
IEEE DESIGN AND TEST OF COMPUTERS, VOL. V, NO. N, AUGUST 2013 1

Middleware for IoT-Cloud Integration
across Application Domains

Chengjia Huo, Ting-Chou Chien, and Pai H. Chou, Member, IEEE

Abstract—Profile-based protocols such as Bluetooth 4.0 Low
Energy (BLE) Technology have enabled very low-power devices to
efficiently participate across multiple application domains in the
Internet of Things (IoT). We propose a middleware layer called
rimware to enable today’s profile-based IoT nodes to realize the
full potential of inter-application participation. First, the nodes
need to be able to establish authenticated, secure connections to
the cloud through trusted gateways using an adapter structure
when the smartphone or tablet is not available. Second, a
knowledge base in the cloud is needed to establish mapping
between profiles on the device side and application semantics on
the cloud side. Results show our rimware to provide a modular,
extensible structure for integration across three applications
while incurring minimal code size and communication overhead
on BLE devices.

Index Terms—Middleware, Rimware, Bluetooth Smart, In-
ternet of Things, Cloud Computing, Low Power, Management,
Wireless Sensor Networks, Sensor Modeling, Security.

I. INTRODUCTION

The Internet of Things (IoT) has been receiving growing
attention in recent years as the next wave of computing
revolution made possible by low-cost, miniature low-power
systems-on-chip (SoC) with computing and communication
capabilities. The term IoT could take on the narrower meaning
of an IP (Internet Protocol) network of relatively simple
devices; however, the broader sense of IoT refers to devices
that interact across application domains. In contrast, wireless
sensor networks (WSN) are designed for a single purpose.
What makes it possible is the use of profiles in modern
communication protocols.

A. Profile-Based Protocols for Cross-Application Devices

A profile-based protocol is one whose message formats
are grouped by the type of service. For example, the human
interface device (HID) profile in Bluetooth is for mouse,
keyboard, or a joystick; the advanced metering infrastructure
(AMI) profile in ZigBee is for on-demand or periodic reading
of a smart meter, real-time pricing, and for temperature alerts.
A profile enables cross-vendor interoperability, and more im-
portantly, a device may also implement multiple profiles. BLE
devices can dynamically discover each other’s capabilities in
terms of what profiles they implement. This is what allows a
BLE device to participate in multiple applications efficiently
without having to know in advance the higher-level purpose

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of California, Irvine, CA 92617, USA. email:
phchou@uci.edu.

Manuscript received August 31, 2013; revised December 27, 2013.

of the application. Our proposed work will take care of the
mapping between the profiles and the application semantics.

B. Connecting BLE and Cloud Computing via Smartmobiles

Bluetooth 4.0 Low Energy Technology (BLE) has gained
wide popularity in recent years as the fastest growing wireless
protocol for IoT, thanks to the very low power consumption
and direct compatibility with smartmobiles (i.e., smartphones
or tablets) without using a dongle or gateway. Its low average-
power consumption enables a BLE device to last for one year
on a CR2032 coin-cell battery. Today, smartmobiles serve as
the gateway between BLE devices and the corresponding cloud
backends to form a powerful combination.

Let us examine three seemingly distinct applications. First,
a proximity tag (PT) is a BLE device adhered on every-
day objects such as key chains, purses, wallets, pets, remote
controls, and other commonly misplaced items. They are
paired with the owner’s smartphone, which logs time and
location stamps. To find a lost item, the smartphone scans the
item’s tag within its RF range or inspect its log for the time
and location last seen. A cloud backend enables different users
to help each other find lost items. Second, a heart rate monitor
(HRM) for sports and fitness also pairs with the owner’s
smartphone to upload the user’s activity data to a cloud that
then disseminates the user’s achievements on social networks.
The third is smart lighting control (SL), where light switches
are equipped with BLE devices for wireless control from not
only smartphones but also occupancy sensors, other macro-
buttons, or timers. The devices may connect to the cloud via
a smartphone or a set-top box acting as a gateway.

Profiles enable BLE devices to cross application boundaries
at both device level and cloud level. For example, an HRM,
a smartphone, and a smart watch are all capable of serving
as PTs if they implement the PT profile. A BLE light switch
should also be able to help finding lost items by acting as a
beacon in a PT profile, i.e., by performing scanning, logging,
and uploading PT IDs to the cloud. An HRM, smartphone, or
a PT should also be able to participate in the SL application
by providing user identity upon handling each event for
personalized response.

C. Need for Middleware for IoT-Cloud Integration

While most clouds for IoT provide support for data store
and web API, two major features are still needed for inter-
application integration. First, the devices need support to
be able to establish secure, authenticated, access-controlled
connections to the cloud through alternative gateways when

IEEE DESIGN AND TEST OF COMPUTERS, VOL. V, NO. N, AUGUST 2013 2

the primary one (i.e., smartphone or set-top box) becomes
unavailable. Second, the cloud side needs to be able to model
each device’s capabilities by translating between the BLE pro-
file hierarchy of a device and the web API that it provides. To
accomplish this, we propose a new kind of middleware, called
rimware, that spans the cloud and gateways to collaboratively
provide these two features. The term rimware is coined from
the analogy that the proposed middleware resides in a rim that
wraps the cloud (i.e., cyber space) on the inside and networks
of things (NoTs, in physical space) on the outside. This paper
describes an implementation of rimware called BlueRim to
exploit the specific properties of BLE in achieving cross-
application interoperability of IoT devices.

II. BACKGROUND AND RELATED WORK

Cross-application interoperability of IoT devices can be
supported at both device level and cloud level. This section
provides a background and related work on approaches to date.

A. Device Description for Interoperability

Interoperability across applications at the device level re-
quires devices to be able to identify or describe their own
capabilities at the time they are discovered by another device.
Two ways of achieving this are markup languages and profiles.

1) Markup-Language Descriptions: A general, web-
oriented way to describe the device explicitly is to use a
markup language such as SensorML by OGC’s Sensor Web
Enablement (SWE) initiative [1]. It makes sensor devices dis-
coverable and accessible over the Internet through web service
interfaces by defining the discovery process and describing
the sensor’s capabilities in XML and wrapped as Sensor
Observation Service (SOS), the web service standard from
OGC for publishing on web. In practice, however, devices
need assistance from a translator or an agent such as SOS
[2], SLS [3], or SSA [4] before registering as a service due to
the use of vendor-specific interfaces and resource constraints.
While suitable for connecting sensor networks to the web, it
is too heavyweight for M2M devices. For example, such a PT
may not be able to directly interact with an SL switch unless
a gateway and the respective cloud backends are involved.

2) Profile-Based Protocols: Most low-power RF protocols
for IoT (including Bluetooth, BLE, ZigBee, Z-Wave, ANT+)
use profiles for devices to discover and match their capabili-
ties. In BLE, a profile consists of a set of characteristics, each
of which contains a value and metadata known as descriptors
(e.g., value range, unit of measure, or human-readable text).
Profiles are often standardized for well-established application
classes, such as lighting control, HRM, HID, etc. Turning
on or off a light switch entails changing the corresponding
characteristic value. One profile implemented by all BLE
devices is GATT, or Generic Attribute Profile, which allows
devices to discover each other’s supported profiles with only
a few bytes of data exchange, without having to involve the
gateway or the cloud. Because profile access can be done
locally and in a very energy-efficient way, we believe it
matches the widest range of IoT applications.

TABLE I: Device Capability Description.

Approach Work Described by Device Types

SWE
Mitton [2] SOS Agent all
PULSENet [3] SLS all
SensorSA [4] SSA all

Profile WuKong [5] device self Wu-device
rimware (ours) device self any BLE

TABLE II: Classification of IoT-Cloud Integration.

Work Connection Cloud Domains
Kurschl [7] via gateway single
Rajesh [8] self-enabled single
Hassan [9] via gateway single
Mitton [2] via gateway mult. (archived data)
rimware g.w. or smartphone mult. (data + control)

WuKong [5] defines profiles that are independent of the
transport protocol such as ZigBee, Z-Wave, or Wi-Fi. Profile
enables WuKong-compliant devices (called Wu-devices) to
interoperate and task mapping from a flow-based program. In
case of a device crash, the mapper can re-task it to substitute
devices (i.e., with matching profile). However, certain types
of M2M interaction that require physical-layer compatibility
(e.g., PT) may be more difficult to implement. Table I sum-
marizes the relevant approaches described above.

B. IoT-Cloud Integration

IoT requires devices to be accessible and manageable over
the Internet, which is the de facto way to connect everything
with worldwide accessibility, massive storage and powerful
computation capability. AutoHome [6] uses service-oriented
approaches to make devices accessible as web services, though
its use of cloud is limited. Cloud technology is used by [7]–
[9] for establishing a self-contained sensor network with a
single cloud domain. Multiple cloud domains can be supported
by [2] but for sharing archived data among different clouds
rather than at device level. Table II summarizes the different
approaches for IoT-Cloud integration.

III. OVERVIEW

We envision an enhanced architecture for IoT by introducing
our proposed rimware, a middleware layer that spans the cloud
and the gateway. We assume that a cloud for a given applica-
tion already provides web services for data, configuration, and
commands associated with devices belonging to authenticated
users via gateway processes. Today, that gateway process is
predominantly an app running on a smartphone that logs in to
the user’s account on one side and connects to BLE devices on
the other side. However, this structure limits cross-application
and cross-user interaction. To overcome this problem, we
propose a plug-in structure as part of our rimware on the
gateway device so that it can take over the gateway processes
that run as one or more smartphone apps today with security
features. Another new proposed function is rimware on the
cloud side to capture the device’s capabilities by mapping
between the device profiles and web API. This covers not only
access-controlled reading and writing of data and state on the

IEEE DESIGN AND TEST OF COMPUTERS, VOL. V, NO. N, AUGUST 2013 3

Gateway2�
Application-specific!

cloud1�

Web API�

Gateway1�Node1�

Node2�

Node3�

profile1�
profile2�

profile2�
profile3�

profile1�
profile3�

Application-specific!
cloud2�

Smartphone2�

App1�

App2�

App3�

Smartphone1�

App3�
App2�

App1�

Adapter 3�
Adapter 2�

Adapter 1� Application-specific!
cloud3�

Web API�

Web API�

Knowledge
base�

Data store�

Personal!
Area!
Network�

IP!
Network�

Fig. 1: Overview of rimware

device but also notification of events. This section presents an
overview of the rimware structure to support these two main
features.

A. Overview of Proposed IoT-Gateway-Cloud System

An overview of an IoT-gateway-cloud system running
rimware is shown in Fig. 1. Our rimware has components that
run on both the gateway and the cloud for each application
domain, as shown in the highlighted boxes. The cloud side
is usually assumed to be a cloud-based Software as a Service
(SaaS) application, and our cloud-side rimware components
are deployed on a Platform as a Service (PaaS) such as
OpenShift. The cloud is assumed to provide a REST interface
to the users for accessing uploaded data and controlling or
configuring devices. Web services of service and characteristic
profiles are described in JSON-WSP and provided in JSON
format and exposed as REST interfaces to the users. The next
two subsections briefly describe the standard cloud features
and our rimware layer.

B. Core Components of Cloud

We assume that the core functionality of the application-
specific cloud is implemented by several components. They
can be called the state monitor and data store.

The state monitor consists of a monitoring process, a
database table for storing gateway (which could be a smart-
phone app) information, and a table for tracking the set of
connected devices. It may monitor the state of registered
NoTs by periodically sending requests to all gateways to track
connectivity inside each NoT, or the NoT may actively push
updates to it. In either case, it maintains the status of the
system in terms of the gateways and joined devices.

The data store is cloud-based storage for all sorts of user
data and settings, such as heart rate data with time stamps
and other geo-location data. It is usually implemented with
a database engine. It may be invoked via a web API, by the
state monitor, or by our rimware components.

C. Rimware Components

Rimware components are (1) adapters running on the gate-
way, (2) knowledge base running in the cloud, and (3) access
controller, also running in the cloud.

1) Adapters on Gateway: An adapter running on the gate-
ways acts as the interfacing process between a device and
the cloud. In simple terms, each adapter can substitute the
role of an app running on a user’s smartphone. The gateway
instantiates an adapter for a connected device to make use of
its profiles on one hand and to interact with the cloud side
on the other. A gateway can run multiple adapter instances
that correspond to different users and different applications.
Section IV describes this in more detail.

2) Knowledge Base in the Cloud: The knowledge base is
what maps between BLE profiles and actions in the cloud,
including web API and access to the data store. It imposes
constraints on the BLE profile hierarchy [10] to enable
mapping with the cloud primitives. The constraints define
how a firmware developer uses the BLE profile hierarchy to
describe the required security enforcement policy, the device’s
capabilities, and storing the authentication token. Section V-A
discusses the profile hierarchy and mapping by the knowledge
base in more detail.

3) Access Controller in the Cloud: The access controller
also runs in the cloud alongside the knowledge base to enforce
access control. It handles application-level (rather than device-
level) authentication and provides a token mechanism as
credentials for devices and the cloud sides to talk to each
other in an access-controlled way. Section V-C1 describes this
mechanism. Note that in this paper, we assume the gateway is
trusted. Conceptually, the gateway is part of the rimware and
does not belong to any specific application domain.

IV. GATEWAY

The gateway system serves the purpose of bridging the BLE
devices with the cloud when the smartphone is unavailable
(e.g., turned off or goes out of range). This means it must have
connectivity with the BLE devices downstream, connectivity
with the cloud(s) upstream, and it runs adapter processes
in a plug-in-style architecture to bridge the two sides while
enforcing application-level security policies over the existing
communication channels.

A. Adapter Instantiation

The gateway proactively discovers and connects nearby
BLE devices that are looking for connectivity by advertising
(in BLE sense). The gateway is set up with the same device-
level authentication as a smartphone would by pairing if
necessary. For every connected device, the gateway instantiates
an adapter on the gateway and uses the adapter to operate
on the device’s BLE profiles. From the device’s BLE profile
defined as part of our rimware, the adapter process discovers
the required security policy and applies it on the communi-
cation channel (e.g., SSH) accordingly. It accomplishes this
by looking for a pre-defined service profile which stores
information about the security enforcement approach. If such
a service profile exists, then the adapter initializes a security

IEEE DESIGN AND TEST OF COMPUTERS, VOL. V, NO. N, AUGUST 2013 4

Read WriteRead/WriteRead

Gateway

BLE Sensor Device

security service profile

adapter

characteristic
(type)

characteristic
(shared key)

other service profile

characteristic characteristic

2. encrypt/decrypt
message using
shared key

1. read security
type and shared
key parameters

security
handler

Fig. 2: Example of passing security approach information
using BLE profile

handler based on characteristics under the profile for the
security type.

B. Authentication

Application-level authentication is initiated by devices
against the cloud. As the gateway acts as the conduit, the
purpose of authentication is to check whether the gateway is
a trusted one. In contrast to smartphone apps that authenticate
once and all of its paired devices are transitively authenticated,
the gateway is not responsible for user authentication. This
requires the device and cloud to share a secret, called the
authentication token. Details of how the cloud and device sides
authenticate are found in Section V-C1.

C. Gateway-to-Cloud Interaction

The gateway also maintains an Internet connection with
the knowledge base and access controller in the cloud. An
adapter actually does not have much knowledge about the
application; instead, it it passes the device’s BLE profile
hierarchy information to the knowledge base on the cloud side,
which also sends messages downstream through the adapter to
the BLE devices using BLE profiles. Also, the gateway does
not maintain the security handlers (Section IV-A); instead, it
downloads and updates the security handlers for different types
of security approaches from the cloud side. The advantage is
that the adapters can be kept very lightweight, and that is
exactly the way middleware components should be.

For example, as shown in Fig. 2, the gateway finds in the se-
curity service profile that the device requires a symmetric-key
encryption for exchanging messages. Therefore, the gateway
holds a shared key either by reading the shared key from the
device’s characteristic or passing a self-generated shared key
to it and uses the key to encrypt/decrypt messages against
other service profiles of the device.

Knowledge
Base Record
Knowledge

Base RecordKnowledge
Base Record

Gateway

KB Manager

node

adapter

BLE profile
hierarchy

web
services

translate

cached data

User

result request

authentication
token

BLE profile
hierarchy

ID

security handlers

URL

download

Fig. 3: Structure of Knowledge Base

V. KNOWLEDGE BASE AND ACCESS CONTROLLER

Our middleware on the cloud side is composed of com-
ponents called the knowledge base and access controller
that work with the existing core components called the data
store and state monitor. This section first explains how the
knowledge base (Fig. 3) performs mapping among the web
API, the BLE profiles, data store, and state monitor. Then, we
also show how the access controller interacts with the gateway
and knowledge base to enforce security policies.

A. BLE Profile-based Capability Description

The knowledge base captures the device capabilities in
terms of the BLE profile hierarchy. A characteristic profile,
which corresponds to a single function on the device, is the
basic primitive of a device capability. A characteristic profile
contains a set of descriptors, or metadata, that add meaning to
the characteristic values, such as the unit of temperature, the
minimum or maximum value, integer or floating point, etc.
A device’s capabilities are therefore represented by a set of
characteristic profiles. Each service profile contains a group of
characteristic profiles and therefore represents the functionality
of a component such as a sensor or an actuator. Characteristic
profiles can be classified into status/data, setting/action, and
event characteristic, according to their accessibilities. Our
middleware also defines service profiles for configuration.

1) Status/Data Characteristic: A status/data characteristic
has read accessibility and provides the status of any sensor on
the device or the generated data by the sensor. An example is
one that provides raw readings from a sensor. An operation on
this type of characteristic can be done in a single transaction.

2) Setting/Action Characteristic: A setting/action charac-
teristic has write accessibility and receives setting parameters
or actions commands. An example is one that receives an
on/off signal on an SL device. An operation on this type of
characteristic can also be done in a single transaction.

IEEE DESIGN AND TEST OF COMPUTERS, VOL. V, NO. N, AUGUST 2013 5

3) Event Characteristic: An event characteristic has indica-
tion or notification accessibility. This means the device pushes
a packet upstream when it detects an event. For example, a
blood pressure monitor that takes measurements regularly can
generate a new data packet to notify the host through an event
characteristic. This type of characteristic is not a transactional
operation and needs the host to subscribe on the characteristic
to be notified when any event is triggered.

4) Rimware-Defined Profiles for Configuration: In addition
to capturing device capabilities using BLE profile hierarchy,
rimware also defines additional service profiles for configura-
tion purposes. They cover metadata such as (non-functional)
device information [11], security policy such as crypto keys,
and authentication information including identity and creden-
tials.

B. KB Manager for Profile-to-Web-API Mapping
A characteristic may belong to more than one category

as BLE profile definition [10], allowing a characteristic to
have different accessibilities. The KB Manager wraps each
characteristic profile from the device’s BLE profile hierarchy
as a web service by specifying the characteristic’s UUID,
category and accessibility, and value content. It also attaches
the content in the descriptors of the characteristic as the
description of the web service.

When a user sends a request against any web service,
the KB Manager translates the request into either a data-
store operation or a BLE operation and passes the operation
messages to the device through its adapter on the gateway. For
an event characteristic, due to its specialty on operation, the
KB Manager caches the received indication/notification data
and returns a URL to the web service request by which the data
can be accessed. The KB Manager further groups characteristic
web services that belong to the same service profile and
provides them as a combined web service for each service
profile. The KB Manager maintains these web services in the
device’s Knowledge Base record and exposes the web service
to authorized users to access as well as to further compose the
web services to represent complex functions that the device
does not or cannot provide on its own. In our implementation,
BlueRim, web services of service and characteristic profiles
are described in JSON-WSP and wrapped as JSON-based
REST interfaces to the users.

C. Access Control
Our proposed rimware supports access control to the de-

vices. Access control is built on top of authentication, which
is initiated from the device side. Rimware uses BLE profiles
extensively as a fundamental mechanism for access control.

1) Device-Initiated Authentication: The knowledge base
and the access controller work jointly to support authentica-
tion, as initiated from the device side. For every device that
joins rimware via a gateway, the knowledge base maintains a
unique record for the device indexed by its identity. The record
contains the device’s capability descriptions and authentication
token. The knowledge base is not responsible for storing user
account information, since it is handled by the cloud, rather
than the middleware.

2) Authentication Token: When a device joins rimware for
the first time, the KB Manager asks the gateway to access the
device’s identity from the Device Information service profile
(Section V-A4) and initializes a new KB record for this device
if one does not exist. The authentication token is stored in
the device’s record in the knowledge base and also written
into device’s authentication characteristic profile through the
gateway. The device then uses the token for all other requests
from rimware.

The authentication token is used by the device to check if
the connected gateway is a trusted one. If the device needs to
disconnect from the gateway and later connects back to it or
another gateway, the device will ask the party on the other side
of the new connection to write a token to the authentication
characteristic profile. The new token must match with the
one stored on the device to ensure the new connection is
established to an authorized party before the party is allowed to
access the other (i.e., other than Device Information) service
profiles. This simple authentication mechanism prevents the
information including profile’s hierarchy, and the value of
characteristics from being accessed by a third party instead
of a gateway process from rimware for some special cases
such as roaming.

3) Access Control by Profile Constraining: For a device to
support access control with rimware, the firmware developer
needs to follow some constraints when designing the BLE
profiles. First, the authentication service and characteristic
profiles can only use UUIDs that are defined by rimware
for authentication service. Second, an authentication token
can be initialized only when there is no token stored on the
device, such as when the device join rimware for the first
time, or if the token stored in RAM is lost due to power
outage. Third, before authentication checking is approved, the
firmware should disallow any attempt to access service profiles
other than Device Information, Security Enforcement, and
Authentication. These are relatively simple rules for firmware
designers to follow, and the resulting firmware will have the
necessary mechanisms for supporting access control policies
defined on the cloud side.

VI. CASE STUDY

We present an end-to-end case study of inter-application
interactions of BLE devices using our proposed rimware.
This is a new, powerful feature that has not been available
previously, as integration have been limited to mashup services
at the cloud level. Our case study covers the interactions across
the three applications from the introduction: proximity tags
(PT), heart-rate monitors (HRM), and smart lighting (SL).

A. Smartphone-based Setup

Initially, the devices for all three applications are set up
separately using their respective smartphone apps. The user
would open these apps login to the respective cloud accounts
for each application. The same smartphone is paired (or
otherwise associated without pairing) with the BLE devices
using device-level authentication such as the six-digit passcode
in BLE. Different apps are granted access to talk to these

IEEE DESIGN AND TEST OF COMPUTERS, VOL. V, NO. N, AUGUST 2013 6

devices that support the matching profiles. The data that they
collect are sent through the smartphone app and sent upstream
to the cloud. This is the way BLE-based IoT devices connect
to the cloud.

B. Gateway Setup and Adapter Instantiation

The smartphone setup can be transferred over to a trusted
gateway. The gateway is given the credentials for device-level
authentication (i.e., pairing) so that it can proactively look for
devices to connect when they come in the RF range unpaired.
Note that not all IoT devices are required to connect to the
cloud at all times. For example, a PT may be attached on a
wallet, a remote control, or a pet, while an HRM is usually
worn under the shirt on a person, and they can travel in and
out of the RF range of the smartphone or the gateway. On the
other hand, an SL node is usually stationary. In any case, upon
connecting the device, the gateway instantiates an adapter to
connect the device to the cloud, and then the device initiates
authentication with the cloud.

C. Device to Multiple Clouds

Our rimware supports a device’s participation in multiple
applications. For example, an SL switch can participate in both
the SL and PT applications by implementing the required BLE
profiles. The gateway pairs with the SL node just once but can
support both SL and PT applications by instantiating separate
adapters that share access to the same device. Similarly, the
HRM device can implement both the HRM and PT profiles.
The device initiates authentication by asking the adapter to
obtain and provide an authentication token to the device for
each application to see if the gateway is genuine. If so, it can
continue.

As a light switch, the SL device can interact locally with
other BLE devices such as occupancy sensor, macro buttons,
and other smartphones and tablets, either directly with each
other or indirectly through relay nodes or the gateway. The
SL device may be programmed to log data to the cloud and
accepting control commands downstream via the gateway from
the cloud, all using the SL profile. At the same time, access
control is enforced such that a neighbor’s device within the RF
range of the gateway will not have the proper credentials to
authenticate successfully, even if it would allow the gateway
to pair with it without a passcode.

As a beacon for PTs, the SL switch can discover a PT
in proximity and send the PT’s ID and timestamp upstream
through its PT-cloud adapter to the user’s PT cloud account.
It can also interact with smartphones over the PT profile for
indoor localization but without going through the gateway.
Moreover, the SL switch can actually use the PT profile for
context-aware actions without relying on the PT application.
For example, a macro button can turn on or off a different set
of lights based on the owner of the closest BLE tag (i.e., a
device that implements PT profile). Because the HRM can also
participate in both the HRM and the PT, the macro button can
detect the presence of the HRM, look up the user associated
with the HRM (as permitted by the user explicitly), and maps
it back to the user in the SL space. Then, this enables the

Fig. 4: UI for Web Services (white) and BlueRim Shell
Interface (black)

(a) (b)

Fig. 5: (a) EcoBT Platform for proximity tag and smart
lighting, and (b) BLE Heart-rate Monitor

macro button to look up the user’s device list for turning on
or off and sends the commands to them accordingly.

D. Implementation

Our rimware, called BlueRim, is implemented in Python and
deployed on a private PaaS, though the concepts are applicable
to public cloud technologies. As shown in Fig. 4, a user can
discover a device’s capability from its BLE profile hierarchy
by querying it using the interactive shell interface. In addition,
sensor’s capability is also exposed as web services through
JSON-WSP.

The firmware has been implemented on EcoBT board [12]
for all three applications (PT, HRM, and SL), as shown in
Fig. 5. We also implemented virtual nodes by emulation on
BLE-enabled computers for better observability and control-
lability, but its behavior is identical to that on the board.
It uses the BLE profile hierarchy to declare its requirement
on security and authentication enforcement. In the evaluation,
we use simple symmetric encryption based on AES in mode
CFB for securing the communication channel and use the
authentication token-matching mechanism for authentication
checking against gateway. The code size of each component
is given in Table III. Given that the BLE microcontroller
(CC2540) has 256 KB of code flash and 8 KB of SRAM,
the memory overhead is marginal. Table IV shows the time
on handling initialization of both security and authentication
is 135 ms each, so the impact on the overall performance is
negligible.

VII. CONCLUSION

We have introduced the concept of rimware for the inte-
gration of IoT and the cloud to form a very powerful cyber-

IEEE DESIGN AND TEST OF COMPUTERS, VOL. V, NO. N, AUGUST 2013 7

TABLE III: Code Sizes of Firmware and BlueRim (Gateway
and Cloud) Components

Component Functionality Bytes
Node Security Service Profile 5406
Node Authentication Service Profile 1596
Node Other Profiles 58038

Gateway Adapter 17718
Gateway Overall 62053

Core Security Plugin 2135
Core Authentication Plugin 992
Core Overall 65011

TABLE IV: Initialization Time Evaluation

Service Initialization Time (ms)
Security Service 135
Authentication Service 135

physical system. Our specific implementation, called BlueRim,
can scale from isolated networks of things (NoT) to the global
IoT. Beyond merely scalability, which has been a goal of
wireless sensor networks, we believe that the true power of
IoT is in the ability for the devices to across application
boundaries. Profile-based protocols are primary candidates for
M2M interactions, and BLE has the additional advantage
of the very long battery life. To unleash this potential, our
rimware provides a middleware layer that enables gateway
devices to establish connections between the devices and the
cloud with roaming support while requiring them to prove
their trustworthiness. The cloud side of the middleware is
structured to establish modular mapping among device-level,
cloud-level operations, and web API. The effectiveness of
these fundamental features have been validated in several
real-world applications with different access patterns while
retaining their ability to consume very low power. We believe
that our approach represents an important technology in taking
IoT closer to realizing the full potentials.

REFERENCES

[1] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC R©
Sensor Web Enablement: Overview and High Level Architecture,”
GeoSensor Networks, pp. 175–190, 2008. [Online]. Available: http:
//www.opengeospatial.org/ogc/markets-technologies/swe

[2] N. Mitton, S. Papavassiliou, A. Puliafito, and K. S. Trivedi, “Combining
Cloud and sensors in a smart city environment,” EURASIP Journal on
Wireless Communications and Networking, vol. 2012, no. 1, pp. 1–10,
2012.

[3] S. M. Fairgrieve, J. A. Makuch, and S. R. Falke, “PULSENetTM: an
implementation of sensor web standards,” International Symposium on
Collaborative Technologies and Systems, 2009 CTS’09, pp. 64–75, 2009.

[4] T. Bleier, B. Bozic, R. Bumerl-Lexa, A. da Costa, and e. a. Costes, S,
“SANY: an open service architecture for sensor networks,” The SANY
Consortium, 2009.

[5] N. Reijers, K.-J. Lin, Y.-C. Wang, C.-S. Shih, and J. Y. Hsu, “Design
of an intelligent middleware for flexible sensor configuration in M2M
systems.” SENSORNETS, 2013.

[6] J. Bourcier, A. Diaconescu, P. Lalanda, and J. A. McCann, “Autohome:
An autonomic management framework for pervasive home applications,”
ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 6,
no. 1, p. 8, 2011.

[7] W. Kurschl and W. Beer, “Combining cloud computing and wireless
sensor networks,” in Proceedings of the 11th International Conference
on Information Integration and Web-based Applications & Services,
ser. iiWAS ’09. New York, NY, USA: ACM, 2009, pp. 512–518.
[Online]. Available: http://doi.acm.org/10.1145/1806338.1806435

[8] V. Rajesh, J. M. Gnanasekar, R. S. Ponmagal, and P. Anbalagan,
“Integration of Wireless Sensor Network with Cloud,” in Recent Trends
in Information, Telecommunication and Computing (ITC), 2010 Inter-
national Conference on, 2010, pp. 321–323.

[9] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of
sensor-cloud integration opportunities and challenges,” in Proceedings
of the 3rd International Conference on Ubiquitous Information
Management and Communication, ser. ICUIMC ’09. New York,
NY, USA: ACM, 2009, pp. 618–626. [Online]. Available: http:
//doi.acm.org/10.1145/1516241.1516350

[10] S. Bluetooth, “Bluetooth: Bluetooth Core Specification v4.1,”
3 December 2013. [Online]. Available: https://www.bluetooth.org/
Technical/Specifications/adopted.htm

[11] [Online]. Available: https://developer.bluetooth.org/gatt/services/Pages/
ServicesHome.aspx

[12] T. K. Lai, A. Wang, C.-M. Chang, H.-M. Tseng, K. Huang, J.-P. Li,
W.-C. Shih, and P. H. Chou, “Demonstration Abstract: An 8 × 8 mm2

Bluetooth Low Energy Motion-Sensing Wireless Sensor Platform,” in
The 12th ACM/IEEE Conference on Information Processing in Sensor
Networks, Demo Session, Berlin, April 2014.

PLACE
PHOTO
HERE

Chengjia Huo received the A.B. degree in Com-
puter Science and Software Engineering from the
Dalian University of Technology, China, in 2006,
and the M.S degree in computer science and en-
gineering from University of California, Irvine, in
2009.

He is now pursuing the Ph.D degree at University
of California, Irvine, under the supervision of Pro-
fessor Pai H. Chou. His research interests include
wireless sensor network, software modeling, OLAP.

Ting-Chou Chien received a Bachelors Degree in Computer Science and
Information Engineering in 2004 from National Chiao Tung University, and
M.S. degree in Electrical Engineering and Computer Science from University
of California, Irvine, in 2009.

He is pursuing the PhD Degree in Electrical Engineering and Computer
Science at University of California, Irvine under the supervision of Professor
Pai H. Chou. His research interests include wireless sensor network, dis-
tributed system.

Pai H. Chou (M’98) received the A.B. degree in computer science from the
University of California, Berkeley, in 1990, and the M.S. and Ph.D. degrees in
computer science and engineering from the University of Washington, Seattle,
in 1993 and 1998, respectively.

He is a Professor in the Department of Electrical Engineering and Com-
puter Science, University of California, Irvine. His research interests include
wireless sensing systems, low-power design, energy harvesting, and system
synthesis..

Dr. Chou is a recipient of the National Science Foundation CAREER
Award.

http://www.opengeospatial.org/ogc/markets-technologies/swe
http://www.opengeospatial.org/ogc/markets-technologies/swe
http://doi.acm.org/10.1145/1806338.1806435
http://doi.acm.org/10.1145/1516241.1516350
http://doi.acm.org/10.1145/1516241.1516350
https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://www.bluetooth.org/Technical/Specifications/adopted.htm
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

	Introduction
	Profile-Based Protocols for Cross-Application Devices
	Connecting BLE and Cloud Computing via Smartmobiles
	Need for Middleware for IoT-Cloud Integration

	Background and Related Work
	Device Description for Interoperability
	Markup-Language Descriptions
	Profile-Based Protocols

	IoT-Cloud Integration

	Overview
	Overview of Proposed IoT-Gateway-Cloud System
	Core Components of Cloud
	Rimware Components
	Adapters on Gateway
	Knowledge Base in the Cloud
	Access Controller in the Cloud

	Gateway
	Adapter Instantiation
	Authentication
	Gateway-to-Cloud Interaction

	Knowledge Base and Access Controller
	BLE Profile-based Capability Description
	Status/Data Characteristic
	Setting/Action Characteristic
	Event Characteristic
	Rimware-Defined Profiles for Configuration

	KB Manager for Profile-to-Web-API Mapping
	Access Control
	Device-Initiated Authentication
	Authentication Token
	Access Control by Profile Constraining

	Case Study
	Smartphone-based Setup
	Gateway Setup and Adapter Instantiation
	Device to Multiple Clouds
	Implementation

	Conclusion
	References
	Biographies
	Chengjia Huo
	Ting-Chou Chien
	Pai H. Chou

