
Accurate Motion Deblurring using Camera Motion Tracking and Scene Depth

Hyeoungho Bae, Charless C. Fowlkes, Pai H. Chou
University of California,Irvine

hyeoungb@uci.edu, fowlkes@ics.uci.edu, phchou@uci.edu

Abstract

In this paper, we propose an estimation algorithm for
spatially-variant blur due to camera motion. To estimate
the most accurate latent image, we integrated depth sen-
sor (Microsoft Kinect) and IMU sensor with the camera.
The joint analysis of the blurry image, IMU data and the
depth data provide better recovery of the real camera mo-
tion during the course of the exposure. The reconstructed
camera trajectory along with the depth map is then used
to synthesize a spatially-variant blur kernel to estimate the
final latent (non-blurry) image. The results show that our
algorithm effectively compensates the motion blur from the
original image while taking scene geometry into account.

1. Introduction
Motion deblurring is one of the most interesting subject

in the computer vision field. Motion deblurring can be clas-

sified into two different categories: blind and non-blind de-

blurring. Non-blind deblurring attempts to remove the ef-

fect of blurring when the motion or blur kernel is known.

Blind deblurring estimates both the motion and the latent

image simultaneously. Estimating two unknowns from a

single blurry photograph is an ill-posed problem, which re-

quires strong prior information to estimate accurate results.

A simple model for blur is to assume that the a blurry im-

age B is generated by convolution of a true image I with a

spatially-invariant kernel k and corrupted with some noise.

B = I ∗ k + n (1)

One common approach in solving the eqation(1) where

the blur kernel is spatially-invariant is to use some prior to

regularize the joint estimate of the latent image (I) and blur

kernel (k) that explain the blurry image (B) [3, 4, 6, 8, 10–

12,14]. However, spatially-invariant assumption is not valid

in most of the cases. Translational motion induces differ-

ent pixel movement for points which are different distances

from the camera. Camera rotation can even result in pix-

els moving in different directions in the same image. To

model the phenomenon, one can use spatially-variant blur

kernel estimation [2, 5, 7, 9, 13, 15]. In this case, the blur

kernel is unique for each image location. To estimate spa-

tially varying kernels, it is natural to introduce a prior at the

level of the camera motion [9], incorporate scene depth in-

formation [15] and utilize measurements of camera motion

to constrain the kernel more effectively [5, 7, 13].

In this paper, we suggest a novel motion deblurring sys-

tem and algorithm to estimate spatially-variant blur kernel

effectively. Our system estimates the camera motion dur-

ing the exposure time using the data from the IMU (Inertia

Measurement Unit) and scene geometry from a structured-

illumination depth sensor (Microsoft Kinect). The recon-

structed camera motion is used to build the individual blur

kernels for each pixel in the image area. Given this data

provided by additional sensors, we are able to reconstruct

spatially varying blur kernels for large motions with very a

very general camera motion model.

Figure 1. The system picture: The system is composed of DSLR

camera (Canon EOS450d with 18-35mm lens), IMU (Analog de-

vices, ADIS16350), Depth sensor (Microsoft Kinect), and Control

board (Beagleboard-xm)

1.1. Related Works

The closest work to ours is that of Joshi et al., who sug-

gested an IMU based spatially-variant blur kernel estima-

tion algorithm [7]. They integrated an IMU with a camera

like our system. However, they assumed the depth is con-

stant over the scene. Most of the cases, the depth is not

constant over the image area. Also, they used a naı̈ve as-

sumption on the direction of the gravity, which assumes the

direction of the gravity is same as the direction of the av-

eraged force (or acceleration) over the camera integration

time. They defined a bound for the accelerometer drift (a

1

few milimeters) and minimized the energy function to find

accelerometer data to get the end point. However, we used

longer exposure time (0.8 - 1.7sec) and the drift error from

the raw data is larger than their (more than a few centime-

ters). In that case, finding accelerometer data, end points,

and the latent image that minimizes their equation is quite

difficult. Gupta et al. developed a spatially-variant blur

kernel estimation algorithm based on the work of Shan et

al. [5, 12]. They divide the image area to get small patches

and assume the blur kernel is spatially-invariant over the

patch area. Shan et al.’s algorithm is used to estimate the

blur kernel of the area. Based on the kernels, they recon-

struct the camera motion that can explain the blur kernels.

However, they also assumed the depth is constant over the

scene. Even though RANSAC algorithm is used for fil-

tering outlier among the estimated blur kernels, their algo-

rithm is dependent of the performance of Shan’s algorithm.

Whyte et al. suggested a non-uniform motion deblurring al-

gorithm [13]. They reconstructed the camera motion to es-

timate the spatially-variant blur kernel. However, due to the

limited information available from only the blurry image,

they restricted themselves to estimating rotational motion of

the camera. Krishnan et al. suggested a limited version of

spatially-variant blur kernel estimation algorithm [9]. Their

algorithm can estimated 2D (or ‘in-plane’) and 3D rotation

(no translation). Like other spatially-invariant blur kernel,

their algorithm is based on the prior knowledge of the scene

(l1/l2 regularization). Due to the simplicity of such priors,

accurate motion deblurring of real-world image is limited

with their approach. Xu et al. suggested a depth-aware mo-

tion deblurring algorithm [15]. They used a stereo camera

to build a disparity map and applied spatially-invariant blur

kernel estimation to areas with the same depth. Even thuogh

they used depth information for their deblurring algorithm,

their approach can only handle translational motion. Their

approach has limit like Krishnan’s approach since their al-

gorithm is dependent on the prior assumption like their pre-

vious spatially-invariant motion deblurring algorithm [14].

Cho et al. used multiple sets of images to reconstruct the

camera motion and estimated blur kernels [1]. Their ap-

proach needs multiple sets of images which are expensive

to acquire in low-light settings and their algorithm depends

on the accuracy of registration of multiple sets of images.

2. System architecture

2.1. System Overview

Our system is composed of a DSLR Camera, an IMU

(Inertial Measurement Unit, Analog Devices ADIS16350),

a depth sensor (Microsoft Kinect) and a control board. The

camera is Canon eos450d with 18-55mm zoom lens. For

our experiment, we fixed the focal distance to 18mm, which

is the closest available focal length to that of the depth sen-

sor. The IMU has a tri-axis accelerometer and a tri-axis

gyroscope. The accelerometer can measure up to 10g and

the bandwidth of the IMU is 350Hz. The control board is

Beagleboard-xm, which has OMAP3530 as the CPU. THe

IMU is connected to the SPI interface and the camera shut-

ter I/O is connected to the GPIO port. To interface 3.3V

devices, an externsion board is used. A linux operating sys-

tem (ubuntu 10.3 rev.) is used for the board.

2.2. Basic Operation

Our algorithm is implemented using Matlab in a laptop.

The matlab script controls Kinect (USB I/F) and the control

board (Serial I/F). The depth map is taken while an image

is taken from the DSLR camera. The control board takes

care of synchronization of the IMU data acquisition and the

camera shutter control. The sampling period of the IMU for

whole group(3 accelerometers and 3 gyroscopes) is 2ms.

The DSLR+Kinect mount shown in Fig. 1 is built using the

schematic distributed by RGBDToolkit 1. Since the resolu-

tion of the depth map is smaller than that of DLSR image,

we assume that the depth of a point is that of the nearest

point. On the control board, we developed device drivers for

the IMU and the camera shutter. Those binaries are called

by a simple linux script.

3. Algorithm

Figure 2. Algorithm overview: The depth map and the IMU data

are acquired during the shutter exposure time. After compensating

the gravity and the drift error, the spatially-variant blur kernel can

be estimated using the depth map and the camera motion.

The motion data is gathered using two different ways in

our system: 1) Direct camera motion sensing from IMU

(Inertial Measurement Unit), and 2) Motion estimation from

image deblurring. To reconstruct the camera motion out of

those data, the depth map measured by Kinect is used.

3.1. Kinematics

We have the acceleration data, ai
t and the angular veloc-

ity from the gyroscope, ωi
t (i means the i-th data among the

data output from the IMU and t means the current frame of

the camera, whereas 0 means the initial frame of the camera

1http://rgbdtoolkit.com/hangar.html

Figure 3. Basic kinematics: To estimate the blur kernel, 3D ho-

mography is used to reflect the 6-DoF camera motion to the pixel

(P in the figure).

(Fig. 3). The displacement and the rotation of the IMU can

be expressed using the below equations:

T 0
i = T 0

i−1 + v0i−1Δt+
1

2
a0iΔt2, (2)

where a0i = RT
i−1a

t
i

Ri = R
(
θ0i−1 +RT

i−1ω
t
iΔt

)
, (3)

where R(θ) means the 3× 3 rotation matrix.

Using the above two equations, the relative displacement

of the point, P in Fig. 3 at time i can be calculated like this:

Pi = Ri−1
TP0 − Ti

0, (4)

where P0 is the pixel coordinate in the initial frame at t = 0.

Once we know the relative position of the pixel at any time

during the camera exposure,then we can construct the tra-

jectory of the pixel or blur kernel using simple homography

relation.

3.2. Histogram Analysis for Gravity and Drift Com-
pensation

IMU is useful to track the motion of an object during a

relatively short period time (less than a minutes). To esti-

mate the relative position of an object under tracking, one

should double integrate the acceleration from the device,

which amplifies the noise included in the data (generally

called drift error). Another problem of IMU is gravity. Gen-

erally, it is not feasible to distinguish the gravity from the

inertia force that we want to measure unless we can detect

a stationary moment, which means no-external acceleration

except for the gravity. Even though we can detect such mo-

ment, due to the drift-error, it is difficult to define the direc-

tion of the gravity during the motion.

In [7], Joshi et al. used an IMU to estimate the camera

motion. They assumed that the direction of the gravity is

the direction of the averaged acceleration during the cam-

era exposure time, which is not realistic assumption (See

Fig. 4(c)). To compensate the drift error, they made an as-

sumption on the bound of the accelerometer drift during the

camera exposure time. The longest exposure time is 0.5sec

(a) Naı̈ve Graviity assumption (b) Contribution of the

gravity assumption

10 20 30 40

20

40

60

80

100

120

140

160

180

200

220

(c) Estimated ker-

nel

Figure 4. The effect of the naı̈ve Gravity assumption: Due to var-

ious reason, the direction of the gravity is not aligned with the

simple averaged acceleration direction (1
N

∫
�aimu).

and the order of drift is a few milimeters. Under those as-

sumptions, they built an energy function to find a latent im-

age, the end point, and the depth (a single depth over the

scene) that minimize it. In our case, the exposure time is not

bounded. During our experiment the exposure time range

from 0.8sec to 1.7sec. The drift of the accelerometer during

the camera exposure time is more than a few centimeters.

Thus, we have at least 106 times larger space to explore (we

don’t assume that the depth is constant) even though we as-

sume that the sampling frequency of the accelerometer is

same. Instead, we suggest much simpler way of compen-

sating the gravity and the drift error simultaneously.

Like Joshi et al., we assume that the displacement con-

tribution due to the accelerometer drift is linear in time.

Therefore, the displacement due to invalid gravity estima-

tion and the drift can be regarded as single variable per

axis (dx and dy in Fig. 4(b)). The drift error of the gy-

roscope is assumed to be negligible during the camera ex-

posure time. To compensate the effect of gravity and the

drift error, we referenced a blur kernel estimation from the

image area around the point (Fig. 5(a)) that we want to track

using a spatially-invariant blur kernel estimation algorithm.

This approach may seem similar to [5]. However, we are

bounded by the IMU data to construct the camera motion

and the compensation factors (dx, dy, dz) are constant over

the time, which means the influence of the outlier to our

5 10 15 20 25 30 35

5

10

15

20

25

30

35

(a) Reference kernel

5 10 15 20

5

10

15

20

25

30

(b) Estimated kernel

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2
Reference kernel x−histogram

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2
Estimated kernel x−histogram

(c) X-axis histrogram

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1
Reference kernel y−histogram

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2
Estimated kernel y−histogram

(d) Y-axis histrogram

Figure 5. Reference kernel based gravity compensation method:

We use a reference kernel estimated from the patch-mosaic algo-

rithm in (a). The histogram analysis is used to find the similarity

between two kernels.

estimation results is much lower than that of [5].

[dx , dy , dz] = arg min
dx ,dy,dz

Corr(hist(kref)− hist(kimu)) ,

(5)

where dx , dy , and dz represent the gravity and drift com-

ponents included in the accelerometer data. Corr(A,B)
means the function calculates the correlation between two

different histograms A and B to show the similarity.

(Fig. 5(c) and 5(d)). The equation (5) can be used for mul-

tiple image points to increase the accuracy of the compen-

sation factors.

3.3. Latent Image Estimation

Once the camera motion is reconstructed from the previ-

ous step, we can build the spatially-variant blur kernel for

the entire image area using the compensated IMU data and

the depth map. The latent image can be estimated by mini-

mizing the following equation:

I = arg min
I

||B −KI||2 + λ ||I||2 , (6)

where I , and B is the column vectorized m × n latent and

the original blurry image, respectively. K is mn × mn
spatially-variant blur kernel.

4. Results
To evaluate the preformance of our deblurring algorithm,

we deblurred a real world blurry image took with our sys-

tem (Fig. 6. In the original blurry image, three different

areas of different depth and coordinate are selected (dotted

rectangle box in Fig. 6(a)). The estimated blur kernels us-

ing our algorithm are shown beside each box. Our estimated

latent images for each area is shown in the second column

(Fig. 6(c), Fig. 6(h), and Fig. 6(m)). To compare the perfor-

mance of our algorithm without the depth map, we showed

the latent image estimated from the blur kernel with con-

stant depth assumption (the depth was the average depth of

the scene): Constant depth column. (Fig. 6(d), Fig. 6(i), and

Fig. 6(n). More detailed comparison are shown in Fig. 8.

Our algorithm shows the most accurate estimation

among the comparison group. The size and the shape of the

blur kernel is different from the location and the depth. Our

algorithm successfully reconstruct the camera motion and

estimate the blur kernels from the data. Spatially-invariant

assumption is definitely not valid for this case. The results

from from Xu et al.’s algorithm and Fergus et al.’s algorithm

([4, 14], respectively) shows little improvement compared

to the original image. The deblurring results for different

type of motion are shown in Fig. 9.

The difference of the blur kernels of Fig. 6 is described

more clearly in Fig. 7. We deblurred the entire image area

using each blur kernel and showed the results in the figure.

In Fig. 7(a), the blur kernel of the center box (of Fig. 6(a))

is used to deblur the entire image. Each area of the result is

provided in the figure. Each blur kernel is dedicated to its

pixel coordinate and can’t accurately deblur other region.

Since we couldn’t compare our algorithm with other

spatially-variant blur kernel algorithms, we compare our al-

gorithm in two different ways: with depth map (our original

configuration) and without depthmap (or constant depth as-

sumption like [5, 7]). For the closely placed objects like

Fig. 8(a) or Fig. 8(b), the influence of the depth information

is more clear than relatively far placed object like Fig. 8(c).

For example, the shape of the number ’6’ of the first row in

Fig. 8(a) is more accurate than that of the second row. In

Fig. 8(b), the length of the blur kernel of the second row is

shorter than the first row, which causes blurry shade beneath

’computer’ letters.

5. Conclusion
In this paper, we developed a system to reconstruct 6-

DoF camera motion during the exposure time aided by the

inertial measurement unit and the depth sensor. The analy-

sis on the IMU data and the blurry image combined with the

depth map gives accurate estimation on the camera motion.

We developed a novel way of compensating the gravity and

drift error contained in the accelerometer of the IMU. The

results show that our algorithm can estimate the latent im-

age accurately. With the scene depth, we can reduce the

limit of DoF in camera motion, which can increase the esti-

mation accuracy compared to other algorithms.

(a) Original blurry image

(b) Original zoom-center (c) Our zoom-center (d) Constant depth-center (e) Xu zoom-center (f) Fergus zoom-center

(g) Original zoom-up (h) Our zoom-up (i) Constant depth-up (j) Xu zoom-up (k) Fergus zoom-up

(l) Original zoom-left (m) Our zoom-left (n) Constant depth-left (o) Xu zoom-left (p) Fergus zoom-left

Figure 6. The estimated latent images: To evaluate the performance of our algorithm, we compared the estimated latent image with the

patch-mosaic deblurring algorithm, Xu et al’s algorithm [14] and Fergus et al,’s algrotihm [4]. The spatially-variant blur kernels estimated

using our algorithm are shown by the selected area in (a). The latent images from our algorithm of the selected areas are provided in the

second column - (c), (h), and (m).

Since our algorithm needs reference for the histogram

analysis, the estimation accuracy is somewhat related to the

accuracy of the reference blur kernel, which is not strongly

dependent on the kernel like [5]. To address this issue, one

can think about extra hardware to estimate the gravity di-

rection like an inclinometer sensor.

Acknowledgement. This work was sponsored by the Na-

tional Science Foundation grant CBET-0933694 and Air

Force Office of Scientific Research grant FA9550-10-1-

0538. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the au-

thors and do not necessarily reflect the views of the National

(a) Center Kernel (b) Left Kernel (c) Up Kernel

Figure 7. Spatially-variant blur kernel: Single blur kernel is used

to get the result of each column. Each column contains three im-

age patches from different image locations (square boxed area of

Fig 6(a)).

(a) Depth-center (b) Depth-left (c) Depth-up

Figure 8. Blur kernel with the depth map and without the depth

map: The first row of the images are the latent image from the blur

kernel estimated using IMU data and the depth map. The second

row are the latent image from the IMU data and constant depth for

all three image patches. The estimated blur kernels are shown in

each image.

Science Foundation.

References

[1] S. Cho, H. Cho, Y. Tai, and S. Lee. Registration based non-

uniform motion deblurring. Computer Graphics Forum (Spe-
cial issue on Pacific Graphics 2012, 2012. 2

[2] S. Cho, Y. Matsushita, and S. Lee. Removing non-uniform

motion blur from images. ICCV, 2007. 1

[3] T. Cho. Motion blur removal from photographs. M.I.T Ph.D
dissertation, 2010. 1

[4] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.

ACM Transactions on Graphics, 25(3), 2006. 1, 4, 5

[5] A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Curless.

Single image deblurring using motion density functions. In

ECCV ’10: Proceedings of the 10th European Conference
on Computer Vision, 2010. 1, 2, 3, 4, 5

[6] J. Jia. Single image motion deblurring using transparency.

CVPR, 2007. 1

(a) Original blurry image

(b) Left box area (c) Right box area

Figure 9. Another deblurring result: The blur kernels for two dif-

ferent region in the image (a) are estimated. Top row of (b) and (c)

contains the original image and bottom shows the estimated image

and blur kernel.

[7] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image

deblurring using inertial measurement sensors. ACM Trans-
actions on Graphics, 29(4), 2010. 1, 3, 4

[8] N. Joshi, R. Szeliski, and D. Kriegman. Psf estimation using

sharp edge prediction. CVPR, 2008. 1

[9] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution

using a normalized sparsity measure. CVPR, 2011. 1, 2

[10] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Un-

derstanding and evaluating blind deconvolution algorithms.

CVPR, 2009. 1

[11] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Effi-

cient marginal likelihood optimization in blind deconvolu-

tion. CVPR, 2011. 1

[12] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-

blurring from a single image. ACM Transactions on Graph-
ics, 27(3), 2008. 1, 2

[13] O. Whyte, J. Sivic, A. Ziseerman, and J. Ponce. Non-uniform

deblurring for shaken images. CVPR, 2010. 1, 2

[14] L. Xu and J. Jia. Two-phase kernel estimation for robust

motion deblurring. ECCV, pages 157–170, 2010. 1, 2, 4, 5

[15] L. Xu and J. Jia. Depth-aware motion deblurring. ICCP,

2012. 1, 2

