstream near the control valve.
The sensing node measured the acceleration change in vertical
direction. The sampling frequency was set to 1 ksps. The
Nyquist frequency (500Hz) was thought to be enough to
cover dominant frequency ranges of metal pipes. Three rupture
emulations took place during this deployment.

VII. RESULTS AND ANALYSIS

As mentioned in Section V, the system runs in two stages:
threshold/median estimation and embedded damage detection.
We analyzed the data collected through 24 hours operation to
estimate the threshold and median values and to populate the
database. The estimated values were tested against the data
obtained from running rupture emulation tests. The test took
place at the PACE site where three rupture emulations took
place during a 10-hour operation period, as shwon in Fig. 12.
In this section, we analyze the threshold/median estimation
results, damage detection results, energy consumption savings,
and present the model accuracy.

A. Threshold/median estimation

Through monitoring and analyzing the data collected during
normal operation for a 24-hour period, we recorded the
following observations:
• As shown in Fig. 13, the variation of the threshold val-

ues were hardly affected by variable working conditions
(operating pumps, heavy usage, etc) and street activities
(passing cars, etc) throughout the day. The variations in
the threshold values were less than 5% (compared to
22% variance in median values). We can safely select one
threshold value that will be suitable for the preliminary
threshold violation detection throughout the day.

• The median estimation was more sensitive to varying
working condition and time of the day than threshold
values, Fig. 14.
By the end of this stage, we have selected an optimal
threshold value and several time-stamped median values,

Fig. 13. Variation of threshold values with operation conditions
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Fig. 14. Variation of median with working conditions

each corresponds to specific time of the day, to be
used in the on-time event detection. Relaxing the time
dependency of the selected threshold values saved energy
and memory in the sensing tier. We needed to store
one value in the threshold detection unit that will be
used throughout the day as opposed to storing several
values corresponding to different times of the day. It also
eliminated the need to periodically wake-up the sensing
node to update the reference threshold.
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Fig. 15. Median values comparison
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Fig. 16. Hybrid event detector accuracy

Fig. 17. Current consumption by various units in the system

B. Damage Detection Results and Model Accuracy

The estimated threshold value was used to trigger sampling
by the sensing unit once a deviation from threshold was
detected. The preliminary threshold detection triggered events
in 26% of the data. The system estimated the median of
the collected samples and the values were compared to the
corresponding time-stamped median stored in the aggregation
tier. Fig. 15 shows the variation of median values with working
condition. The median-based detection confirmed the events
on 16% of the data. At the end of the rupture emulation
test, all rupture events were detected successfully. The system
achieved a 100% sensitivity and a 98% specificity. The total
analysis is shown in Fig. 16.

C. Energy Consumption

One of the main problems in our previous implementation
was the high energy consumption of the system. The high
sampling rate by the sensing unit, ADC operation, and
Wi-Fi transmission were the main causes behind the high
energy consumption. As seen in Fig 17, the original system
consumed about 380 mA at 12 V, representing a power
supply requirement of 4.56 W while active (both sensing and
aggregation units running). The sensing unit alone required
2.4 W while active, which represent over 52% of the total
power consumption (200 mA at 12 V). In reality, if we
exclude sudden catastrophic events (such as earthquakes or
accidental drilling), any changes to the state of the pipes
will take place over weeks, months or even years, which
justifies keeping most of the components in the monitoring
system OFF or in SLEEP mode most the time, while keeping
the threshold detection unit ON to continuously monitor the

Fig. 18. Energy consumption comparison

pipes at all times. The threshold detection unit consumes as
low as 400 µA at 2.5 V, requiring a power supply of 1 mW.
Theoretically, and to put all this into context, in the original
PipeTECT system a marine battery with a capacity of 300Ah
at 12 V lasted less than 30 days, in the best scenarios, the
same battery can last over 80 years using our proposed design.

We applied further analysis to validate the power efficiency
of the proposed design while considering rupture events and
abnormal activities using the data obtained from the PACE
rupture emulation test. During the experiment, the original
system consumed 578 J to sample and transmit over 3M
samples of data. while it consumes 148 J if we activated the
threshold detection unit and applied the threshold detection
algorithm resulting in 74% of savings. Fully applying the
hybrid detection algorithm resulted in 84% of savings, as seen
in Fig. 18. Although the addition of the high computational
unit with median analysis achieved only 10% extra saving in
energy consumption over applying the threshold detection, it
resulted in minimizing false positive (which may trigger data
collection and transmission by the aggregator for false events)
and thus improved the systems’ specificity from 86% to 98%.

D. Real-Time Requirements

One critical aspect on our design was to make sure the
system is capable of reporting rupture events in real-time. The
response time to events had to be fully tested and validated.
To illustrate the timing evaluation, consider an operational
scenario where the sensing tier is triggered to collect a raw
time-history record of 4096 points:

• The event detection in the threshold unit takes 700 ms to
detect first event and trigger an interrupt to wake-up the
sensing node.

• The sensing node need 100 ms to wake-up and start all
its components (ADC, CAN,etc), at the same time it will
create an interrupt to wake-up the aggregator unit.



• Aggregator unit takes less than 1µs to start its micro-
controller and 50 ms to initialize the WiFi module.

• The sensing unit samples at a rate of 1000 samples/sec, to
collect a time-history of 4096 samples it needs 4.096 sec.
It starts transmitting the data directly to the aggregator
through CAN interface, the CAN interface has a trans-
mission rate of up to 1Mbps (each sample produced by
the A/D converter is represented by 16 bit, 4096 samples
results in 65,536 bits).

• Running local analysis on 4096 samples at the aggregator
tier took 50ms

• Transmitting 65,536 bits back to the back-end server takes
142 ms (WiFi transmit at a rate of 460,800 bits/sec).

The total response and report time needed for the first
package to reach the back-end server is less than 6 sec
(700+100+4096+50+142=5138 ms).

VIII. CONCLUSION

This paper introduces an approach to monitoring water
pipelines in real-time and detecting rupture events. The sys-
tem combines a hybrid adaptive detection algorithm with a
cascaded wake-up hierarchy to minimize energy consumption
without sacrificing the sensitivity or specificity of the detected
events. It was found that alternating between ON, OFF and
SLEEP mode, in the sensing tiers, and suppress transmission
can achieve more than 80% savings in energy consumption.
The lower energy consumption resulted from taking advantage
of sleep mode that was applied to all but the threshold
detection unit. We managed to allow the system to fully
operate only when a preliminary event detection was triggered.
In addition we successfully applied an adaptive sampling rate,
where sampling at a higher rate was only initiated when a
threshold violation was detected. A hybrid event detection al-
gorithm was implemented on a low-power threshold-hardware-
based detector and a high-performance processing unit in the
sensing and aggregator tiers, respectively. We also adapted
an aggressive approach to save energy and prolong battery
lifetime by allowing transmission of data only when an event
was confirmed by the statistical based event detector. Our
preliminary evaluations gave promising results where we were
able to detect 3 true rupture emulated events that took place
during 12 hrs of normal operation. Our evaluation has achieved
a high sensitivity of 100% and a satisfying specificity of 98%.
Our ongoing work entails incorporating fault tolerance in our

sensing system. For future work, we plan to add an emergency
recovery scheme in order to recover and eliminate the single
point of failure in the system.
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