
EcoDAQ: A Case Study of a Densely Distributed Real-Time System for
High Data Rate Wireless Data Acquisition

Chong-Jing Chen1 Pai H. Chou1,2

1Center for Embedded Computer Systems 2Department of Computer Science
Univ. of California, Irivne, CA 92697, USA National Tsing Hua Univ., Hsinchu, Taiwan

{chongji, phchou}@uci.edu

Abstract

Densely distributed wireless real-time system must per-
form communication scheduling and protocols in addition
to task scheduling to achieve schedulability and reliable
communication. While many wireless sensor networks are
densely distributed, they assume low duty cycling and trivial
data packet rates, and they cannot handle many real-world
applications.

To highlight these design issues, this paper presents a
case study with EcoDAQ, a wireless data acquisition sys-
tem with 50 sensor nodes streaming real-time data over the
same frequency channel. To achieve reliable communica-
tion, we define a pulling protocol that minimizes node com-
plexity while guaranteeing collision freedom on a given fre-
quency channel. Our case study illustrates the impact of
communication requirements on the rest of the systems in-
cluding bus and processing speeds. Experimental results
show that our monitoring station can sustain gathering ac-
celerometer data from up to 50 nodes in one square meter
area at up to 15,000 samples per second with minimal la-
tency and show very high expandability, flexibility and reli-
ability.

1. Introduction

One of the most important trends in real-time and em-
bedded systems is the combination of miniaturization and
wireless connectivity. However, many researchers have fo-
cused on applications that require only occasional, very
low-bandwidth communication. This assumption is nec-
essary in order to support the relatively high overhead in-
curred by the network protocol, the medium access control
(MAC) protocol, and limited battery life. Unfortunately,
many real-world applications do not match some of these
assumptions. The data streams might require much higher
bandwidth, on the order of hundreds of samples per second

per node, and low latency, on the order of hundreds of mil-
liseconds. For instance, in biomedical applications, an elec-
troencephalogram (EEG) or an electrocardiogram (ECG)
system can easily require five to ten nodes for each patient,
and each node typically requires over 200 samples per sec-
ond [8, 7]. It is not uncommon for other vital sign monitors
also to be attached to a patient, and several patients may
share the same room. The density of deployment may be as
high as 50 to 100 nodes in a small area.

A critical issue in such real-time systems is the wireless
communication protocol. All nodes must utilize the avail-
able bandwidth effectively. Existing solutions are often di-
vided into CSMA and TDMA styles. CSMA, as assumed by
the popular IEEE 802.15.4, is efficient when the utilization
is low, but the probability of collision increases rapidly as
utilization increases [20, 13]. TDMA, popular with wired
real-time communication, has been adopted by WSNs but
primarily to save power by reducing idle-listening time of
low duty-cycle communication. Unfortunately, TDMA in-
curs time synchronization cost, and lost packets still must be
handled separately. Hybrid schemes attempt to combine the
best features of both approaches, though they have mostly
been limited to simulations or controlled environments with
little or no loss packets.

To highlight design issues in these densely distributed,
wireless-enabled real-time systems with non-trivial data
rates, we propose EcoDAQ. Our protocol has the property
of intra-network collision freedom, low complexity, and re-
quiring very small code and RAM sizes. Furthermore, the
low resource demand of our protocol makes it possible to
build ultra-compact, ultra-wearable, ultra-low-power sys-
tems that can be deployed very densely.

The majority of WSN works choose the “push” style of
communication, where data is actively transmitted by the
sensor nodes back to the host, whether TDMA or CSMA
is used. The alternative style as advocated by this paper is
the “pulling” style, or the thin-server, fat-client organiza-
tion, where the nodes are passive and the host actively pulls

1

data from them. By moving most of the complexity from
the node to the host, it also enables interactive debugging
over a wireless link [19]. The nodes only need to be im-
plemented the necessary mechanisms, while the host can
implement a variety of coordination policies. An example
of pulling style communication over TDMA was developed
for a dance ensemble application [6]. However, it also in-
herited the complexity of slot scheduling and time synchro-
nization of TDMA style protocols.

One popular standard, Bluetooth, has higher specified
bandwidth, but its high complexity, relatively high power
consumption, and low scalability make it difficult to adapt
for sensor networks [17, 1, 7]. DESYNC [9] targets high
data rate applications with a self-organizing slotting pro-
tocol. They build a cooperative slot adjustment scheme
on the top of a CSMA style MAC, where each node reg-
ularly adjusts its own slot time towards the most evenly
distributed slot time based on the firing times of its phase
neighbors. It is of low complexity and can achieve high
utilization of bandwidth. Unfortunately, this protocol does
not address the hidden terminals problem, and it becomes
unstable when the packet loss rate is high. Directed Dif-
fusion [10] is a request/reply model, but it works at the
routing layer. Our approach solves issues above and has
the property of collision freedom, very low complexity and
high scalability without complicated time synchronization.

2. System Description

This section describes the hardware, software, and the
wireless network of EcoDAQ in more details.

2.1 Hardware and Software

Sensor Node: We use Eco [14, 3], an ultra-compact, self-
contained sensor node shown in Figure 1(a). It is
only 1 cm3 in volume including the MCU, RF, an-
tenna, and sensor devices. We program Eco firmware
to run on “bare metal,” i.e., without an operating sys-
tem or other runtime support. The code size for basic
routines to drive the sensor node is around 1KB. Al-
though TinyOS [16] is commonly used by other sensor
platforms, the fundamental code space for TinyOS is
around 3.5KB, which is too large for Eco.

Base Station: We built a Fast Ethernet base station by con-
necting a Freescale DEMO9SNE64 evaluation board
[4] to a transceiver module. The evaluation board is
based on the Freescale 16-bit MC9S12NE64 MCU.
The TCP/IP stack is provided by the Metrowerks
CodeWarrior [2].

Radio: EcoDAQ’s base station uses the Nordic nRF24L01
transceiver. It is compatible with the Nordic nRF24E1

(a) (b)

Figure 1. EcoDAQ System Components. (a)
Eco on an index finger (b) Freescale base sta-
tion

(a) (b)

(c)

Figure 2. Experimental System (a)(b) 50 ac-
tive Ecos on a poster board (c) Screenshot of
real-time activities of 50 sensors

integrated transceiver and MCU on Eco at 1Mbps
speed mode. Its MAC includes hardware for CRC cal-
culation and checking.

Host: A personal computer equipped with Windows XP
and a 20-inch LCD monitor acts as the monitor station.
The host computer controls wireless sensor nodes by a
graphical user interface that displays the real-time data
of all 50 sensor nodes. All Programs are written in
Python [5] with the Tkinter tool kit.

2.2. Wireless Network

Fig. 2 shows the EcoDAQ wireless network. It consists
of 50 Eco nodes in a star topology. Each node transmits a
stream of data over the same frequency channel wirelessly
to the base station connected to the host computer over Fast
Ethernet. To run EcoDAQ, we first assign a unique software
address to each node from 0 to 49. Next, we turn on the base
station and the sensor nodes, and the host starts collecting

2

Figure 3. Steps of the EcoDAQ Protocol.

data from all 50 Eco nodes. The next section describes the
communication protocol.

3. Communication Protocol

Our protocol follows pulling style. A light-weight script-
ing server inside each sensor node parses commands sent by
the host. This may appear to generate extra pulling traffic,
but it can be structured in a very efficient way while at the
same time minimizing complexity on the sensor node. Fig-
ure 3 shows the steps of the communication protocol. The
following paragraphs explains these steps.

1. The host issues a command packet when it wants data
from a sensor node. The ID field in the command
packet is X.

2. The base station parsers the command packet sent by
the host and then broadcasts the command packet to all
sensor nodes.

3. The sensor node whose ID field is equal to X will re-
spond to the packet by transmitting sensing data back
to the base station.

4. The base station will forward the response packet it
receives from the wireless interface to the host.

If the host does not receive a reply from a sensor node,
then it simply pulls again after a predefined timeout pe-
riod, whether the previous pull or the reply message was
lost. Note that the sensor nodes need not perform time
synchronization or any wireless bus arbitration, since the
host is assumed to have plenty of resources and processing
power to perform communication scheduling, and the nodes
are assumed to react within a known time bound. With a
collision-free protocol, the system can save some energy for
retransmission. The pulling overhead, which effectively in-
cludes acknowledgment, can be further amortized several

MCUMCUSensorSensor HostHost

Wireless: 1Mbps
Wired: 100Mbps

528us1~2ms 17 us

AntAnt

Bus:1Mbps

b usa us 1ms c us

Figure 4. EcoDAQ Performance Estimation.

ways. First is to have a single pulling message over a whole
group of sensor nodes, each of which would reply with a
different time offset. Second is to reply more data on each
pull, though at the expense of longer latency. In either case,
section 4.4 shows that the footprint for MAC and retrans-
mission protocol in RAM and ROM can be truly minimized.

4. Analysis and Experimental Results

Our metrics include wireless data throughput and the
code size. What the user is ultimately concerned with is
the end-to-end throughput, but for us to identify the bot-
tleneck, we also analyze the performance in each stage of
the system, as shown in Fig. 4. This section first presents
throughput results by varying (1) the bus on the base sta-
tion and (2) the number of reply packets per pull. Then, we
present the code size for the runtime support.

4.1. Base Station Performance

The base station is potentially the bottleneck, as it
bridges between 50 sensor nodes on a wireless channel and
the host via the Fast Ethernet interface. This subsection an-
alyzes the effect of base station performance on the overall
system. We measure and analyze the timing for the simplest
protocol that entails a single pull by the host and a single re-
ply from the node.

4.1.1 Fast Ethernet

The size of data payload at application layer is 27 bytes.
Taking into account all the headers for a Fast Ethernet
packet, the total packet length will be 105 bytes. So the
total time spent on the Fast Ethernet cable is around 17 µs,
without any MAC processing time.

4.1.2 Radio Interface

The transceiver is connected to the base station via a bus and
controlled by commands sent by the base station. The size
of data payload is 27 bytes and all the commands needed to

3

38%

100%

124%

140%

149%

0%

20%

40%

60%

80%

100%

120%

140%

160%

GPIO SPI: 1.25MHz SPI: 2.5MHz SPI: 6.25MHz SPI: 12.5MHz

Performance (% base on SPI: 1.25MHz)

Figure 5. Bus Implementation vs. Perfor-
mance.

control the transceiver are around 30 bytes. We consider the
waiting time between commands and assume the bus speed
is 1Mhz, then the estimated time spent on the radio interface
is around 1ms.

The radio interface can be implemented with either gen-
eral purpose I/O (GPIO) in software or SPI in hardware. As
shown in Fig. 5, the end-to-end data rate improvement is
2.5× faster while setting the SPI clock speed at 1.25Mhz.

Furthermore, the clock speed of the SPI bus on the
base station’s MCU can be configured to be the 25MHz
core speed divided by 2, 4, 10, or 20, which translate into
12.5MHz, 6.25MHz, 2.5MHz, and 1.25MHz respectively.
The SPI bus clock speed will affect the system performance.
Fig. 5 shows the end-to-end throughput over these differ-
ent SPI speeds. Note that doubling the SPI speed from
1.25MHz to 2.5MHz results in a 24% increase in through-
put; 5× SPI speed to 6.25MHz results in 40% through-
put increase. At the maximum SPI speed of 12.5MHz, the
throughput is 49% over the baseline. This shows dimin-
ishing increase of throughput for SPI speed over 6.25MHz,
and we can infer that there exists a different bottleneck else-
where in the system.

4.1.3 Timing Breakdown

We use the following symbols for denoting the various esti-
mated processing times:

symbol (µs) component
a wireless transceiver
b MCU on base station
c host

The total packet length for the wireless interface is 33
bytes. It takes 264 µs to finish one-way wireless transmis-
sion, and thus the total time spent on wireless transmission

500
Latency ms

375
250
125

0

Figure 6. Performance Improvement via Mul-
tiple Replies. Circles: Aggregated payload
bandwidth by multiple replies; Triangles: Re-
sponse time for multiples replies.

is 528 µs. In our experiment, it takes 1 to 2 ms for a sensor
node to process data. So, the total waiting time for a host to
receive a data packet after sending a command to a sensor
node is between (2545+a+b+c) µs and (3545+a+b+c)
µs. It is difficult to predict the processing times for the wire-
less transceiver, the MCU on the base station, and the host.
Without consider those processing times, the minimal wait-
ing time for one data packet is between 2545 µs and 3545 µs.
The useful sensing data is only 25 bytes out of 27 bytes data
payload. Assuming the scenario of one reply packet per pull
command per node, the upper bound on the throughput of
the data payload is between 9823 bytes/s and 7052 bytes/s.
The throughput can be improved by having the node send
multiple reply packets in response to each pull.

4.2. Multiple Replies

One downside with pulling style protocols is the over-
head of the pulling message, which may be amortized by in-
creasing the number of reply messages in response to each
pull. However, this number is limited by several factors:
the latency constraint, each node’s buffer size in relation
to the throughput, and the expected packet loss rate. Fig.
6 shows the 50-node aggregated payload bandwidth han-
dled by one host in a highly controlled environment with
no packet loss in the air. As the throughput increases over
the number of reply packets, Fig. 6 shows that the packet
round trip time increases linearly. The system archives 15.8
Kbytes/s throughput for 20 reply packets per pull, but at the
same time it would take around 1.7 seconds to pull 20 sens-
ing packets of 25 bytes of payload each from all of 50 sensor
nodes. This latency may be too long for certain applications
such as EEG, ECG, or interactive dance.

4.3. Performance Comparison

We measure the actual timing of each step in EcoDAQ
using an oscilloscope. Fig. 7 shows the measured timing
chart for EcoDAQ’s round-trip communication. We use this

4

117

200

560

406

2230

406

150

140

300

117

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1.Ethernet Delay + Network API 2.BS Parser UDP Packet 3. BS Tx()
4.Wireless Transmission Delay 5.ECO Processing Time 6.Wireless Transmission Delay
7.BS Rx() 8. BS Decoding Routine 9.BS Send UDP Time
10.Ethernet Delay + Network API

Figure 7. Measured timing of EcoDAQ’s round-trip communication

timing chart to estimate the maximum system performance
with ideal TDMA MAC. We also use nctuns [18] to simu-
late CSMA style MAC for comparison.

For the performance estimation of TDMA style system,
we assume each TDMA frame has 101 fixed slot times. One
slot time for global time synchronization, 50 slot times for
50 sensor nodes to transmit sensing data, and 50 slot times
for the base station to send back an acknowledgment. To-
tally it takes around 2 ms for an Eco node to execute rou-
tines for sensing and sending data packet. So, we assume
each TDMA slot time is 2 ms, and all 50 sensor nodes will
use their own time slots to send data.

In CSMA scenario, we assume all 50 sensor nodes send-
ing data with their best efforts as assumed by DESYNC
[9], and we measure the data payload throughput on the
host. Both TDMA and CSMA systems will use ACK for
reliable wireless transmission, where the receiver acknowl-
edges every packet. All sensor nodes transmit 27 bytes
of data payload per packet at 1 Mbps wireless speed, and
all of them can hear each other. As shown in Table 1, the
CSMA style system has the worst performance under high
data rate scenario due to wireless contention and collision.
EcoDAQ’s performance is 14% below the system with ideal
TDMA MAC, which is also collision-free. However, the
main drawback of TDMA is the dynamic joining and leav-
ing of sensor nodes and the assignment of multiple time
slots to one sensor node. EcoDAQ’s protocol does not incur
this overhead and thus the complexity on the sensor nodes
can be kept very low.

4.4. Footprint Comparison

A main advantage with EcoDAQ is that it moves bus ar-
bitration and retransmission routines from the sensor nodes
to the base station and the host. This mechanism enables
the sensor nodes to be kept minimally simple with only the
essential mechanisms. The firmware footprint in the EEP-
ROM is also minimized.

Table 2 compares the size requirements for firmware be-
tween EcoDAQ, TDMA and CSMA style MAC. The binary

Table 1. EcoDAQ vs. TDMA and CSMA .
Scheme EcoDAQ TDMA CSMA
Data Payload Throughput
(Bytes/s)

5837 6682 3707

Packet Collision & Drop-
ping

No No Yes

Dynamic Nodes Joining &
Leaving

Easy Limited Easy

Dynamic Multiple Slot
Assignment

Yes,
through-
put goes up
to 15.8 KB/s

None Yes

Table 2. Firmware sizes for EcoDAQ, TDMA,
and CSMA style MAC.

Scheme Code Size
EcoDAQ with MAC Only 14 Bytes
Regular EcoDAQ 759 Bytes
Eco Basic Routines 1096 Bytes
CSMA Style B-MAC 3KB ∼ 4.5KB [15]
TDMA Style MAC 17.5 KB ∼ 21.3KB [11]

size of the basic routines for an Eco is 1096 bytes. We im-
plement a parser to enable execution of different types of
commands from the host, e.g., to send back the values of
certain parameters for debugging, to change wireless chan-
nel frequency on the fly, or to put an Eco in sleeping mode
for a certain amount of time. The command dispatcher is
written in C and occupies 759 bytes on top of the basic
routines, for a total of 1885 bytes. If a user just wants
the simplest MAC layer functionality, the code is only 14
bytes on top of the basic routines, and the total code size
is down to 1100 bytes. Although the ideal TDMA protocol
has 14% higher throughput, it would occupy 17–21KB of
code, which unfortunately is an order of magnitude larger
than our code and is five times the size of Eco’s total EEP-
ROM capacity [11].

5

5. Conclusion and Future Work

We describe a case study with EcoDAQ, a wireless sen-
sor network with high expansibility and flexibility. With
fifty sensor nodes deployed within a 1m2 area, the system
can sustain the data payload bandwidth as high as 15.8 KB/s
fully acknowledged without intra-network wireless colli-
sion. This translates into around 15,800 samples per sec-
ond with either uncompressed single-byte samples or with
simple compression. The EEPROM footprint of the MAC
protocol is light weight and can be as small as 14 bytes only.
Post-deployment changes can be done on the host side with-
out complicated protocols for joining or leaving.

For future work, we plan to continue identifying and
eliminating the remaining bottlenecks on the nodes and base
station to achieve higher aggregate or single-stream band-
width. One major enhancement is the use of multiple base
stations to handle much larger scale networks after we satu-
rate the bandwidth on one channel. Going to multiple base
stations would require development of hand-off protocols
and use of multiple frequencies. This time, the Fast Ether-
net uplink may become the bottleneck, thereby necessitat-
ing integration of multiple hosts. Additional features such
as hardware ACK and buffering are likely to enable new
protocols to be designed. On the host side, display of real-
time sensing data is also being scaled up to not only a single
computer and a single screen but actually to giant tiled dis-
play systems driven by a cluster of workstations [12].

6. Acknowledgment

The authors would like to thank Seung-Mok Yoo, Jin-
sik Kim, Qiang Xie, Prof. Stephen Jenks, and Dr. Sungjin
Kim for their assistance with this work. This research
project is sponsored in part by the National Science Foun-
dation CAREER Grant CNS-0448668, UC Discovery Grant
itl-com05-10154, the National Science Council (Taiwan)
Grant NSC 96-2218-E-007-009, and Ministry of Economy
(Taiwan) Grant 96-EC-17-A-04-S1-044.

References

[1] Bluetooth technology. http://www.bluetooth.
com/bluetooth/.

[2] Codewarrior development tools. http://www.
freescale.com/webapp/sps/site/homepage.
jsp?nodeId=012726.

[3] Ecomote. http://www.ecomote.net/.
[4] Freescale semiconductor. http://www.freescale.com/.
[5] Python programming language. http://www.python.org/.
[6] R. Aylward, S. D. Lovell, and J. A. Paradiso. A compact,

wireless, wearable sensor network for interactive dance en-
sembles. In BSN ’06: Proceedings of the International

Workshop on Wearable and Implantable Body Sensor Net-
works, pages 65–70, Washington, DC, USA, 2006. IEEE
Computer Society.

[7] N. Chevrollier and N. Golmie. On the use of wireless net-
work technologies in healthcare environments. Proceedings
of the fifth IEEE workshop on Applications and Services in
Wireless Networks, pages 147–152, 2005.

[8] D. Cypher, N. Chevrollier, N. Montavont, and N. Golmie.
Prevailing over wires in healthcare environments: bene-
fits and challenges. Communications Magazine, IEEE,
44(4):56–63, April 2006.

[9] J. Degesys, I. Rose, A. Patel, and R. Nagpal. Desync: self-
organizing desynchronization and tdma on wireless sensor
networks. In IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks,
pages 11–20, New York, NY, USA, 2007. ACM.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In MOBICOM, pages 56–67, 2000.

[11] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A
component-based architecture for power-efficient media ac-
cess control in wireless sensor networks. In SenSys ’07:
Proceedings of the 5th international conference on Embed-
ded networked sensor systems, pages 59–72, New York, NY,
USA, 2007. ACM.

[12] F. Kuester, J.-L. Gaudiot, T. C. Hutchinson, B. Imam,
S. Jenks, S. G. Potkin, S. A. Ross, S. Sorooshian, D. To-
bias, B. Tromberg, F. J. Wessel, and C. Zender. Hiperwall:
A high-performance visualization system for collaborative
earth system sciences. 2004.

[13] J. V. Misic, S. Shafi, and V. B. Misic. The impact of MAC
parameters on the performance of 802.15.4 PAN. Ad Hoc
Networks, 3(5):509–528, 2005.

[14] C. Park and P. H. Chou. Eco: Ultra-wearable and expandable
wireless sensor platform. In Third International Workshop
on Body Sensor Networks (BSN’06), April 2006.

[15] J. Polastre, J. L. Hill, and D. E. Culler. Versatile low
power media access for wireless sensor networks. In J. A.
Stankovic, A. Arora, and R. Govindan, editors, Proceed-
ings of the 2nd International Conference on Embedded Net-
worked Sensor Systems, SenSys 2004, Baltimore, MD, USA,
November 3-5, 2004, pages 95–107. ACM, 2004.

[16] TinyOS: An open-source OS for the networked sensor
regime. http://www.tinyos.net.

[17] J. Vlimki. Bluetooth and ad hoc networking, May 2002.
[18] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M.

Yang, C. C. Chiou, and C. C. Lin. The design and imple-
mentation of the NCTUns 1.0 network simulator. Computer
Networks, 42(2):175–197, 2003.

[19] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,
J. Jeong, J. Hui, P. Dutta, and D. Culler. Marionette: using
rpc for interactive development and debugging of wireless
embedded networks. In IPSN ’06: Proceedings of the fifth
international conference on Information processing in sen-
sor networks, pages 416–423, New York, NY, USA, 2006.
ACM.

[20] J. Zheng and M. J. Lee. A Comprehensive Performance
Study of IEEE 802.15.4. IEEE Press Book, 2004.

6

